Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 795
Filtrar
1.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725023

RESUMEN

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Asunto(s)
Espectroscopía Dieléctrica , Ensayo de Materiales , Alambres para Ortodoncia , Saliva Artificial , Acero Inoxidable , Zinc , Corrosión , Acero Inoxidable/química , Zinc/química , Saliva Artificial/química , Aleaciones Dentales/química , Materiales Biocompatibles Revestidos/química , Fluoruros/química , Concentración de Iones de Hidrógeno , Humanos , Propiedades de Superficie , Potenciometría
2.
Am J Dent ; 37(2): 66-70, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38704848

RESUMEN

PURPOSE: To evaluate the effect of different finishing and polishing systems on the surface roughness of a resin composite subjected to simulated saliva-, acid-, and enzyme-induced degradation. METHODS: 160 specimens (n= 40) were fabricated with Filtek Z350 XT nanofilled composite and analyzed for average surface roughness (Ra). The specimens were finished and polished using: AD - Al2O3-impreginated rubberized discs (medium, fine, and superfine grit, Sof-Lex); SD - silicon carbide and Al2O3-impregnated rubberized discs (coarse, medium and fine grit, Jiffy,); MB - 12- and 30-multiblade burs. The control group (CT) (n= 40) comprised specimens with a Mylar-strip-created surface. Specimens from each group were immersed in 1 mL of one of the degradation methods (n= 10): artificial saliva (ArS: pH 6.75), cariogenic challenge (CaC: pH 4.3), erosive challenge (ErC: 0.05M citric acid, pH 2.3) or enzymatic challenge (EzC: artificial saliva with 700 µg/mL of albumin, pH 6.75). The immersion period simulated a time frame of 180 days. Ra measurements were also performed at the post-polishing and post-degradation time points. The data were evaluated by three-way ANOVA for repeated measures and the Tukey tests. RESULTS: There was significant interaction between the finishing/polishing system and the degradation method (P= 0.001). AD presented the greatest smoothness, followed by SD. After degradation, CT, AD and SD groups became significantly rougher, but not the MB group, which presented no difference in roughness before or after degradation. CT and AD groups showed greater roughness in CaC, ErC and EzC than in ArS. The SD group showed no difference in roughness when the specimens were polished with CaC, EzC or ArS, but those treated with ErC had greater roughness. In the MB group, the lower roughness values were found after using CaC and EzC, while the higher values were found using ErC or ArS. CLINICAL SIGNIFICANCE: As far as degradation resistance of nanofilled composite to hydrolysis, bacterial and dietary acids and enzymatic reactions is concerned, restorations that had been finished and polished with Al2O3-impregnated discs had the smoothest surfaces.


Asunto(s)
Óxido de Aluminio , Resinas Compuestas , Pulido Dental , Saliva Artificial , Compuestos de Silicona , Propiedades de Superficie , Resinas Compuestas/química , Pulido Dental/métodos , Humanos , Saliva Artificial/química , Concentración de Iones de Hidrógeno , Óxido de Aluminio/química , Compuestos de Silicona/química , Compuestos Inorgánicos de Carbono/química , Ensayo de Materiales , Nanocompuestos/química , Ácido Cítrico/química , Saliva/enzimología , Saliva/metabolismo , Saliva/química , Erosión de los Dientes , Goma/química , Materiales Dentales/química
3.
PLoS One ; 19(5): e0304156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38776324

RESUMEN

Saliva substitutes with enhanced dentin remineralization properties were expected to help manage caries progression in patients with xerostomia. This in vitro study examined the rheological properties and remineralization action of experimental saliva substitutes containing propolis extract and aloe vera extract on demineralized dentin. Four experimental saliva substitutes were formulated with varying concentrations of propolis extract (P) and aloe vera extract (A) were prepared. A commercial saliva substitute (Biotene Oral Rinse) was used as a commercial comparison. The rheological properties and viscosity of these materials were measured using a strain-controlled rheometer (n = 3). The remineralizing actions of saliva substitutes on demineralized dentin after 2 weeks were determined using ATR-FTIR and SEM-EDX (n = 8). The results were expressed as a percentage increase in the mineral-to-matrix ratio. Biotene demonstrated a significantly higher viscosity (13.5 mPa·s) than experimental saliva substitutes (p<0.05). The addition of extracts increased the viscosity of the saliva substitutes from 4.7 mPa·s to 5.2 mPa·s. All formulations showed minimal shear thinning behavior, which was the viscoelastic properties of natural saliva. The formulation containing 5 wt% of propolis exhibited the highest increase in the median mineral-to-matrix ratio (25.48%). The SEM-EDX analysis revealed substantial mineral precipitation in demineralized dentin, especially in formulations with 5 wt% or 2.5 wt% of propolis. The effect of the aloe vera extract was minimal. The addition of propolis and aloe vera extracts increased the viscosity of saliva substitutes. the addition of propolis for 2.5 or 5 wt% to saliva substitutes increased mineral apatite precipitation and tubule occlusion. To conclude, the saliva substitute containing propolis extract demonstrated superior remineralizing actions compared with those containing only aloe vera extract.


