Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38200668

RESUMEN

Seed and seedling traits govern plant fitness and persistence and are influenced by the interaction between the plant and its environment. Changing climatic and edaphic conditions will drastically affect early fitnessrelated traits and can alter the demography and species distribution range. It is widely documented that trait variation among populations may increase resilience of tree communities and reduce the risk of extinction under future climates. In the present study, variation in seed and seedling traits were documented from seven populations of Santalum album representing the natural distribution range of the species in the Indian subcontinent. Significant intra-specific variation was documented in seed and seedling traits, indicating high adaptive potential of the species. Further, the measured traits were correlated with climatic variables. No significant correlation was predicted for seed-related traits, while seedling-related traits like shoot and root weight, photochemical reflectance index, relative water content, and root-shoot ratio correlated with different climatic parameters. Variance partitioning revealed predominant combined effect of environment and genotype on seed traits except seed weight, which was governed by genotypic effect. The dominance of genotypic effect was documented for all seed leachate parameters, while seedling-related traits were predominantly affected by the environment. Conservation of sandalwood genetic resources will benefit from the insights gained from the variability recorded in these fitness-related traits, which are likely to affect the adaptive potential of the species.


Asunto(s)
Santalum , Sesquiterpenos , Fenotipo , Santalum/genética , Plantones/genética , Semillas/genética
2.
Sci Data ; 10(1): 921, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129455

RESUMEN

Santalum album is a well-known aromatic and medicinal plant that is highly valued for the essential oil (EO) extracted from its heartwood. In this study, we present a high-quality chromosome-level genome assembly of S. album after integrating PacBio Sequel, Illumina HiSeq paired-end and high-throughput chromosome conformation capture sequencing technologies. The assembled genome size is 207.39 M with a contig N50 of 7.33 M and scaffold N50 size of 18.31 M. Compared with three previously published sandalwood genomes, the N50 length of the genome assembly was longer. In total, 94.26% of the assembly was assigned to 10 pseudo-chromosomes, and the anchor rate far exceeded that of a recently released value. BUSCO analysis yielded a completeness score of 94.91%. In addition, we predicted 23,283 protein-coding genes, 89.68% of which were functionally annotated. This high-quality genome will provide a foundation for sandalwood functional genomics studies, and also for elucidating the genetic basis of EO biosynthesis in S. album.


Asunto(s)
Genoma de Planta , Aceites Volátiles , Santalum , Sesquiterpenos , Cromosomas , Genómica , Filogenia , Santalum/genética
3.
Planta ; 258(3): 54, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37515637

RESUMEN

MAIN CONCLUSION: Santalum album (E,E)-α-farnesene synthase catalyzes FPP into (E,E)-α-farnesene. Overexpression of the SaAFS gene positively improved cold stress tolerance through JA biosynthesis and signaling pathways in Arabidopsis. Volatile terpenoids are released from plants that suffer negative effects following exposure to various biotic and abiotic stresses. Recent studies revealed that (E,E)-α-farnesene synthase (AFS) plays a significant role in a plant's defence against biotic attack. However, little is known about whether AFS contributes to plant resistance to cold stress. In this study, a SaAFS gene was isolated from Indian sandalwood (Santalum album L.) and functionally characterized. The SaAFS protein mainly converts farnesyl diphosphate to (E,E)-α-farnesene. SaAFS was clustered into the AFS clade from angiosperms, suggesting a highly conserved enzyme. SaAFS displayed a significant response to cold stress and methyl jasmonate. SaAFS overexpression (OE) in Arabidopsis enhanced cold tolerance by increasing proline content, reducing malondialdehyde content, electrolyte leakage, and accumulating reactive oxygen species. Transcriptomic analysis revealed that upregulated genes related to stress response and JA biosynthesis and signaling were detected in SaAFS-OE lines compared with wild type plants that were exposed to cold stress. Endogenous JA and jasmonoyl-isoleucine content increased significantly in SaAFS-OE lines exposed to cold stress. Collectively considered, these results suggest that the SaAFS gene is a positive regulator during cold stress tolerance via JA biosynthesis and signaling pathways.


Asunto(s)
Arabidopsis , Aceites Volátiles , Santalum , Arabidopsis/metabolismo , Santalum/genética , Santalum/metabolismo , Ciclopentanos/metabolismo , Aceites Volátiles/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo
4.
Commun Biol ; 6(1): 587, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264116

RESUMEN

Sandalwood is one of the most expensive woods in the world and is well known for its long-lasting and distinctive aroma. In our study, chromosome-level genome assemblies for two sandalwood species (Santalum album and Santalum yasi) were constructed by integrating NGS short reads, RNA-seq, and Hi-C libraries with PacBio HiFi long reads. The S. album and S. yasi genomes were both assembled into 10 pseudochromosomes with a length of 229.59 Mb and 232.64 Mb, containing 21,673 and 22,816 predicted genes and a repeat content of 28.93% and 29.54% of the total genomes, respectively. Further analyses resolved a Santalum-specific whole-genome triplication event after divergence from ancestors of the Santalales lineage Malania, yet due to dramatic differences in transposon content, the Santalum genomes were only one-sixth the size of the Malania oleifera genome. Examination of RNA-seq data revealed a suite of genes that are differentially expressed in haustoria and might be involved in host hemiparasite interactions. The two genomes presented here not only provide an important comparative dataset for studying genome evolution in early diverging eudicots and hemiparasitic plants but will also hasten the application of conservation genomics for a lineage of trees recovering from decades of overexploitation.


Asunto(s)
Santalum , Sesquiterpenos , Santalum/genética , Genómica , Árboles , Cromosomas
5.
J Plant Physiol ; 280: 153866, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36399836

RESUMEN

Sandalwood (Santalum album L.) is a hemi-parasitic tree species famous for its santalol and santalene, which are extracted from its heartwood and roots. The ability to understand root functionality within its branched root system would benefit the regulation of sandalwood growth and enhance the commercial value of sandalwood. Phenotypic and anatomical evidence in this study indicated that seed germination stage 4 (SG4) seemed pivotal for lateral root (LR) morphogenesis. Small RNA (sRNA) high-throughput sequencing of root tissues at three sub-stages of SG4 (lateral root primordia initiation (LRPI), lateral root primordia development (LRPD), and lateral root primordia emergence (LRPE)) was performed to identify microRNAs (miRNAs) associated with LR development. A total of 135 miRNAs, including 70 differentially expressed miRNAs (DEMs), were screened. Ten DEMs were selected to investigate transcript abundance in different organs or developmental stages. Among 100 negative DEM-mRNA interaction pairs, four targets (Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8) were selected for studying cleavage sites by 5' RLM-RACE validation. The expression mode of the four miRNA-mRNA pairs was investigated after indole-3-acetic acid (IAA) treatment. IAA enhanced the abundance of homeobox-leucine-zipper protein 32 (HOX32), laccase 12 (LAC12), myeloblastosis86 (MYB86), and pectin methylesterase inhibitor6 (PMEI6) target transcripts by reducing the expression of Sa-miR166m_2, 408d, 858a, and novel_Sa-miR8 in the first 10 min. A schematic model of miRNA-regulated LR development is proposed for this hemi-parasitic species. This novel genetic information for improving sandalwood root growth and development may allow for the cultivation of fast-growing and high-yielding plantations.


Asunto(s)
MicroARNs , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Plantones/metabolismo , ARN Mensajero/metabolismo , Sesquiterpenos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
6.
Gene ; 851: 146762, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35933050

RESUMEN

The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a ß-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, ß-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo , Aceites Volátiles/metabolismo , Clorofila , Clonación Molecular
7.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430522

RESUMEN

Phoebe hui is an extremely valuable tree that is the main source of the fragrant golden-thread nanmu wood. Although the fragrance of wood has been investigated in several trees, the potential substances and gene regulation mechanisms that are involved in fragrance formation are poorly understood. Here, three radial tissues, sapwood (SW), heartwood (HW), and the transition zone (TZ) in between them, were compared via integrative physiological, volatile-metabolomic, and transcriptomic analyses to identify the key metabolites and regulatory mechanisms involved in fragrance formation. During heartwood formation, gradual starch grain loss was accompanied by the deposition of lipids and extractives in the cell lumen. Extracts of terpenoids were synthesized and accumulated in the heartwood, including monoterpenoids (limonene and p-cymene) and sesquiterpenes (cubebene and guaiadiene); these were identified as being closely related to the special fragrance of the wood. Additionally, the expression of transcripts showed that the genes related to primary metabolism were specifically upregulated in the SW, whereas genes annotated in terpenoid biosynthesis were specifically upregulated in the HW. Therefore, we speculated that terpenoid biosynthesis occurs in situ in the HW via the HW formation model of Type-III (Santalum) using the precursors that were produced by primary metabolism in the SW. The expression levels of transcription factors (e.g., MYB, WRKY, and C2H2) acted as the major regulatory factors in the synthesis of terpenoids. Our results explain the special fragrance in P. hui and broaden the current knowledge of the regulatory mechanisms of fragrance formation. This work provides a framework for future research that is focused on improving wood quality and value.


Asunto(s)
Lauraceae , Perfumes , Santalum , Transcriptoma , Odorantes , Metabolómica , Santalum/genética , Perfumes/metabolismo , Lauraceae/genética , Terpenos/metabolismo , Árboles/genética
8.
Arch Microbiol ; 204(10): 609, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36085195

RESUMEN

A novel, mustard yellow-pigmented aerobic bacterial strain designated AR01T was isolated from hypocotyl tissue of a sandalwood seedling from Bangalore, India. The 16S rRNA gene of strain AR01T had the highest 98.97% sequence similarity with Rothia halotolerans YIM 90716T (KCTC 19172) followed by Rothia kristinae PM 129T (NBRC 15354T) (97.31%) and Rothia koreensis P31T (JCM 15915) (97.11%), respectively. The strain AR01T was coccoid-shaped, non-motile, non-spore forming, oxidase negative and catalase positive. The strain AR01T has a genome size of 3.31 Mb containing 2993 protein-coding genes including 48 tRNA and 10 rRNAs spread across 84 contigs. The genomic DNA G + C content was 71.77 mol%. The calculated dDDH was 31.10% and the OrthoANI value was 85.27% when compared with its closest related type strain Rothia halotolerans YIM 90716T. The predominant cellular fatty acids were C16:0 iso, C15:0 anteiso and C17:0 anteiso. The strain AR01T contains major polar lipids including diphosphatidylglycerol and phosphatidylglycerol. The distinct physiological, biochemical characteristics and genotypic relatedness indicated that AR01T represents a novel species of the genus Rothia, for which the name Rothia santali sp. nov. (Type strain AR01T = MCC 4800T = JCM 35593T) is proposed.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Bacterias , India , Micrococcaceae , ARN Ribosómico 16S/genética , Santalum/genética , Plantones
9.
J Agric Food Chem ; 70(26): 8024-8031, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35729733

RESUMEN

Santalene, a major component of the sandalwood essential oil, is a typical representative of sesquiterpenes and has important applications in medicine, food, flavors, and other fields. Due to the limited supply of natural sandalwood resources, there is a growing interest in engineering microbial cell factories for the mass production of santalene. In the present study, Komagataella phaffii (also known as Pichia pastoris) was established as a cell factory for high-level production of α-santalene for the first time. The metabolic fluxes were rewired toward α-santalene biosynthesis through the optimization of promoters to drive the expression of the α-santalene synthase (SAS) gene, overexpression of the key mevalonate pathway genes (i.e., tHMG1, IDI1, and ERG20), and multi-copy integration of the SAS expression cassette. In combination with medium optimization and bioprocess engineering, the optimal strain (STE-9) was able to produce α-santalene with a titer as high as 829.8 ± 70.6 mg/L, 4.4 ± 0.3 g/L, and 21.5 ± 1.6 g/L in a shake flask, batch fermenter, and fed-batch fermenter, respectively. These represented the highest production of α-santalene ever reported, highlighting the advantages of K. phaffii cell factories for the production of terpenoids and other natural products.


Asunto(s)
Santalum , Sesquiterpenos , Ingeniería Metabólica , Sesquiterpenos Policíclicos , Saccharomycetales , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo
10.
PLoS One ; 17(4): e0252173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35482775

RESUMEN

East Indian Sandalwood (Santalum album L.) is highly valued for its heartwood and its oil. There have been no efforts to comparative study of high and low oil yielding genetically identical sandalwood trees grown in similar climatic condition. Thus we intend to study a genome wide transcriptome analysis to identify the corresponding genes involved in high oil biosynthesis in S. album. In this study, 15 years old S. album (SaSHc and SaSLc) genotypes were targeted for analysis to understand the contribution of genetic background on high oil biosynthesis in S. album. A total of 28,959187 and 25,598869 raw PE reads were generated by the Illumina sequencing. 2.12 million and 1.811 million coding sequences were obtained in respective accessions. Based on the GO terms, functional classification of the CDS 21262, & 18113 were assigned into 26 functional groups of three GO categories; (4,168; 3,641) for biological process (5,758;4,971) cellular component and (5,108;4,441) for molecular functions. Total 41,900 and 36,571 genes were functionally annotated and KEGG pathways of the DEGs resulted 213 metabolic pathways. In this, 14 pathways were involved in secondary metabolites biosynthesis pathway in S. album. Among 237 cytochrome families, nine groups of cytochromes were participated in high oil biosynthesis. 16,665 differentially expressed genes were commonly detected in both the accessions (SaHc and SaSLc). The results showed that 784 genes were upregulated and 339 genes were downregulated in SaHc whilst 635 upregulated 299 downregulated in SaSLc S. album. RNA-Seq results were further validated by quantitative RT-PCR. Maximum Blast hits were found to be against Vitis vinifera. From this study, we have identified additional number of cytochrome family in high oil yielding sandalwood accessions (SaHc). The accessibility of a RNA-Seq for high oil yielding sandalwood accessions will have broader associations for the conservation and selection of superior elite samples/populations for further genetic improvement program.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Adolescente , Citocromos/metabolismo , Perfilación de la Expresión Génica , Humanos , Aceites Volátiles/metabolismo , Santalum/genética , Santalum/metabolismo , Sesquiterpenos/metabolismo
11.
Sci Rep ; 11(1): 16913, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413433

RESUMEN

Sandalwood (Santalum album L.) is highly valued for its fragrant heartwood and extracted oil. Santalols, which are the main components of that oil, are terpenoids, and these are biosynthesized via the mevalonic acid (MVA) pathway. Mevalonate kinase (MK) and phosphomevalonate kinase (PMK) are key enzymes in the MVA pathway. Little is known about the genes that encode MK and PMK in S. album or the mechanism that regulates their expression. To isolate and identify the functional genes involved in santalol biosynthesis in S. album, an MK gene designated as SaMK, and a PMK gene designated as SaPMK, were cloned from S. album. The sequences of these genes were analyzed. A bioinformatics analysis was conducted to assess the homology of SaMK and SaPMK with MK and PMK genes from other plants. The subcellular localization of SaMK and SaPMK proteins was also investigated, as was the functional complementation of SaMK and SaPMK in yeast. Our results show that the full-length cDNA sequences of SaMK and SaPMK were 1409 bp and 1679 bp long, respectively. SaMK contained a 1381 bp open reading frame (ORF) encoding a polypeptide of 460 amino acids and SaPMK contained a 1527 bp ORF encoding a polypeptide of 508 amino acids. SaMK and SaPMK showed high homology with MK and PMK genes of other plant species. Functional complementation of SaMK in a MK-deficient mutant yeast strain YMR208W and SaPMK in a PMK-deficient mutant yeast strain YMR220W confirmed that cloned SaMK and SaPMK cDNA encode a functional MK and PMK, respectively, mediating MVA biosynthesis in yeast. An analysis of tissue expression patterns revealed that SaMK and SaPMK were constitutively expressed in all the tested tissues. SaMK was highly expressed in young leaves but weakly expressed in sapwood. SaPMK was highly expressed in roots and mature leaves, but weakly expressed in young leaves. Induction experiments with several elicitors showed that SaMK and SaPMK expression was upregulated by methyl jasmonate. These results will help to further study the role of MK and PMK genes during santalol biosynthesis in S. album.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Santalum/enzimología , Santalum/genética , Acetatos/farmacología , Secuencia de Aminoácidos , Clonación Molecular , Biología Computacional , Ciclopentanos/farmacología , ADN Complementario/genética , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Oxilipinas/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Filogenia , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Santalum/efectos de los fármacos , Fracciones Subcelulares/metabolismo
12.
Genes (Basel) ; 12(5)2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922119

RESUMEN

Sandalwood (Santalum album L.) heartwood-derived essential oil contains a high content of sesquiterpenoids that are economically highly valued and widely used in the fragrance industry. Sesquiterpenoids are biosynthesized via the mevalonate acid and methylerythritol phosphate (MEP) pathways, which are also the sources of precursors for photosynthetic pigments. 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) is a secondary rate-limiting enzyme in the MEP pathway. In this paper, the 1416-bp open reading frame of SaDXR and its 897-bp promoter region, which contains putative conserved cis-elements involved in stress responsiveness (HSE and TC-rich repeats), hormone signaling (abscisic acid, gibberellin and salicylic acid) and light responsiveness, were cloned from 7-year-old S. album trees. A bioinformatics analysis suggested that SaDXR encodes a functional and conserved DXR protein. SaDXR was widely expressed in multiple tissues, including roots, twigs, stem sapwood, leaves, flowers, fruit and stem heartwood, displaying significantly higher levels in tissues with photosynthetic pigments, like twigs, leaves and flowers. SaDXR mRNA expression increased in etiolated seedlings exposed to light, and the content of chlorophylls and carotenoids was enhanced in all 35S::SaDXR transgenic Arabidopsis thaliana lines, consistent with the SaDXR expression level. SaDXR was also stimulated by MeJA and H2O2 in seedling roots. α-Santalol content decreased in response to fosmidomycin, a DXR inhibitor. These results suggest that SaDXR plays an important role in the biosynthesis of photosynthetic pigments, shifting the flux to sandalwood-specific sesquiterpenoids.


Asunto(s)
Isomerasas Aldosa-Cetosa/genética , Santalum/genética , Ácido Abscísico/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Clonación Molecular/métodos , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Complejos Multienzimáticos/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , Ácido Salicílico/metabolismo , Santalum/metabolismo , Homología de Secuencia de Aminoácido
13.
Sci Rep ; 11(1): 1082, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441887

RESUMEN

Sandalwood (Santalum album L.) is famous for its unique fragrance derived from the essential oil of heartwood, whose major components are santalols. To understand the mechanism underlying the biosynthesis of santalols, in this study, we cloned two related genes involved in the mevalonate pathway in S. album coding for acetyl-CoA C-acetyl transferase (AACT) and 3-hydroxy-3-methyglutary-CoA synthase (HMGS). These genes were characterized and functionally analyzed, and their expression profiles were also assessed. An AACT gene designated as SaAACT (GenBank accession No. MH018694) and a HMGS gene designated as SaHMGS (GenBank accession No. MH018695) were successfully cloned from S. album. The deduced SaAACT and SaHMGS proteins contain 415 and 470 amino acids, and the corresponding size of their open-reading frames is 1538 bp and 1807 bp, respectively. Phylogenetic trees showed that the SaAACT protein had the closest relationship with AACT from Hevea brasiliensis and the SaHMGS proteins had the highest homology with HMGS from Siraitia grosvenorii. Functional complementation of SaAACT and SaHMGS in a mutant yeast strain deficient in these proteins confirmed that SaAACT and SaHMGS cDNA encodes functional SaAACT and SaHMGS that mediate mevalonate biosynthesis in yeast. Tissue-specific expression analysis revealed that both genes were constitutively expressed in all examined tissues (roots, sapwood, heartwood, young leaves, mature leaves and shoots) of S. album, both genes showing highest expression in roots. After S. album seedlings were treated with 100 µM methyl jasmonate, the expression levels of SaAACT and SaHMGS genes increased, suggesting that these genes were responsive to this elicitor. These studies provide insight that would allow further analysis of the role of genes related to the sandalwood mevalonate pathway in the regulation of biosynthesis of sandalwood terpenoids and a deeper understanding of the molecular mechanism of santalol biosynthesis.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/genética , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas de Plantas/genética , Santalum/genética , Acetil-CoA C-Acetiltransferasa/metabolismo , Clonación Molecular , Hidroximetilglutaril-CoA Sintasa/metabolismo , Proteínas de Plantas/metabolismo , Santalum/metabolismo
14.
Phytochemistry ; 183: 112610, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33383368

RESUMEN

Essential oils extracted from the heartwood of Indian sandalwood (Santalum album L.) contain linalool and nerolidol as minor components. However, nerolidol/linalool synthase (NES/LIS), which produce linalool and nerolidol, have yet to be characterized in sandalwood. Using a transcriptomic-based approach, a terpene synthase gene was screened from unigenes of transcriptome data derived from S. album seedlings exposed to low temperature (4 °C). The enzyme encoded by these complementary DNAs belongs to the TPS-b clade. Recombinant SaNES/LIS is a bifunctional enzyme that can catalyze the formation of (E)-nerolidol from farnesyl diphosphate and linalool from geranyl diphosphate, respectively. Whereas SaNES/LIS was primarily localized in chloroplastids, both as granular fluorescence and as diffuse fluorescence, it was also detected in the cytosol of a limited number of cells. Agrobacterium tumefaciens-mediated transient gene expression in planta produced the same terpene products as those obtained in vitro. Real-time PCR analysis showed the highest expression of SaNES/LIS in fruits, with about a three-fold higher level than in leaves, followed by flowers, heartwood and roots. SaNES/LIS transcripts were differentially activated in different tissues in response to methyl jasmonate, cold, high temperature, strong illumination, and drought stress. Our results provide novel insight into the role of sandalwood terpenoids in response to various environmental stresses.


Asunto(s)
Aceites Volátiles , Santalum , Sesquiterpenos , Monoterpenos Acíclicos , Santalum/genética
15.
Sci Rep ; 10(1): 18236, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106560

RESUMEN

Recent advances in next-generation sequencing technologies have paved the path for a considerable amount of sequencing data at a relatively low cost. This has revolutionized the genomics and transcriptomics studies. However, different challenges are now created in handling such data with available bioinformatics platforms both in assembly and downstream analysis performed in order to infer correct biological meaning. Though there are a handful of commercial software and tools for some of the procedures, cost of such tools has made them prohibitive for most research laboratories. While individual open-source or free software tools are available for most of the bioinformatics applications, those components usually operate standalone and are not combined for a user-friendly workflow. Therefore, beginners in bioinformatics might find analysis procedures starting from raw sequence data too complicated and time-consuming with the associated learning-curve. Here, we outline a procedure for de novo transcriptome assembly and Simple Sequence Repeats (SSR) primer design solely based on tools that are available online for free use. For validation of the developed workflow, we used Illumina HiSeq reads of different tissue samples of Santalum album (sandalwood), generated from a previous transcriptomics project. A portion of the designed primers were tested in the lab with relevant samples and all of them successfully amplified the targeted regions. The presented bioinformatics workflow can accurately assemble quality transcriptomes and develop gene specific SSRs. Beginner biologists and researchers in bioinformatics can easily utilize this workflow for research purposes.


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Repeticiones de Microsatélite , Santalum/genética , Programas Informáticos , Transcriptoma , Bases de Datos Genéticas/estadística & datos numéricos , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo
16.
Int J Mol Sci ; 20(22)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766135

RESUMEN

WRKY proteins are a large superfamily of transcription factors that are involved in diverse biological processes including development, as well as biotic and abiotic stress responses in plants. WRKY family proteins have been extensively characterized and analyzed in many plant species, including Arabidopsis, rice, and poplar. However, knowledge on WRKY transcription factors in Santalum album is scarce. Based on S. album genome and transcriptome data, 64 SaWRKY genes were identified in this study. A phylogenetic analysis based on the structures of WRKY protein sequences divided these genes into three major groups (I, II, III) together with WRKY protein sequences from Arabidopsis. Tissue-specific expression patterns showed that 37 SaWRKY genes were expressed in at least one of five tissues (leaves, roots, heartwood, sapwood, or the transition zone), while the remaining four genes weakly expressed in all of these tissues. Analysis of the expression profiles of the 42 SaWRKY genes after callus was initiated by salicylic acid (SA) and methyl jasmonate (MeJA) revealed that 25 and 24 SaWRKY genes, respectively, were significantly induced. The function of SaWRKY1, which was significantly up-regulated by SA and MeJA, was analyzed. SaWRKY1 was localized in the nucleus and its overexpression improved salt tolerance in transgenic Arabidopsis. Our study provides important information to further identify the functions of SaWRKY genes and to understand the roles of SaWRKY family genes involved in the development and in SA- and MeJA-mediated stress responses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Santalum/genética , Factores de Transcripción/genética , Filogenia , Tolerancia a la Sal , Santalum/fisiología , Estrés Fisiológico , Transcriptoma
17.
BMC Plant Biol ; 19(1): 115, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922222

RESUMEN

BACKGROUND: It is well known that aromatic essential oils extracted from the heartwood of Santalum album L. have wide economic value. However, little is known about the role of terpenoids in response to various adverse environmental stresses as other plants do in the form of signals during plant-environment interactions. RESULTS: In this study, trace amounts of volatiles consisting of α-santalene, epi-ß-santalene, ß-santalene, α-santalol, ß-santalol, (E)-α-bergamotene, (E)-ß-farnesene and ß-bisabolene were found in the leaves of mature S. album trees. We identified more than 40 candidate terpene synthase (TPS) unigenes by mining publicly-available RNA-seq data and characterized the enzymes encoded by three cDNAs: one mono-TPS catalyzes the formation of mostly α-terpineol, and two multifunctional sesqui-TPSs, one of which produces (E)-α-bergamotene and sesquisabinene as major products and another which catalyzes the formation of (E)-ß-farnesene, (E)-nerolidol and (E,E)-farnesol as main products. Metabolite signatures and gene expression studies confirmed that santalol content is closely related with santalene synthase (SaSSY) transcripts in heartwood, which is key enzyme responsible for santalol biosynthesis. However, the expression of three new SaTPS genes differed significantly from SaSSY in the essential oil-producing heartwood. Increased activities of antioxidant enzymes, superoxide dismutase, catalase, peroxidase and ascorbate peroxidase, were detected in different tissues of S. album plants after applying 1 mM methyl jasmonate (MeJA) and 1 mM salicylic acid (SA), or exposure to 4°C, 38°C and high light intensity. MeJA and SA dramatically induced the expression of SaTPS1 and SaTPS2 in leaves. SaTPS1 to 3 transcripts were differentially activated among different tissues under adverse temperature and light stresses. In contrast, almost all SaSSY transcripts decreased in response to these environmental stresses, unlike SaTPS1 to 3. CONCLUSIONS: Multifunctional enzymes were biochemically characterized, including one chloroplastic mono-TPS and two cytosolic sesqui-TPSs in sandalwood. Our results suggest the ecological importance of these three new SaTPS genes in defensive response to biotic attack and abiotic stresses in S. album.


Asunto(s)
Transferasas Alquil y Aril/genética , Proteínas de Plantas/genética , Santalum/fisiología , Estrés Fisiológico/genética , Acetatos/farmacología , Transferasas Alquil y Aril/metabolismo , Ciclopentanos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luz , Familia de Multigenes , Oxilipinas/farmacología , Filogenia , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Santalum/efectos de los fármacos , Santalum/genética , Temperatura , Terpenos/análisis , Terpenos/química , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química
18.
Sci Rep ; 8(1): 17511, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30504917

RESUMEN

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used technique to investigate gene expression levels due to its high throughput, specificity, and sensitivity. An appropriate reference gene is essential for RT-qPCR analysis to obtain accurate and reliable results. To date, no reliable reference gene has been validated for the economically tropical tree, sandalwood (Santalum album L.). In this study, 13 candidate reference genes, including 12 novel putative reference genes selected from a large set of S. album transcriptome data, as well as the currently used ß-actin gene (ACT), were validated in different tissues (stem, leaf, root and callus), as well as callus tissue under salicylic acid (SA), jasmonic acid methyl ester (MeJA), and gibberellin (GA) treatments using geNorm, NormFinder, BestKeeper, Delta Ct and comprehensive RefFinder algorithms. Several novel candidate reference genes were much more stable than the currently used traditional gene ACT. ODD paired with Fbp1 for SA treatment, CSA and Fbp3 for MeJA treatment, PP2C and Fbp2 for GA treatment, as well as Fbp1 combined with Fbp2 for the total of three hormone treatments were the most accurate reference genes, respectively. FAB1A, when combined with PP2C, was identified as the most suitable reference gene combination for the four tissues tested, while the combination of HLMt, PPR and FAB1A were the most optimal reference genes for all of the experimental samples. In addition, to verify our results, the relative expression level of the SaSSy gene was evaluated by the validated reference genes and their combinations in the three S. album tissues and under MeJA treatment. The evaluated reference genes in this study will improve the accuracy of RT-qPCR analysis and will benefit S. album functional genomics studies in different tissues and under hormone stimuli in the future.


Asunto(s)
Perfilación de la Expresión Génica , Genes de Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Santalum/genética , Transcriptoma
19.
Plant Physiol ; 176(4): 2772-2788, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29440596

RESUMEN

Indian sandalwood (Santalum album) is an important tropical evergreen tree known for its fragrant heartwood-derived essential oil and its valuable carving wood. Here, we applied an integrated genomic, transcriptomic, and proteomic approach to assemble and annotate the Indian sandalwood genome. Our genome sequencing resulted in the establishment of a draft map of the smallest genome for any woody tree species to date (221 Mb). The genome annotation predicted 38,119 protein-coding genes and 27.42% repetitive DNA elements. In-depth proteome analysis revealed the identities of 72,325 unique peptides, which confirmed 10,076 of the predicted genes. The addition of transcriptomic and proteogenomic approaches resulted in the identification of 53 novel proteins and 34 gene-correction events that were missed by genomic approaches. Proteogenomic analysis also helped in reassigning 1,348 potential noncoding RNAs as bona fide protein-coding messenger RNAs. Gene expression patterns at the RNA and protein levels indicated that peptide sequencing was useful in capturing proteins encoded by nuclear and organellar genomes alike. Mass spectrometry-based proteomic evidence provided an unbiased approach toward the identification of proteins encoded by organellar genomes. Such proteins are often missed in transcriptome data sets due to the enrichment of only messenger RNAs that contain poly(A) tails. Overall, the use of integrated omic approaches enhanced the quality of the assembly and annotation of this nonmodel plant genome. The availability of genomic, transcriptomic, and proteomic data will enhance genomics-assisted breeding, germplasm characterization, and conservation of sandalwood trees.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Genoma de Planta/genética , Anotación de Secuencia Molecular/métodos , Proteómica/métodos , Santalum/genética , Regulación de la Expresión Génica de las Plantas , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteoma/genética , Proteoma/metabolismo
20.
Tree Physiol ; 38(3): 311-319, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28633414

RESUMEN

The development of heartwood (HW) and the associated accumulation of secondary metabolites, which are also known as 'specialized metabolites' or 'extractives', is an important feature of tree biology. Heartwood development can affect tree health with broader implications for forest health. Heartwood development also defines a variety of wood quality traits that are important in the forest industry such as durability and colour of wood products. In the bioproducts industry, HW provides a source of high-value small molecules such as fragrances and antimicrobials. The HW properties of decay resistance in living trees, durability and colour of wood products, and small molecule bioproducts are largely defined by secondary metabolites, the biosynthesis of which appears to be activated during the onset of HW formation. Traditionally, it is thought that HW formation involves a spike in the activity of secondary metabolism in parenchyma cells in a transition zone between sapwood and HW, followed by programmed cell-death. The resulting HW tissue is thought to consist entirely of dead cells. Here, we discuss a variation of existing models of HW formation, based on the recent discovery of HW-specific transcriptome signatures of terpenoid biosynthesis in sandalwood (Santalum album L.) that invokes the activity of living cells in HW.


Asunto(s)
Genómica , Santalum/genética , Santalum/metabolismo , Metabolismo Secundario , Terpenos/metabolismo , Transcriptoma , Madera/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA