Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.063
Filtrar
1.
Molecules ; 29(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38930989

RESUMEN

The crystal structures of two newly synthesized nitrilotriacetate oxidovanadium(IV) salts, namely [QH][VO(nta)(H2O)](H2O)2 (I) and [(acr)H][VO(nta)(H2O)](H2O)2 (II), were determined. Additionally, the cytotoxic effects of four N-heterocyclic nitrilotriacetate oxidovanadium(IV) salts-1,10-phenanthrolinium, [(phen)H][VO(nta)(H2O)](H2O)0.5 (III), 2,2'-bipyridinium [(bpy)H][VO(nta)(H2O)](H2O) (IV), and two newly synthesized compounds (I) and (II)-were evaluated against prostate cancer (PC3) and breast cancer (MCF-7) cells. All the compounds exhibited strong cytotoxic effects on cancer cells and normal cells (HaCaT human keratinocytes). The structure-activity relationship analysis revealed that the number and arrangement of conjugated aromatic rings in the counterion had an impact on the antitumor effect. The compound (III), the 1,10-phenanthrolinium analogue, exhibited the greatest activity, whereas the acridinium salt (II), with a different arrangement of three conjugated aromatic rings, showed the lowest toxicity. The increased concentrations of the compounds resulted in alterations to the cell cycle distribution with different effects in MCF-7 and PC3 cells. In MCF-7 cells, compounds I and II were observed to block the G2/M phase, while compounds III and IV were found to arrest the cell cycle in the G0/G1 phase. In PC3 cells, all compounds increased the rates of cells in the G0/G1 phase.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Masculino , Femenino , Células MCF-7 , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Vanadio/química , Vanadio/farmacología , Células PC-3 , Ciclo Celular/efectos de los fármacos , Estructura Molecular , Sales (Química)/química , Sales (Química)/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
2.
Pestic Biochem Physiol ; 202: 105967, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38879344

RESUMEN

Coumarin is a natural product known for its diverse biological activities. While its antifungal properties in agricultural chemistry have been extensively studied, there is limited research on its antibacterial potential. In this study, we developed several novel coumarin derivatives by combining coumarin with pyridinium salt through molecular hybridization and chemical synthesis. Our findings reveal that most of these derivatives exhibit promising antibacterial activity. Among them, derivative A25 has been identified as the most effective compound based on three-dimensional quantitative structure-activity relationships. It demonstrates significant in vitro and in vivo activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas oryzae pv. oryzicola (Xoc), and Xanthomonas campestris pv. citri (Xac), outperforming the commercially available thiediazole copper. Initial investigations into its mechanism of action suggest that A25 disrupts the cell membranes of Xoc and Xoo, thereby inhibiting bacterial growth. Additionally, A25 enhances the activity of defense enzymes in rice and modulates the expression of proteins related to the pyruvate metabolism pathway. This dual action contributes to rice's resistance against bacterial infestation. We anticipate that this study will serve as a foundation for the development of coumarin-based bactericides.


Asunto(s)
Antibacterianos , Cumarinas , Pruebas de Sensibilidad Microbiana , Oryza , Xanthomonas , Cumarinas/farmacología , Cumarinas/síntesis química , Cumarinas/química , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Xanthomonas/efectos de los fármacos , Oryza/microbiología , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Compuestos de Piridinio/síntesis química , Xanthomonas campestris/efectos de los fármacos , Diseño de Fármacos , Sales (Química)/farmacología , Sales (Química)/química , Relación Estructura-Actividad
3.
Front Cell Infect Microbiol ; 14: 1335189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895735

RESUMEN

Background: Chikungunya virus (CHIKV), which causes chikungunya fever, is an arbovirus of public health concern with no approved antiviral therapies. A significant proportion of patients develop chronic arthritis after an infection. Zinc and magnesium salts help the immune system respond effectively against viral infections. This study explored the antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV infection. Methods: The highest non-toxic concentration of the salts (100 µM) was used to assess the prophylactic, virucidal, and therapeutic anti-CHIKV activities. Dose-dependent antiviral effects were investigated to find out the 50% inhibitory concentration of the salts. Entry bypass assay was conducted to find out whether the salts affect virus entry or post entry stages. Virus output in all these experiments was estimated using a focus-forming unit assay, real-time RT-PCR, and immunofluorescence assay. Results: Different time- and temperature-dependent assays revealed the therapeutic antiviral activity of zinc and magnesium salts against CHIKV. A minimum exposure of 4 hours and treatment initiation within 1 to 2 hours of infection are required for inhibition of CHIKV. Entry assays revealed that zinc salt affected virus-entry. Entry bypass assays suggested that both salts affected post-entry stages of CHIKV. In infected C57BL6 mice orally fed with zinc and magnesium salts, a reduction in viral RNA copy number was observed. Conclusion: The study results suggest zinc salts exert anti-CHIKV activity at entry and post entry stages of the virus life cycle, while magnesium salt affect CHIKV at post entry stages. Overall, the study highlights the significant antiviral potential of zinc sulphate, zinc acetate, and magnesium sulphate against CHIKV, which can be exploited in designing potential therapeutic strategies for early treatment of chikungunya patients, thereby reducing the virus-associated persistent arthritis.


Asunto(s)
Antivirales , Fiebre Chikungunya , Virus Chikungunya , Acetato de Zinc , Sulfato de Zinc , Virus Chikungunya/efectos de los fármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Acetato de Zinc/farmacología , Acetato de Zinc/uso terapéutico , Sulfato de Zinc/farmacología , Chlorocebus aethiops , Células Vero , Internalización del Virus/efectos de los fármacos , Ratones , Zinc/farmacología , Zinc/uso terapéutico , Humanos , Sulfato de Magnesio/farmacología , Magnesio/farmacología , Replicación Viral/efectos de los fármacos , Concentración 50 Inhibidora , Sales (Química)/farmacología , Línea Celular
4.
Molecules ; 29(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38731617

RESUMEN

In this study, a library of 3,7-di(hetero)aryl-substituted 10-(3-trimethylammoniumpropyl)10H-phenothiazine salts is prepared. These title compounds and their precursors are reversible redox systems with tunable potentials. The Hammett correlation gives a very good correlation of the first oxidation potentials with σp parameters. Furthermore, the title compounds and their precursors are blue to green-blue emissive. Screening of the salts reveals for some derivatives a distinct inhibition of several pathogenic bacterial strains (Mycobacterium tuberculosis, Staphylococcus aureus, Escherichia coli, Aconetobacter baumannii, and Klebsiella pneumoniae) in the lower micromolar range.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Fenotiazinas , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Fenotiazinas/farmacología , Fenotiazinas/química , Fenotiazinas/síntesis química , Sales (Química)/química , Sales (Química)/farmacología , Staphylococcus aureus/efectos de los fármacos , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/síntesis química , Escherichia coli/efectos de los fármacos , Oxidación-Reducción , Bacterias/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
5.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692139

RESUMEN

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Asunto(s)
Guanidina , Virus de la Influenza A , ARN Viral , SARS-CoV-2 , Manejo de Especímenes , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/genética , Guanidina/farmacología , Guanidina/química , ARN Viral/genética , Humanos , Manejo de Especímenes/métodos , Genoma Viral , COVID-19/virología , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inactivación de Virus/efectos de los fármacos , Animales , Estabilidad del ARN/efectos de los fármacos , Contención de Riesgos Biológicos , Guanidinas/farmacología , Guanidinas/química , Sales (Química)/farmacología , Sales (Química)/química
6.
J Med Chem ; 67(11): 8642-8666, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38748608

RESUMEN

There is an urgent need for nonopioid treatments for chronic and neuropathic pain to provide effective alternatives amid the escalating opioid crisis. This study introduces novel compounds targeting the α9 nicotinic acetylcholine receptor (nAChR) subunit, which is crucial for pain regulation, inflammation, and inner ear functions. Specifically, it identifies novel substituted carbamoyl/amido/heteroaryl dialkylpiperazinium iodides as potent agonists selective for human α9 and α9α10 over α7 nAChRs, particularly compounds 3f, 3h, and 3j. Compound 3h (GAT2711) demonstrated a 230 nM potency as a full agonist at α9 nAChRs, being 340-fold selective over α7. Compound 3c was 10-fold selective for α9α10 over α9 nAChR. Compounds 2, 3f, and 3h inhibited ATP-induced interleukin-1ß release in THP-1 cells. The analgesic activity of 3h was fully retained in α7 knockout mice, suggesting that analgesic effects were potentially mediated through α9* nAChRs. Our findings provide a blueprint for developing α9*-specific therapeutics for pain.


Asunto(s)
Analgésicos , Inflamación , Piperazinas , Receptores Nicotínicos , Animales , Humanos , Masculino , Ratones , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Analgésicos/uso terapéutico , Inflamación/tratamiento farmacológico , Ratones Noqueados , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/química , Agonistas Nicotínicos/uso terapéutico , Agonistas Nicotínicos/síntesis química , Dolor/tratamiento farmacológico , Piperazinas/farmacología , Piperazinas/química , Piperazinas/síntesis química , Piperazinas/uso terapéutico , Receptores Nicotínicos/metabolismo , Sales (Química)/química , Sales (Química)/farmacología , Relación Estructura-Actividad , Yoduros/química
7.
Int J Biol Macromol ; 269(Pt 2): 131924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688335

RESUMEN

The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.


Asunto(s)
Quitinasas , Nicotiana , Fosfatos , Polietilenglicoles , Proteínas Recombinantes , Quitinasas/química , Quitinasas/aislamiento & purificación , Quitinasas/metabolismo , Nicotiana/enzimología , Fosfatos/química , Proteínas Recombinantes/aislamiento & purificación , Polietilenglicoles/química , Trichoderma/enzimología , Sales (Química)/química , Sales (Química)/farmacología , Agua/química
8.
Chemosphere ; 352: 141386, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316276

RESUMEN

The growing number of infections caused by drug-resistant bacteria which arise from the overuse of antibiotics has severely affected the normal operation of human society. The high antibacterial activity of QAS makes it promising as an alternative to antibiotics, but it suffers from secondary pollution due to its non-degradation. Here we have synthesized a class of gemini quaternary ammonium salts (GQAS) with different carbon chain lengths containing ester groups by using facile methylation reaction. Quaternary ammonium groups contribute to insert negatively charged bacterial membranes, resulting in membrane damage and bacteria death. Compared with conventional single-chain QAS, except for the more efficient antibacterial efficiency attribute to the presence of the second carbon chain, GQAS with alterable antibacterial properties can minimize the possibility of bacterial resistance and reduce the accumulation of GQAS in the environment through the introduction of degradable ester groups. GQAS is completely superior to the commercial bactericide benzalkonium chloride (BAC) in both antibacterial activity and degrade performance, which can be used as a more environmentally friendly bactericide.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Humanos , Sales (Química)/farmacología , Compuestos de Amonio Cuaternario/farmacología , Antibacterianos/farmacología , Bacterias , Esterilización , Carbono , Ésteres
9.
Bioorg Chem ; 145: 107206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38367428

RESUMEN

Photothermal therapy (PTT) has attracted extensive attention in cancer treatment. Heptamethine cyanine dyes with near-infrared (NIR) absorption performance have been investigated for PTT. However, they are often accompanied by poor photostability, suboptimal photothermal conversion and limited therapeutic efficacy. The photophysical properties of fluorescent organic salts can be tuned through counterion pairing. However, whether the counterion can influence the photostability and photothermal properties of heptamethine cyanine salts has not been clarified. In this work, we investigated the effects of eleven counter anions on the physical and photothermal properties of NIR-II heptamethine cyanine salts with the same heptamethine cyanine cation. The anions have great impacts on the physiochemical properties of dyes in solution including aggregation, photostability and photothermal conversion efficiency. The physical tuning enables the control over the cytotoxicity and phototoxicity of the dyes. The selected salts have been demonstrated to significantly suppress 4T1 breast tumor growth with low toxicity. The findings that the counterion has great effects on the photothermal properties of cationic NIR-II heptamethine cyanine dyes will provide a reference for the preparation of improved photothermal agents through counterion pairing with possible translation to humans.


Asunto(s)
Carbocianinas , Terapia Fototérmica , Sales (Química) , Humanos , Sales (Química)/farmacología , Colorantes/química , Aniones , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/química
10.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397044

RESUMEN

Commercially available 2-deoxy-D-ribose was used to synthesize the appropriate oxolane derivative-(2R,3S)-2-(hydroxymethyl)oxolan-3-ol-by reduction and dehydration/cyclization in an acidic aqueous solution. Its monotosyl derivative, as a result of the quaternization reaction, allowed us to obtain eight new muscarine-type derivatives containing a quaternary nitrogen atom and a hydroxyl group linked to the oxolane ring. Their structure was fully confirmed by the results of NMR, MS and IR analyses. The crystal structure of the pyridinium derivative showed a high similarity of the conformation of the oxolane ring to previously published crystal structures of muscarine. Two reference strains of Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853), two reference strains of Gram-positive staphylococci (Staphylococcus aureus ATCC 25923 and Staphylococcus aureus ATCC 29213) and four reference strains of pathogenic yeasts of the genus Candida spp. (Candida albicans SC5314, Candida glabrata DSM 11226, Candida krusei DSM 6128 and Candida parapsilosis DSM 5784) were selected for the evaluation of the antimicrobial potential of the synthesized compounds. The derivative containing the longest (decyl) chain attached to the quaternary nitrogen atom turned out to be the most active.


Asunto(s)
Compuestos de Amonio , Muscarina , Sales (Química)/farmacología , Pruebas de Sensibilidad Microbiana , Nitrógeno , Antibacterianos/química
11.
Sci Rep ; 14(1): 1677, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243066

RESUMEN

Oviposition is essential in the life history of insects and is mainly mediated by chemical and tactile cues present on the plant surface. Oviposition deterrents or stimulants can modify insect oviposition and be employed in pest control. Relatively few gustatory oviposition stimuli have been described for tortricid moths. In this study the effect of NaCl, KCl, sucrose, fructose and neem oil on the number of eggs laid by Cydia pomonella (L.), Grapholita molesta (Busck) and Lobesia botrana (Dennis & Schifermüller) was tested in laboratory arenas containing filter papers loaded with 3 doses of a given stimulus and solvent control. In general, salts increased oviposition at the mid dose (102 M) and sugars reduced it at the highest dose (103 mM), but these effects depended on the species. Neem oil dramatically reduced the number of eggs laid as the dose increased, but the lowest neem oil dose (0.1% v/v) increased L. botrana oviposition relative to solvent control. Our study shows that ubiquitous plant chemicals modify tortricid moth oviposition under laboratory conditions, and that neem oil is a strong oviposition deterrent. The oviposition arena developed in this study is a convenient tool to test the effect of tastants on the oviposition behavior of tortricid moths.


Asunto(s)
Glicéridos , Mariposas Nocturnas , Terpenos , Animales , Femenino , Mariposas Nocturnas/fisiología , Sales (Química)/farmacología , Oviposición/fisiología , Azúcares/farmacología , Solventes/farmacología
12.
Odontology ; 112(2): 489-500, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37978093

RESUMEN

This pH cycling study aimed to investigate the effects of L-Ascorbic acid 2-phosphate (AA2P) salts of Mg, Zn, Mn, Sr, and Ba on the surface microhardness, compressive strength, diametral tensile strength (DTS), and solubility of root canal dentin. 186 cylindrical dentin specimens from 93 teeth were fortified with optimal concentrations of AA2P salts of Mg (0.18 mM), Zn (5.3 µM), Mn (2.2 × 10-8 M), Sr (1.8 µM), and Ba (1.9 µM). Saline was used as the control group. These dentin specimens underwent a 3-day cycling process simulating dentin caries formation through repeated sequences of demineralization and remineralization. Surface microhardness at 100 and 500 µm depths (n = 10/subgroup), scanning electron microscopy (n = 3/group), compressive strength (n = 10/group), DTS (n = 6/group), and solubility (n = 5/group) tests were performed to analyze the dentin specimens. Data were analyzed using Kolmogorov-Smirnov, one-way ANOVA, and Post Hoc Tukey tests (p < 0.05). The control group had significantly lower microhardness at both depths (p < 0.001), reduced DTS (p = 0.001), decreased compressive strength (p < 0.001), and higher weight loss (p < 0.001) than all other groups. The Sr group had the highest compressive strength and microhardness among all the groups. The microhardness was significantly higher for the 500 µm depth than the 100 µm depth (p < 0.001), but the difference in microhardness between depths across groups was not significant (p = 0.211). All fortifying solutions provided some protection against artificial caries lesions. Therefore, these elements might have penetrated and reinforced the demineralized dentin against acid dissolution.


Asunto(s)
Ácido Ascórbico/análogos & derivados , Caries Dental , Dentina , Humanos , Susceptibilidad a Caries Dentarias , Sales (Química)/farmacología
13.
J Biochem Mol Toxicol ; 38(1): e23535, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37711070

RESUMEN

Redox imbalance leads to oxidative stress that causes irreversible cellular damage. The incorporation of the antioxidant element selenium (Se) in the structure of pyridinium salts has been used as a strategy in chemical synthesis and can be useful in drug development. We investigated the antioxidant activity of Se-containing pyridinium salts (named Compounds 3A, 3B, and 3C) through in vitro tests. We focused our study on liver protein carbonylation, liver lipoperoxidation, free radical scavenging activity (1,1-diphenyl-2-picryl-hydrazil [DPPH]; 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid [ABTS]), and enzyme-mimetic activity assays (glutathione S-transferase [GST]-like; superoxide dismutase [SOD]-like). In addition, 2-(4-chlorophenyl)-2-oxoethyl)-2-((phenylselanyl)methyl)pyridin-1-ium bromide (3C) was selected to evaluate the acute oral toxicity in mice due to the best antioxidant profile. The three compounds were effective in reducing the levels of protein carbonylation and lipoperoxidation in the liver in a µM concentration range. All compounds demonstrated scavenger activity of DPPH and ABTS radicals, and GST-like action. No significant effects were detected in the SOD-like assay. Experimental data also showed that the acute oral treatment of mice with Compound 3C (50 and 300 mg/kg) did not cause mortality or change markers of liver and kidney functions. In summary, our findings reveal the antioxidant potential of Se-containing pyridinium salts in liver tissue, which could be related to their radical scavenging ability and mimetic action on the GST enzyme. They also demonstrate a low toxicity potential for Compound 3C. Together, the promising results open space for future studies on the therapeutic application of these molecules.


Asunto(s)
Benzotiazoles , Compuestos de Bifenilo , Hepatopatías , Selenio , Ácidos Sulfónicos , Ratones , Animales , Antioxidantes/metabolismo , Selenio/farmacología , Sales (Química)/farmacología , Sales (Química)/metabolismo , Estrés Oxidativo , Hepatopatías/metabolismo , Superóxido Dismutasa/metabolismo , Hígado/metabolismo , Preparaciones Farmacéuticas/metabolismo
14.
J AOAC Int ; 107(1): 112-119, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-37756685

RESUMEN

BACKGROUND: To date, basidiomycetes are considered to be promising objects of biotechnology, due to a number of biologically active compounds, such as polysaccharides and triterpenes. These compounds have a high therapeutic potential and demonstrate immunomodulatory, antiviral, and antifungal activities. OBJECTIVE: The purpose of this study was to study the effect of various concentrations of metal citrates and sulphates on the content of exo- and endopolysaccharides of the fungus Trametes versicolor. METHOD: The mycelium was grown by deep cultivation on a semisyntheticglucose-peptone-yeast medium with different contents of zinc, copper, and manganese salts, after which the extraction and measurement of the concentration of polysaccharides were carried out. RESULTS: The results obtained showed that copper citrate at a concentration of 4 mg/L had the greatest positive effect on biomass yield. The intensity of biomass growth on a nutrient medium with copper citrate increased by 80%. Zinc citrate increased the content of exopolysaccharides by 29% compared to the medium without metal salts. When manganese citrate was added to the medium, the productivity of synthesis decreased, but an increase in the growth rate of mycelium biomass was observed. Sulphates of these metals led to a decrease in the productivity of exopolysaccharide synthesis by 12% for zinc and 35% for manganese. CONCLUSIONS: The addition of both copper citrate and copper sulphate to the medium led to a decrease in the synthesis productivity by 66 and 24%, respectively. The introduction of both citrates and sulphates of these metals into the culture medium led to an increase in the percentage of endopolysaccharides in the mycelium of the fungus. HIGHLIGHTS: Copper citrate enhances Trametes versicolor biomass by 80%. Zinc citrate increases exopolysaccharide content by 29%. Copper sulphate optimizes endopolysaccharide production.


Asunto(s)
Agaricales , Trametes , Cobre , Sulfato de Cobre/farmacología , Manganeso , Sales (Química)/farmacología , Polisacáridos/farmacología , Zinc , Citratos/farmacología , Ácido Cítrico
15.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958698

RESUMEN

Antimicrobial resistance is a silent pandemic considered a public health concern worldwide. Strategic therapies are needed to replace antibacterials that are now ineffective. One approach entails the use of well-known antibacterials along with adjuvants that possess non-antibiotic properties but can extend the lifespan and enhance the effectiveness of the treatment, while also improving the suppression of resistance. In this regard, a group of uniform materials based on organic salts (GUMBOS) presents an alternative to this problem allowing the combination of antibacterials with adjuvants. Fluoroquinolones are a family of antibacterials used to treat respiratory and urinary tract infections with broad-spectrum activity. Ciprofloxacin and moxifloxacin-based GUMBOS were synthesized via anion exchange reactions with lithium and sodium salts. Structural characterization, thermal stability and octanol/water partition ratios were evaluated. The antibacterial profiles of most GUMBOS were comparable to their cationic counterparts when tested against Gram-positive S. aureus and Gram-negative E. coli, except for deoxycholate anion, which demonstrated the least effective antibacterial activity. Additionally, some GUMBOS were less cytotoxic to L929 fibroblast cells and non-hemolytic to red blood cells. Therefore, these agents exhibit promise as an alternative approach to combining drugs for treating infections caused by resistant bacteria.


Asunto(s)
Fluoroquinolonas , Sales (Química) , Fluoroquinolonas/farmacología , Sales (Química)/farmacología , Sales (Química)/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/química , Aniones , Pruebas de Sensibilidad Microbiana
16.
Chem Biodivers ; 20(12): e202301362, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953698

RESUMEN

This report presents the synthesis and characterization of a range of benzimidazolium salts featuring 3-cyanopropyl groups on the 1st nitrogen atom and varied alkyl groups on the 3rd nitrogen atom within the benzimidazole structure. Benzimidazolium salts were synthesized by N-alkylation of 1-alkyl benzimidazole with 3-cyanopropyl-bromide. The new salts were characterized by 1 H and 13 C-NMR, FT-IR spectroscopic and elemental analysis techniques. In this study, the enzyme inhibition abilities of seven nitrile substituted benzimidazolium salts were investigated against acetylcholinesterase (AChE) and carbonic anhydrase isoenzymes I and II (hCA I and hCA II). They showed a highly potent inhibition effect on AChE, hCA I and hCA II (Ki values are in the range of 26.71-119.09 nM for AChE, 19.77 to 133.68 nM for hCA I and 13.09 to 266.38 nM for hCA II). Reflecting the binding mode of the synthesized cyanopropyl series, the importance of the 2,3,5,6-tetramethylbenzyl, 3-methylbenzyl and 3-benzyl groups for optimal interactions with target proteins, evaluated by molecular docking studies. At the same time, the docking findings support the inhibition constants (Ki ) values of the related compounds in this study. Potential compounds were also evaluated by their pharmacokinetic properties were predicted.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasas Carbónicas/metabolismo , Acetilcolinesterasa/metabolismo , Simulación del Acoplamiento Molecular , Sales (Química)/farmacología , Anhidrasa Carbónica II , Espectroscopía Infrarroja por Transformada de Fourier , Inhibidores de la Colinesterasa/química , Anhidrasa Carbónica I , Bencimidazoles , Nitrógeno , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Estructura Molecular
17.
Carbohydr Res ; 534: 108964, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37925873

RESUMEN

Chitosan derivatives are versatile materials, biocompatible and biodegradable, that can be tailor-made to suit specific biomedical applications. In this study, two N-heterocyclic salts (N,N'-diphenacyl-[4,4'-dipyridinium] dibromide (DP) and N,N'-diphenacyl-1,2-bis-(4-pyridinium)ethane dibromide (DPE)) were used for chitosan functionalization to enhance its antimicrobial potential. Physico-chemical characterization of the newly synthesized derivatives (Ch-DP and Ch-DPE) was performed by elemental analysis, spectrometry (UV-Vis, FTIR), electrochemistry (OCP, CV), and electron microscopy (SEM) proving that the highest degree of functionalization was obtained for Ch-DP. The antimicrobial effect of chitosan functionalization was further tested in terms of its interaction with Listeria monocytogenes Scott A, and Staphylococcus aureus ATCC 25923, as Gram-positive bacteria and Escherichia coli ATCC 25922, as Gram-negative bacterium, respectively, showing that the Ch-DP had a good inhibitory activity compared with Ch-DPE.


Asunto(s)
Antiinfecciosos , Quitosano , Antibacterianos/química , Quitosano/farmacología , Quitosano/química , Sales (Química)/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/química , Escherichia coli
18.
Molecules ; 28(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38005244

RESUMEN

This research presents novel ibuprofen derivatives in the form of alkyl ester salts of L-amino acids with potential analgesic, anti-inflammatory, and antipyretic properties for potential use in transdermal therapeutic systems. New derivatives of (RS)-2-[4-(2-methylpropyl)phenyl]propionic acid were synthesized using hydrochlorides of alkyl esters (ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, and pentyl) of L-glutamine. These were further transformed into alkyl esters of L-amino acid ibuprofenates through neutralization and protonation reactions. Characterization involved spectroscopic methods, including nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Various physicochemical properties were investigated, such as UV-Vis spectroscopy, polarimetric analysis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, water solubility, octanol/water partition coefficient, and permeability through pig skin using Franz diffusion cells. The research confirmed the ionic structure of the obtained hydrochlorides of alkyl esters of L-amino acids and ibuprofenates of alkyl esters of L-glutamic acid. It revealed significant correlations between ester chain length and thermal stability, crystallinity, phase transition temperatures, lipophilicity, water solubility, skin permeability, and skin accumulation of these compounds. Compared to the parent ibuprofen, the synthesized derivatives exhibited higher water solubility, lower lipophilicity, and enhanced skin permeability. This study introduces promising ibuprofen derivatives with improved physicochemical properties, highlighting their potential for transdermal therapeutic applications. The findings shed light on the structure-activity relationships of these derivatives, offering insights into their enhanced solubility and skin permeation, which could lead to more effective topical treatments for pain and inflammation.


Asunto(s)
Ibuprofeno , Sales (Química) , Animales , Porcinos , Ibuprofeno/química , Sales (Química)/farmacología , Ésteres/química , Administración Cutánea , Piel , Solubilidad , Aminoácidos/farmacología , Permeabilidad , Agua/farmacología
19.
Carbohydr Res ; 532: 108920, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37586143

RESUMEN

Cinnamic acid-containing sugar compounds such as phenylethanoid glycosides are widely present in nature and display various biological activities. In this work, the synthesis of trans-cinnamic acid containing phenylethanoid glycosides was achieved via palladium-catalyzed cross-coupling reactions between glycosyl acrylic esters and aryldiazonium salts. A wide range of functionalized aryldiazonium salts were successfully coupled with 6-O- and 4-O-acrylic esters of glucose under optimized conditions. The reactions proceeded at room temperature in the absence of additives and base. The desired products were obtained in good to excellent yields. Selected compounds from the library were screened for anti-Alzheimer activity, while compound 16 displayed significant inhibitory activities against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes.


Asunto(s)
Butirilcolinesterasa , Glicósidos , Glicósidos/farmacología , Acetilcolinesterasa , Paladio/farmacología , Sales (Química)/farmacología , Glucosa , Ésteres/farmacología , Catálisis
20.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513340

RESUMEN

Five ester-bonded gemini quaternary ammonium surfactants C12-En-C12 (n = 2, 4, 6), with a flexible spacer group, and C12-Bm-C12 (m = 1, 2), with rigid benzene spacers, were synthesized via a two-step reaction and analyzed. Furthermore, the effects of the spacer structure, spacer length and polymerization degree on the self-aggregation, antimicrobial activity and cytotoxicity of C12-En-C12 and C12-Bm-C12 and their corresponding monomer N-dodecyl-N,N,N-trimethyl ammonium chloride DTAC were investigated. The results showed that C12-En-C12 and C12-Bm-C12 had markedly lower critical micellar concentration (CMC) values and lower surface tension than DTAC. Moreover, the CMC values of C12-En-C12 and C12-Bm-C12 decreased with increasing spacer length. In the case of equivalent chain length, the rigidity and steric hindrance of phenylene and 1,4-benzenediyl resulted in larger CMC values for C12-Bm-C12 than for C12-En-C12. The antibacterial ability of C12-En-C12 and C12-Bm-C12 was assessed using Escherichia coli (E. coli) and Staphylococcus albus (S. aureus) based on minimum inhibitory concentrations (MICs). Furthermore, C12-En-C12 and C12-Bm-C12 exhibited higher antimicrobial activity than DTAC and had stronger function toward S. aureus than E. coli. The antimicrobial activity was enhanced by increasing the spacer chain length and decreased with the increased rigidity of the spacers. The cytotoxic effects of C12-En-C12 and C12-Bm-C12 in cultured Hela cells were evaluated by the standard CCK8 method based on half-maximal inhibitory concentration (IC50). The cytotoxicity of C12-En-C12 and C12-Bm-C12 was significantly lower than alkanediyl-α,ω-bis(dimethyldodecylammonium) bromide surfactants and DTAC. The spacer structure and the spacer length could induce significant cytotoxic effects on Hela cells. These findings indicate that the five ester-bonded GQASs have stronger antibacterial activity and lower toxicity profile, and thus can be used in the pharmaceutical industry.


Asunto(s)
Escherichia coli , Sales (Química) , Humanos , Sales (Química)/farmacología , Células HeLa , Staphylococcus aureus , Compuestos de Amonio Cuaternario/farmacología , Compuestos de Amonio Cuaternario/química , Antibacterianos/farmacología , Tensoactivos/farmacología , Tensoactivos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...