Asunto(s)
Aloe , Dentina , Extractos Vegetales , Própolis , Reología , Saliva Artificial , Própolis/química , Própolis/farmacología , Aloe/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saliva Artificial/química , Dentina/química , Dentina/efectos de los fármacos , Humanos , Viscosidad , Remineralización Dental/métodos , Espectroscopía Infrarroja por Transformada de Fourier
4.
Orthod Craniofac Res ; 27(3): 447-454, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38153199

RESUMEN

OBJECTIVES: This study aimed to compare the surface roughness and friction of different orthodontic archwires after exposure to salbutamol sulphate inhalation, an anti-asthmatic medication. METHODS: Orthodontic archwires (stainless-steel [StSt], nickel-titanium [NiTi], beta-titanium [ß-Ti], and copper-NiTi [Cu-NiTi]) were equally divided into two groups. The exposed groups were subjected to 20 mg salbutamol sulphate for 21 days and kept in artificial saliva. The control groups were only kept in artificial saliva. Surface changes were visualized using scanning electron microscopy (SEM). The average surface roughness (Ra) was evaluated using atomic force microscopy (AFM), and friction resistance forces were assessed using a universal testing machine. Statistical analyses were performed using t-tests and ANOVA followed by post hoc tests. RESULTS: Salbutamol sulphate did not change the surface roughness of StSt and NiTi archwires (p > .05). However, the change in the surfaces of ß-Ti and Cu-NiTi archwires was significant (p < .001). The frictional forces of exposed StSt, NiTi, and Cu-NiTi archwires did not change (p > .05). However, the frictional forces of ß-Ti archwires increased significantly after exposure to salbutamol sulphate (p = .021). Brushing with fluoride after exposure to salbutamol sulphate increased the frictional forces of ß-Ti only (p = .002). CONCLUSIONS: Salbutamol sulphate inhalation significantly affected the surface texture of ß-Ti and Cu-NiTi orthodontic archwires and increased the friction of ß-Ti archwires. These deteriorating effects were not detected on the surface of StSt and NiTi archwires. Therefore, we suggest that ß-Ti and copper titanium archwires should be used cautiously in individuals under salbutamol sulphate inhalation treatment.


Asunto(s)
Albuterol , Cobre , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Níquel , Alambres para Ortodoncia , Propiedades de Superficie , Titanio , Albuterol/administración & dosificación , Níquel/química , Cobre/química , Titanio/química , Humanos , Antiasmáticos/administración & dosificación , Acero Inoxidable/química , Fricción/efectos de los fármacos , Administración por Inhalación , Ensayo de Materiales , Saliva Artificial/química , Aleaciones Dentales/química
5.
Clin Exp Dent Res ; 9(4): 630-640, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37106488

RESUMEN

OBJECTIVES: This in vitro work investigates the potential of ostrich eggshell as a substitute for extracted human teeth in preliminary screening studies on dental erosion. Additionally, it aims to demonstrate the potential of ostrich eggshell compared to human enamel in evaluating the efficacy of a preventive agent in protecting against dental erosion, using an artificial mouth model. METHODS: The experiment utilized 96 erosion testing specimens from each substrate, human enamel, and ostrich eggshell. The specimens were subjected to six different experimental regimens of increasing erosive challenge, simulating the consumption of an acidic drink. The acidic drink was delivered at a consistent volume and duration range. Both artificially stimulated and unstimulated saliva flowed throughout the experimental regimens. Surface hardness was measured using a Through-Indenter Viewing hardness tester with a Vickers diamond, while surface profiling was done using a surface contacting profilometer with a diamond stylus. An automated chemistry analyzer system was used to detect calcium and phosphate ions. RESULTS: The study found that ostrich eggshell specimens demonstrated predictable surface loss, hardness drop, and ion loss due to the acidic challenge. Meanwhile, enamel appeared to fall short in terms of surface hardness predictability. The transient hardness loss phase, which manifests as an overlooked decrease in surface hardness despite significant ion and structural loss, may explain this phenomenon. CONCLUSIONS: The experiment showed that assessing surface loss is essential in addition to hardness testing, particularly as certain experimental conditions may produce a false perception of tissue recovery despite the actual surface loss. By analyzing the response of ostrich eggshell specimens to erosive challenges, researchers were able to identify an "overlooked" reduction in hardness in enamel specimens. The differences in the structure, chemical composition, and biological response to erosion in the presence of artificial saliva between enamel and ostrich eggshell could explain their distinct behaviors.


Asunto(s)
Struthioniformes , Erosión de los Dientes , Animales , Humanos , Erosión de los Dientes/diagnóstico , Erosión de los Dientes/prevención & control , Cáscara de Huevo , Esmalte Dental , Saliva Artificial/química
6.
J Mech Behav Biomed Mater ; 141: 105748, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36898356

RESUMEN

The aim of this study was to assess the remineralization efficacy of chicken eggshell-derived nano-hydroxyapatite (CEnHAp) combined with phytosphingosine (PHS) on artificially induced dentinal lesions. PHS was commercially procured whereas CEnHAp was synthesized using microwave-irradiation method and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), high-resolution scanning electron microscopy-energy-dispersive X-ray spectroscopy (HRSEM-EDX), and transmission electron microscopy (TEM). A total of 75 pre-demineralized coronal dentin specimens were randomly treated with one of the following test agents (n = 15 each): artificial saliva (AS), casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), CEnHAp, PHS, and CEnHAp-PHS under pH cycling for 7, 14, and 28 days. Vickers microhardness indenter, HRSEM-EDX, and micro-Raman spectroscopy methods were used to assess the mineral changes in the treated dentin samples. Data were submitted to Kruskal-Wallis and Friedman's two-way analyses of variance (p < 0.05). HRSEM and TEM analysis depicted irregular spherical structure of the prepared CEnHAp with a particle size of 20-50 nm. The EDX analysis confirmed the presence of Ca, P, Na and Mg ions. The XRD pattern showed the characteristic crystalline peaks for hydroxyapatite and calcium carbonate that are present in the prepared CEnHAp. Dentin treated with CEnHAp-PHS revealed highest microhardness values along with complete tubular occlusion compared to other groups at all test time intervals (p < 0.05). Specimens treated with CEnHAp showed increased remineralization than those treated with CPP-ACP followed by PHS and AS groups. The intensity of mineral peaks, as observed in the EDX and micro-Raman spectra, confirmed these findings. Further, the molecular conformation of the collagen's polypeptide chains, and amide-I and CH2 peaks attained peak intensities in dentin treated with CEnHAp-PHS and PHS whereas other groups revealed poor stability of collagen bands. Microhardness, surface topography, and micro-Raman spectroscopy analyses revealed that dentin treated with CEnHAp-PHS have an improved collagen structure and stability as well as highest mineralization and crystallinity.


Asunto(s)
Cáscara de Huevo , Espectrometría Raman , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Colágeno/análisis , Saliva Artificial/química , Durapatita/química , Dentina/química
7.
PLoS One ; 18(2): e0280381, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36795661

RESUMEN

Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.


Asunto(s)
Antisépticos Bucales , Xerostomía , Humanos , Saliva Artificial/química , Impedancia Eléctrica , Fluoruros/análisis , Microfluídica , Clorhexidina , Saliva/química , Xerostomía/terapia
8.
Acta Bioeng Biomech ; 25(1): 101-115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38314640

RESUMEN

The aim of this study was to examine a short-term fluoride ions release from selected materials - resin-modified glass ionomer -Vitremer (3M ESPE) and nanohybrid universal composite - Tetric EvoCeram (IvoclarVivadent). Release of fluoride ions [µg/mm2 /h] from Tetric EvoCeram and Vitremer into nine environments (artificial saliva - AS, deionized water and 0.9% NaCl) differing in composition of the solution and pH was determined. Six samples were prepared for each solution. In the short-term study, the measurements were taken after 1, 3, 24, 48, 72 and 168 hours. The cumulative values as well as levels of fluoride ions released at concrete time intervals were compared. Within 7 days (168 hours), both materials showed variable levels of fluoride ions release. The highest value of fluoride ions release from nanohybrid Tetric EvoCeram material was reported in deionized water (8) after 24 hours (1.550 ± 0.014 [µg/mm2/h]) and the lowest value was read in the artificial saliva AS pH 7.5 (5) after 1 hour (0.022 ± 0.001 [µg/mm2/h]). What's more, the highest value of F- release from Vitremer was found in deionized water (8) after 168 hours of immersion (24.021 ± 2.280 [µg/mm2/h]) and the lowest value was in the artificial saliva AS (without Ca2+) pH 4.5 (6) (0.303 ± 0.249 [µg/mm2/h]) after 168 hours. Cumulated release of F- after 7 days was notably higher from resin- modified glass ionomer material - Vitremer in all artificial saliva solutions (1-7) which imitated the environment of oral cavity. Therefore, we can assume that Vitremer has better remineralization potential and it may constitute a more effective method of tooth decay prevention.


Asunto(s)
Resinas Acrílicas , Resinas Compuestas , Fluoruros , Dióxido de Silicio , Fluoruros/farmacología , Fluoruros/química , Saliva Artificial/química , Ensayo de Materiales , Resinas Compuestas/química , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/química , Agua/química
9.
Eur Rev Med Pharmacol Sci ; 26(21): 7833-7839, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36394731

RESUMEN

OBJECTIVE: We aimed at evaluating some chemical-physical properties of artificial saliva substitutes easily available on the E.U. market, such as viscosity, pH, buffering capacity, superficial tension, density and spinnbarkeit and to compare the results with human natural saliva bibliographic data. MATERIALS AND METHODS: Based on the easy availability on the market, twelve artificial saliva solutions in liquid formulation were analyzed. Kinematic viscosity (cSt) was determined using a micro-Ubbelohde model capillary viscosimeter (ViscoClock, SCHOOT-GERATE Mainz, Germany). Dynamic viscosity (mPas) was determined, through a simple multiplication between density (g/cm3) and kinematic viscosity of each solution. pH analyses were carried out at room temperature using a pH-meter (Mettler Toledo®- Five Easy, Columbus, OH, USA). Spinnbarkeit analysis was performed by a self-owned instrument built for the purpose. RESULTS: The median density value, obtained from the cohort of artificial saliva substitutes, was 1.036 g/cm3. The median value of the kinematic viscosity was 8.984 cSt. The median spinnbarkeit value was 3.2 mm and the median pH value was 6.29. In this study we found an almost linear correlation between the kinematic viscosity and spinnbarkeit values of the artificial saliva substitutes evaluated. CONCLUSIONS: Saliva substitutes should be as faithful as possible to the characteristics of human saliva, in order to completely replace its functions in the oral cavity. Nevertheless, despite several R&D efforts, it is difficult to reproduce all the different features that belongs to natural saliva in one device. Therefore, it would be desirable to create more products reproducing saliva with various rheological characteristics in respect of the main salivary functions such as: chewing, speaking and tissue coating.


Asunto(s)
Examen Físico , Saliva , Humanos , Saliva Artificial/análisis , Saliva Artificial/química , Viscosidad , Reología , Saliva/química
10.
Bioelectrochemistry ; 148: 108248, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35988504

RESUMEN

In this study, the corrosion behavior and mechanism of Ti-6Al-4V in artificial saliva with Candida albicans were investigated using electrochemical and surface analysis techniques. Fluorescence microscopy (FM) and confocal laser scanning microscopy (CLSM) showed that C. albicans could easily adsorb on the surface of Ti-6Al-4V alloy to form non-dense biofilm. The non-compact biofilm provided necessary conditions for pitting corrosion on Ti-6Al-4V alloys by scanning electron microscopy (SEM) observation. The potentiodynamic polarization (PDP) curves and electrochemical impedance spectroscopy (EIS) revealed that C. albicans significantly reduced the corrosion resistance of Ti-6Al-4V alloys. The cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results indicated that C. albicans biofilm promoted electron transfer from the anodic sites to cathodic depolarizer during the corrosion process, showing that the role of oral fungi must be considered when evaluating the performance of oral materials. This study may provide a new clue for evaluating the corrosion resistance of dental implant materials in the oral environment.


Asunto(s)
Candida albicans , Implantes Dentales , Adsorción , Aleaciones/química , Corrosión , Ensayo de Materiales/métodos , Saliva Artificial/química , Propiedades de Superficie , Titanio/química
11.
Biomolecules ; 12(7)2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35883503

RESUMEN

In this study, diffusion coefficients of ammonium vanadate at tracer concentrations in artificial saliva with and without sodium fluoride, at different pH values, were measured using an experimental model based on the Taylor dispersion technique. Ternary mutual diffusion coefficients (D11, D22, D12, and D21) for four aqueous systems {NH4VO3 (component 1) + ß-cyclodextrin (ß-CD) (component 2),} {NH4VO3 (component 1) + ß-cyclodextrin (HP-ß-CD) (component 2)}, {NH4VO3 (component 1) + sodium dodecyl sulphate (SDS) (component 2)} and {NH4VO3 (component 1) + sodium hyaluronate (NaHy) (component 2)} at 25.00 °C were also measured by using the same technique. These data showed that diffusion of ammonium vanadate was strongly affected in all aqueous media studied. Furthermore, a significant coupled diffusion of this salt and ß-CD was observed through the non-zero values of the cross-diffusion coefficients, D12, allowing us to conclude that there is a strong interaction between these two components. This finding is very promising considering the removal, from the oral cavity, of vanadium resulting from tribocorrosion of Ti-6Al-4V prosthetic devices.


Asunto(s)
Compuestos de Amonio , beta-Ciclodextrinas , Aleaciones , Iones , Boca , Antisépticos Bucales , Saliva Artificial/química , Titanio/química , Vanadatos , Vanadio
12.
Bioelectrochemistry ; 142: 107940, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34492448

RESUMEN

High nitrogen nickel-free austenitic stainless steels (HNSs) have great potentials to be used in dentistry owing to its exceptional mechanical properties, high corrosion resistance, and biocompatibility. In this study, HNSs with nitrogen of 0.88 wt% and 1.08 wt% displayed much lower maximum pit depths than 316L stainless steel (SS) after 21 d of immersion in abiotic artificial saliva (2.2 µm and 1.7 µm vs. 4.5 µm). Microbiologically influenced corrosion (MIC) evaluations revealed that Streptococcus mutans biofilms led to much severer corrosion of 316L SS than HNSs. Corrosion current densities of HNSs were two orders of magnitude lower than that of 316L SS after incubation of 7 d (37.5 nA/cm2 and 29.9 nA/cm2 vs. 5.63 µA/cm2). The pitting potentials of HNSs were at least 550 mV higher than that of 316L SS in the presence of S. mutans, confirming the better MIC resistance of HNSs. Cytotoxicity assay confirmed that HNSs were not toxic to MC3T3-E1 cells and allowed better sessile cell growth on them than on 316L SS. It can be concluded that HNSs are more suitable dental materials than the conventional 316L SS.


Asunto(s)
Ensayo de Materiales/métodos , Nitrógeno/metabolismo , Saliva Artificial/química , Acero Inoxidable/química , Streptococcus mutans/metabolismo , Corrosión
13.
PLoS One ; 16(4): e0250822, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33901259

RESUMEN

Xerostomia, known as dry mouth, is caused by decreased salivary flow. Treatment with lubricating oral rinses provides temporary relief of dry mouth discomfort; however, it remains unclear how their composition affects mineralized dental tissues. Therefore, the objective of this study was to analyze the effects of common components in xerostomia oral rinses on biomimetic apatite with varying carbonate contents. Carbonated apatite was synthesized and exposed to one of the following solutions for 72 hours at varying pHs: water-based, phosphorus-containing (PBS), mucin-like containing (MLC), or fluoride-containing (FC) solutions. Post-exposure results indicated that apatite mass decreased irrespective of pH and solution composition, while solution buffering was pH dependent. Raman and X-ray diffraction analysis showed that the addition of phosphorus, mucin-like molecules, and fluoride in solution decreases mineral carbonate levels and changed the lattice spacing and crystallinity of bioapatite, indicative of dissolution/recrystallization processes. The mineral recrystallized into a less-carbonated apatite in the PBS and MLC solutions, and into fluorapatite in FC. Tap water did not affect the apatite lattice structure suggesting formation of a labile carbonate surface layer on apatite. These results reveal that solution composition can have varied and complex effects on dental mineral beyond dissolution, which can have long term consequences on mineral solubility and mechanics. Therefore, clinicians should consider these factors when advising treatments for xerostomia patients.


Asunto(s)
Apatitas/química , Materiales Biomiméticos/química , Saliva Artificial/efectos adversos , Xerostomía/terapia , Apatitas/síntesis química , Materiales Biomiméticos/síntesis química , Cristalización , Fluoruros/efectos adversos , Fluoruros/química , Humanos , Concentración de Iones de Hidrógeno , Mucinas/efectos adversos , Mucinas/química , Fósforo/efectos adversos , Fósforo/química , Saliva Artificial/química , Espectrometría Raman , Calcificación de Dientes/efectos de los fármacos , Difracción de Rayos X
14.
RFO UPF ; 26(1): 7-16, 20210327. tab, graf
Artículo en Portugués | LILACS, BBO | ID: biblio-1428571

RESUMEN

Objetivo: avaliar o potencial cariogênico de balas duras e mastigáveis e seu potencial desmineralizante em esmalte bovino. Métodos: foram selecionadas 30 balas de diferentes marcas, divididas em balas duras (n=11), Tic Tac®, Halls® e IceKiss®, e balas mastigáveis (n=19), Lílith®, Azedinha®, Mentos Rainbow® e Dori Gomets®. As balas foram dissolvidas em água destilada (1:10) e foram avaliados pH, acidez titulável (ATT) e presença de sólidos solúveis totais (SST/°Brix). Na ciclagem erosiva, 40 espécimes de esmalte bovino foram divididos em quatro grupos (n=10): GCN ­ saliva artificial; GCP ­ ácido clorídrico; GT1 ­ solução da bala Lílith® maçã verde; GT2 ­ solução da bala IceKiss® extraforte. O desafio erosivo foi realizado por 2 minutos, 4x/dia, segui-do de 2 horas de imersão em saliva artificial durante cinco dias. Resultados: os valores de pH para as balas duras e mastigáveis variaram de 2,88 a 5,53 e de 2,73 a 4,16, respectivamente. ATT em pH 5,5 variou de 0,07 mL a 39,40 mL de NaOH 0,1 N, para as balas duras, e de 1,53 mL a 35,83 mL, para balas mastigáveis. ATT em pH 7,0 variou de 0,2 mL a 49,13 mL de NaOH, para balas duras, e de 2,37 mL a 49,97 mL, para as mastigáveis. O conteúdo de SST de todas as balas duras foi superior a 8,5°Brix, já entre as mastigáveis variou de 5,3 a 8,83°Brix. O GCP apresentou maior desmineralização que GCN e GT2 (p<0,05). Conclusão: a maioria das balas duras e mastigáveis dissolvidas em água destilada mostraram-se potencialmente erosivas e cariogênicas.(AU)


Objective: evaluate the cariogenic potential of hard and soft candies and their demineralizing potential in bovine enamel. Methods: 30 candies of different brands were selected, divided into hard candies (n=11): Tic Tac®, Halls® and IceKiss® and soft candies (n=19): Lílith®, Azedinha®, Mentos Rainbow® and Dori Gomets®. The candies were dissolved in distilled water (1:10) and pH, titratable acidity (TT) and presence of total soluble solids (SST/°Brix) were evaluated. In erosive cycling, 40 specimens of bovine enamel were divided into four groups (n=10): GCN - artificial saliva; GCP - hydrochloric acid; GT1 - Lilith® apple green candy solution; GT2 - IceKiss® Extra Strong candy Solution. The erosive challenge was performed for 2 minutes, 4X/day, followed by 2 hours of immersion in artificial saliva for five days. Results: pH values for hard and soft candies ranged from 2.88 to 5.53 and 2.73 to 4, respectively. ATT at pH 5.5 varied from 0.07 mL to 39.40 mL of 0.1 N NaOH for hard candies and 1.53 mL to 35.83 mL for soft candies. ATT at pH 7,0 varied from 0.2 mL to 49.13 mL of 0.1 N NaOH for hard candies and from 2.37 mL to 49.97 mL for soft candies. The content of SST of all hard candies was higher than 8.5 °Brix and for soft candies, varied between 5.3 to 8.83 °Brix. The GCP group showed greater demineralization than GCN and GT2 (p<0.05). Conclusion: most hard and soft candies dissolved in distilled water were potentially erosive and cariogenic.(AU)


Asunto(s)
Animales , Bovinos , Dulces , Cariogénicos/química , Desmineralización Dental/etiología , Esmalte Dental/química , Saliva Artificial/química , Factores de Tiempo , Hidróxido de Calcio/química , Análisis de Varianza , Estadísticas no Paramétricas , Acidez , Concentración de Iones de Hidrógeno
15.
Mater Sci Eng C Mater Biol Appl ; 113: 110956, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487378

RESUMEN

A thermo-responsive injectable bioactive glass (BAG) that has the ability to set at body temperature was prepared using pluronic F127 and hydroxypropyl methylcellulose as the carrier. The injectable composite has the advantage to fill irregular shape implantation sites and quick setting at body temperature. The structural and morphological analysis of injectable BAG before and after setting was done by using Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscope (SEM). The effect of an ultrasonic scaler for a quick setting of injectable BAG was also investigated. The ultrasonic scaler sets the BAG formulation three-folds faster than at body temperature and homogenized the dispersion. The in vitro bio-adhesion was studied in the bovine tooth in both artificial saliva and deionized water for periodic time intervals, i.e., day 7, 30, 90, and 180, which confirmed the apatite layer formation. The mineral density analysis was used to differentiate the newly formed apatite with tooth apatite. In the MTT assay, the experimental material showed continuous proliferation and cell growth. This indicated that injectable hydrogel promoted cell growth, facilitated proliferation, and had no cytotoxic effect. The SEM and micro-CT results (performed after in vitro bioactivity testing) showed that the injectable BAG had the ability to regenerate dentin, hence this material has the potential to be used for dental and biomedical applications including tooth and bone regeneration in minimally invasive procedures in future.


Asunto(s)
Cerámica/química , Implantes Dentales , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cerámica/farmacología , Dentina/química , Dentina/patología , Vidrio/química , Ratones , Nanopartículas/química , Saliva Artificial/química
16.
Mater Sci Eng C Mater Biol Appl ; 113: 110980, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487394

RESUMEN

The selective laser melting of Ti6Al4V would induce definite changes in the microstructure that may affect its corrosion properties. Microstructural examination showed the formation of relatively thin beta (ß) lamella in selective laser melted (SLM) Ti6Al4V compared to wrought Ti6Al4V. X-ray diffraction analysis (XRD) analysis confirmed the presence of alpha and beta phases in both SLM and wrought Ti6Al4V. However, the higher concentration of the ß phase in SLM Ti6Al4V compared to wrought Ti6Al4V was evident in the microstructure. As candidate dental implant materials, the corrosion behavior of both SLM and wrought Ti6Al4V was assessed in artificial saliva (AS) and deionized water (DI) containing various species i.e. fluoride (F), calcium chloride (CaCl2) and lactic acid (LA). Electrochemical impedance spectroscopy and potentiodynamic polarization analysis was carried out to estimate the corrosion behavior of SLM and wrought Ti6Al4V at room temperature. SLM Ti6Al4V offered better corrosion resistance than wrought Ti6Al4V in all solutions at pH > 6. However, wrought Ti6Al4V comparatively presented high corrosion resistance in AS + LA, DI + CaCl2 and DI + LA solutions (pH < 6). The lower dissolution rate of SLM Ti6Al4V (at pH > 6) was attributed to larger ß content in the microstructure compared to wrought Ti6Al4V.


Asunto(s)
Aleaciones/química , Implantes Dentales , Rayos Láser , Titanio/química , Aleaciones/metabolismo , Cloruro de Calcio/química , Corrosión , Espectroscopía Dieléctrica , Fluoruros/química , Concentración de Iones de Hidrógeno , Ácido Láctico/química , Ensayo de Materiales , Saliva Artificial/química , Temperatura , Titanio/metabolismo , Agua/química
17.
Emerg Microbes Infect ; 9(1): 1415-1417, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32496967

RESUMEN

SARS-CoV-2, the causative agent of the COVID-19 pandemic, may be transmitted via airborne droplets or contact with surfaces onto which droplets have deposited. In this study, the ability of SARS-CoV-2 to survive in the dark, at two different relative humidity values and within artificial saliva, a clinically relevant matrix, was investigated. SARS-CoV-2 was found to be stable, in the dark, in a dynamic small particle aerosol under the four experimental conditions we tested and viable virus could still be detected after 90 minutes. The decay rate and half-life was determined and decay rates ranged from 0.4 to 2.27 % per minute and the half lives ranged from 30 to 177 minutes for the different conditions. This information can be used for advice and modelling and potential mitigation strategies.


Asunto(s)
Aerosoles/química , Betacoronavirus/crecimiento & desarrollo , Infecciones por Coronavirus/virología , Medios de Cultivo/química , Neumonía Viral/virología , Saliva Artificial/química , Salvia/virología , Microbiología del Aire , Betacoronavirus/química , Betacoronavirus/genética , Betacoronavirus/efectos de la radiación , COVID-19 , Infecciones por Coronavirus/transmisión , Oscuridad , Humanos , Humedad , Cinética , Pandemias , Neumonía Viral/transmisión , SARS-CoV-2
18.
Int J Mol Sci ; 21(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183193

RESUMEN

Saliva plays a crucial role in oral cavity. In addition to its buffering and moisturizing properties, saliva fulfills many biofunctional requirements, including antibacterial activity that is essential to assure proper oral microbiota growth. Due to numerous extra- and intra-systemic factors, there are many disorders of its secretion, leading to oral dryness. Saliva substitutes used in such situations must meet many demands. This study was design to evaluate the effect of core-shell magnetic nanoparticles (MNPs) adding (gold-coated and aminosilane-coated nanoparticles NPs) on antimicrobial (microorganism adhesion, biofilm formation), rheological (viscosity, viscoelasticity) and physicochemical (pH, surface tension, conductivity) properties of three commercially available saliva formulations. Upon the addition of NPs (20 µg/mL), antibacterial activity of artificial saliva was found to increase against tested microorganisms by 20% to 50%. NPs, especially gold-coated ones, decrease the adhesion of Gram-positive and fungal cells by 65% and Gram-negative bacteria cells by 45%. Moreover, the addition of NPs strengthened the antimicrobial properties of tested artificial saliva, without influencing their rheological and physicochemical properties, which stay within the range characterizing the natural saliva collected from healthy subjects.


Asunto(s)
Antiinfecciosos/química , Nanopartículas de Magnetita/química , Saliva Artificial/química , Antiinfecciosos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Elasticidad , Conductividad Eléctrica , Oro/química , Pseudomonas/efectos de los fármacos , Saliva Artificial/farmacología , Silanos/química , Streptococcus/efectos de los fármacos , Tensión Superficial , Viscosidad
19.
Talanta ; 209: 120501, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31892087

RESUMEN

In the present study, we have developed a capacitance electrochemical biosensor based on silicon nitride substrate (Si3N4/SiO2/Si[P]/Al) for Tumour Necrosis Factor Alpha (TNF-α) cytokines detection. Micro-contact printing, Fluorescence microscopy characterization and contact angle measurement (CAM) were carried out during the bio-functionalization of the biosensor surface. Mott-Schottky analyses were applied for TNF-α detection within the range of 1 pg/mL to 30 pg/mL in which the immunosensor has exhibited a good linearity, a sensitivity of 4 mV.pM-1 and 4.4 mV.pM-1 in PBS and artificial saliva (AS) respectively. While the LOD was found at 0.38 pg/mL and 1 pg/mL in PBS and AS respectively. The developed immunosensor has also demonstrated a high and good selectivity for TNF-α detection in human AS when compared to other interferences like Cortisol and Interleukin-10. The performances of the developed biosensor are very promising for biomedical application to predict the first sign of inflammation.


Asunto(s)
Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Saliva Artificial/química , Compuestos de Silicona/química , Transductores , Factor de Necrosis Tumoral alfa/análisis , Anticuerpos Inmovilizados/inmunología , Anticuerpos Monoclonales/inmunología , Capacidad Eléctrica , Técnicas Electroquímicas/instrumentación , Electrodos , Colorantes Fluorescentes/química , Humanos , Inmunoensayo/métodos , Límite de Detección , Rodaminas/química , Dióxido de Silicio/química , Factor de Necrosis Tumoral alfa/inmunología
20.
J Colloid Interface Sci ; 561: 220-230, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816467

RESUMEN

Textured biomaterials have been extensively used in biomedical engineering to modulate mammalian and bacterial cell adhesion and proliferation, implant integration with human body and infection prevention. However, the tribological implications of texturing under wet physiological conditions have not been well quantified. This study aimed to characterize the tribological properties of micropore-textured polydimethylsiloxane (PDMS) under physiological conditions and investigate the effect of adsorbed lubricious molecules on friction. In this study, untextured and micropore-textured PDMS surfaces were slid against curved smooth glass surfaces under the contact pressures of 10-400 kPa, sliding speeds of 0.1-5 mm/s in aqueous solutions with the viscosity of 1-1000 mPa·s. Reconstituted human whole saliva (RHWS) at pH 7 and porcine gastric mucin (PGM) at both pH 2 and 7 were used as lubricious coatings on PDMS. While the micropore-texturing delayed the transition of lubrication regimes, it increased the coefficient of friction (COF). Although RHWS and PGM coatings decreased the COF significantly, the protein coatings could not help the COF of micropore-textured surfaces getting lower than that of untextured surfaces. The results suggest textured polymeric surfaces could generate larger friction under physiological conditions and lead to a higher chance of inflammation near the implants.


Asunto(s)
Dimetilpolisiloxanos/química , Mucinas Gástricas/química , Saliva Artificial/química , Agua/química , Adsorción , Animales , Humanos , Concentración de Iones de Hidrógeno , Lubrificación , Estrés Mecánico , Propiedades de Superficie , Porcinos , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA