Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.664
Filtrar
1.
J R Soc Interface ; 21(214): 20230658, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38774960

RESUMEN

Skeletal muscle powers animal movement through interactions between the contractile proteins, actin and myosin. Structural variation contributes greatly to the variation in mechanical performance observed across muscles. In vertebrates, gross structural variation occurs in the form of changes in the muscle cross-sectional area : fibre length ratio. This results in a trade-off between force and displacement capacity, leaving work capacity unaltered. Consequently, the maximum work per unit volume-the work density-is considered constant. Invertebrate muscle also varies in muscle ultrastructure, i.e. actin and myosin filament lengths. Increasing actin and myosin filament lengths increases force capacity, but the effect on muscle fibre displacement, and thus work, capacity is unclear. We use a sliding-filament muscle model to predict the effect of actin and myosin filament lengths on these mechanical parameters for both idealized sarcomeres with fixed actin : myosin length ratios, and for real sarcomeres with known filament lengths. Increasing actin and myosin filament lengths increases stress without reducing strain capacity. A muscle with longer actin and myosin filaments can generate larger force over the same displacement and has a higher work density, so seemingly bypassing an established trade-off. However, real sarcomeres deviate from the idealized length ratio suggesting unidentified constraints or selective pressures.


Asunto(s)
Modelos Biológicos , Músculo Esquelético , Miosinas , Animales , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología , Actinas/metabolismo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Sarcómeros/fisiología , Fenómenos Biomecánicos
2.
Elife ; 122024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695862

RESUMEN

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana , Ratones Noqueados , Contracción Muscular , Proteínas del Tejido Nervioso , Sarcómeros , Septinas , Animales , Septinas/metabolismo , Septinas/genética , Sarcómeros/metabolismo , Ratones , Contracción Muscular/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Unión Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiología
3.
PLoS One ; 19(5): e0301690, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38701072

RESUMEN

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Asunto(s)
Desarrollo de Músculos , Sarcómeros , Animales , Ratones , Diferenciación Celular/genética , Línea Celular , Epigénesis Genética , Técnicas de Inactivación de Genes , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología , Mioblastos/metabolismo , Mioblastos/citología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Sarcómeros/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética
4.
PLoS Biol ; 22(4): e3002575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38683844

RESUMEN

Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.


Asunto(s)
Citoesqueleto , Proteínas de Drosophila , Drosophila melanogaster , Desarrollo de Músculos , Proteínas de Unión al ARN , Sarcómeros , Animales , Sarcómeros/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Desarrollo de Músculos/genética , Citoesqueleto/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Empalme del ARN/genética , Miofibrillas/metabolismo , Vuelo Animal/fisiología , Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/metabolismo
5.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38569017

RESUMEN

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Asunto(s)
Enfermedades Musculares , Sarcómeros , Animales , Humanos , Calcio/metabolismo , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Sarcómeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Pez Cebra/metabolismo
6.
PLoS One ; 19(4): e0300348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687705

RESUMEN

The sarcomere is the fundamental contractile unit in skeletal muscle, and the regularity of its structure is critical for function. Emerging data demonstrates that nanoscale changes to the regularity of sarcomere structure can affect the overall function of the protein dense ~2µm sarcomere. Further, sarcomere structure is implicated in many clinical conditions of muscle weakness. However, our understanding of how sarcomere structure changes in disease, especially at the nanoscale, has been limited in part due to the inability to robustly detect and measure at sub-sarcomere resolution. We optimized several methodological steps and developed a robust pipeline to analyze sarcomere structure using structured illumination super-resolution microscopy in conjunction with commercially-available and fluorescently-conjugated Variable Heavy-Chain only fragment secondary antibodies (nanobodies), and achieved a significant increase in resolution of z-disc width (353nm vs. 62nm) compared to confocal microscopy. The combination of these methods provides a unique approach to probe sarcomere protein localization at the nanoscale and may prove advantageous for analysis of other cellular structures.


Asunto(s)
Sarcómeros , Anticuerpos de Dominio Único , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Anticuerpos de Dominio Único/química , Animales , Microscopía Fluorescente/métodos , Ratones , Microscopía Confocal/métodos
7.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483507

RESUMEN

The polymerization of myosin molecules into thick filaments in muscle sarcomeres is essential for cardiac contractility, with the attenuation of interactions between the heads of myosin molecules within the filaments being proposed to result in hypercontractility, as observed in hypertrophic cardiomyopathy (HCM). However, experimental evidence demonstrates that the structure of these giant macromolecular complexes is highly dynamic, with molecules exchanging between the filaments and a pool of soluble molecules on the minute timescale. Therefore, we sought to test the hypothesis that the enhancement of interactions between the heads of myosin molecules within thick filaments limits the mobility of myosin by taking advantage of mavacamten, a small molecule approved for the treatment of HCM. Myosin molecules were labeled in vivo with a green fluorescent protein (GFP) and imaged in intact hearts using multiphoton microscopy. Treatment of the intact hearts with mavacamten resulted in an unexpected > 5-fold enhancement in GFP-myosin mobility within the sarcomere. In vitro biochemical assays suggested that mavacamten enhanced the mobility of GFP-myosin by increasing the solubility of myosin molecules, through the stabilization of a compact/folded conformation of the molecules, once disassociated from the thick filaments. These findings provide alternative insight into the mechanisms by which molecules exchange into and out of thick filaments and have implications for how mavacamten may affect cardiac contractility.


Asunto(s)
Bencilaminas , Miocardio , Sarcómeros , Solubilidad , Uracilo/análogos & derivados , Animales , Sarcómeros/metabolismo , Miocardio/metabolismo , Ratones , Miosinas/metabolismo , Pliegue de Proteína , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Cardiomiopatía Hipertrófica/metabolismo , Contracción Miocárdica , Humanos , Masculino
8.
J Mol Cell Cardiol ; 190: 13-23, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462126

RESUMEN

Mutations in cardiac myosin-binding protein C (cMyBP-C) or titin may respectively lead to hypertrophic (HCM) or dilated (DCM) cardiomyopathies. The mechanisms leading to these phenotypes remain unclear because of the challenge of translating cellular abnormalities to whole-heart and system function. We developed and validated a novel computer model of calcium-contraction coupling incorporating the role of cMyBP-C and titin based on the key assumptions: 1) tension in the thick filament promotes cross-bridge attachment mechanochemically, 2) with increasing titin tension, more myosin heads are unlocked for attachment, and 3) cMyBP-C suppresses cross-bridge attachment. Simulated stationary calcium-tension curves, isotonic and isometric contractions, and quick release agreed with experimental data. The model predicted that a loss of cMyBP-C function decreases the steepness of the calcium-tension curve, and that more compliant titin decreases the level of passive and active tension and its dependency on sarcomere length. Integrating this cellular model in the CircAdapt model of the human heart and circulation showed that a loss of cMyBP-C function resulted in HCM-like hemodynamics with higher left ventricular end-diastolic pressures and smaller volumes. More compliant titin led to higher diastolic pressures and ventricular dilation, suggesting DCM-like hemodynamics. The novel model of calcium-contraction coupling incorporates the role of cMyBP-C and titin. Its coupling to whole-heart mechanics translates changes in cellular calcium-contraction coupling to changes in cardiac pump and circulatory function and identifies potential mechanisms by which cMyBP-C and titin abnormalities may develop into HCM and DCM phenotypes. This modeling platform may help identify distinct mechanisms underlying clinical phenotypes in cardiac diseases.


Asunto(s)
Calcio , Proteínas Portadoras , Conectina , Contracción Miocárdica , Humanos , Conectina/metabolismo , Conectina/genética , Proteínas Portadoras/metabolismo , Calcio/metabolismo , Sarcómeros/metabolismo , Modelos Cardiovasculares , Simulación por Computador , Animales , Corazón/fisiopatología , Corazón/fisiología
9.
Mol Biol Cell ; 35(4): ar58, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446619

RESUMEN

GTPases cycle between active GTP bound and inactive GDP bound forms. Exchange of GDP for GTP is catalyzed by guanine nucleotide exchange factors (GEFs). GTPase activating proteins (GAPs) accelerate GTP hydrolysis, to promote the GDP bound form. We reported that the RacGEF, PIX-1, is required for assembly of integrin adhesion complexes (IAC) in striated muscle of Caenorhabditis elegans. In C. elegans, IACs are found at the muscle cell boundaries (MCBs), and bases of sarcomeric M-lines and dense bodies (Z-disks). Screening C. elegans mutants in proteins containing RhoGAP domains revealed that loss of function of rrc-1 results in loss of IAC components at MCBs, disorganization of M-lines and dense bodies, and reduced whole animal locomotion. RRC-1 localizes to MCBs, like PIX-1. The localization of RRC-1 at MCBs requires PIX-1, and the localization of PIX-1 requires RRC-1. Loss of function of CED-10 (Rac) shows lack of PIX-1 and RRC-1 at MCBs. RRC-1 exists in a complex with PIX-1. Transgenic rescue of rrc-1 was achieved with wild type RRC-1 but not RRC-1 with a missense mutation in a highly conserved residue of the RhoGAP domain. Our results are consistent with RRC-1 being a RhoGAP for the PIX pathway in muscle.


Asunto(s)
Caenorhabditis elegans , Proteínas Activadoras de GTPasa , Animales , Caenorhabditis elegans/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Sarcómeros/metabolismo , Guanosina Trifosfato/metabolismo , Integrinas/metabolismo
10.
Nat Commun ; 15(1): 2628, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521794

RESUMEN

Muscle contraction is produced via the interaction of myofilaments and is regulated so that muscle performance matches demand. Myosin-binding protein C (MyBP-C) is a long and flexible protein that is tightly bound to the thick filament at its C-terminal end (MyBP-CC8C10), but may be loosely bound at its middle- and N-terminal end (MyBP-CC1C7) to myosin heads and/or the thin filament. MyBP-C is thought to control muscle contraction via the regulation of myosin motors, as mutations lead to debilitating disease. We use a combination of mechanics and small-angle X-ray diffraction to study the immediate and selective removal of the MyBP-CC1C7 domains of fast MyBP-C in permeabilized skeletal muscle. We show that cleavage leads to alterations in crossbridge kinetics and passive structural signatures of myofilaments that are indicative of a shift of myosin heads towards the ON state, highlighting the importance of MyBP-CC1C7 to myofilament force production and regulation.


Asunto(s)
Proteínas Portadoras , Sarcómeros , Sarcómeros/metabolismo , Proteínas Portadoras/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Miosinas/metabolismo
11.
Cells ; 13(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334670

RESUMEN

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Asunto(s)
Cardiomiopatías , Filaminas , Células Madre Pluripotentes Inducidas , Humanos , Cardiomiopatías/metabolismo , Filaminas/genética , Filaminas/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sarcómeros/metabolismo , Transducción de Señal
12.
Trends Pharmacol Sci ; 45(3): 191-192, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38302402

RESUMEN

Muscle contraction is orchestrated by the well-understood thin filaments and the markedly complex thick filaments. Studies by Dutta et al. and Tamborrini et al., discussed here, have unravelled the structure of the mammalian heart thick filament in exquisite near-atomic detail and pave the way for understanding physiological modulation pathways and mutation-induced dysfunction and for designing potential drugs to modify defects.


Asunto(s)
Miocardio , Sarcómeros , Humanos , Animales , Miocardio/metabolismo , Sarcómeros/metabolismo , Mamíferos
13.
PLoS Genet ; 20(1): e1011117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38198522

RESUMEN

During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.


Asunto(s)
Miopatías Nemalínicas , Sarcómeros , Animales , Humanos , Sarcómeros/metabolismo , Forminas/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo
14.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38226618

RESUMEN

Titin (TTN) is one of the largest and most complex proteins expressed in humans, and truncation variants are the most prevalent genetic lesion identified in individuals with dilated cardiomyopathy (DCM) or other disorders of impaired cardiac contractility. Two reports in this issue of the JCI shed light on a potential mechanism involving truncated TTN sarcomere integration and the potential for disruption of sarcomere structural integrity. Kellermayer, Tordai, and colleagues confirmed the presence of truncated TTN protein in human DCM samples. McAfee and authors developed a patient-specific TTN antibody to study truncated TTN subcellular localization and to explore its functional consequences. A "poison peptide" mechanism emerges that inspires alternative therapeutic approaches while opening new lines for inquiry, such as the role of haploinsufficiency of full-length TTN protein, mechanisms explaining sarcomere dysfunction, and explanations for variable penetrance.


Asunto(s)
Cardiomiopatía Dilatada , Sarcómeros , Humanos , Conectina/genética , Conectina/metabolismo , Sarcómeros/metabolismo , Cardiomiopatía Dilatada/metabolismo , Penetrancia , Mutación
15.
J Clin Invest ; 134(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37962957

RESUMEN

Heterozygous (HET) truncating variant mutations in the TTN gene (TTNtvs), encoding the giant titin protein, are the most common genetic cause of dilated cardiomyopathy (DCM). However, the molecular mechanisms by which TTNtv mutations induce DCM are controversial. Here, we studied 127 clinically identified DCM human cardiac samples with next-generation sequencing (NGS), high-resolution gel electrophoresis, Western blot analysis, and super-resolution microscopy in order to dissect the structural and functional consequences of TTNtv mutations. The occurrence of TTNtv was found to be 15% in the DCM cohort. Truncated titin proteins matching, by molecular weight, the gene sequence predictions were detected in the majority of the TTNtv+ samples. Full-length titin was reduced in TTNtv+ compared with TTNtv- samples. Proteomics analysis of washed myofibrils and stimulated emission depletion (STED) super-resolution microscopy of myocardial sarcomeres labeled with sequence-specific anti-titin antibodies revealed that truncated titin was structurally integrated into the sarcomere. Sarcomere length-dependent anti-titin epitope position, shape, and intensity analyses pointed at possible structural defects in the I/A junction and the M-band of TTNtv+ sarcomeres, which probably contribute, possibly via faulty mechanosensor function, to the development of manifest DCM.


Asunto(s)
Cardiomiopatía Dilatada , Conectina , Humanos , Cardiomiopatía Dilatada/genética , Conectina/genética , Conectina/metabolismo , Corazón , Sarcómeros/genética , Sarcómeros/metabolismo
17.
Methods Mol Biol ; 2735: 27-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38038842

RESUMEN

Concerted atomic motions are requisite for sarcomere protein function and may become disrupted in HCM pathologies. Computational approaches such as molecular dynamics simulation can resolve such dynamics with unrivalled spatial and temporal resolution. This chapter describes methods to model structural and dynamical changes in biomolecules with HCM-associated perturbations.


Asunto(s)
Proteínas , Sarcómeros , Sarcómeros/metabolismo , Proteínas/química , Simulación de Dinámica Molecular , Movimiento (Física)
18.
Methods Mol Biol ; 2735: 213-233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38038851

RESUMEN

Isolated myofibrils provide biomechanical data at the contractile organelle level that are independent of cellular calcium handling and signaling pathways. These myofibrils can be harvested from animal tissue, human muscle biopsies, or stem cell-derived striated muscle. Here we present our myofibril isolation and rapid solution switching protocols, which allow for precise measurements of activation (kinetics and tension generation) and a biphasic relaxation relationship (initial slow isometric relaxation followed by a fast exponential decay in tension). This experiment is generated on a custom-built myofibril apparatus utilizing a two-photodiode array to detect micron level deflection of our forged glass tip force transducers. A complete activation/relaxation curve can be produced from a single myofibril in under 30 minutes.


Asunto(s)
Cardiomiopatías , Células Madre Pluripotentes Inducidas , Animales , Humanos , Miofibrillas/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Contracción Miocárdica/fisiología , Cardiomiopatías/metabolismo , Sarcómeros/metabolismo , Cinética , Calcio/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 326(3): H568-H583, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38156887

RESUMEN

The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.


Asunto(s)
Miofibrillas , Sarcómeros , Sarcómeros/metabolismo , Miofibrillas/fisiología , Atrios Cardíacos/metabolismo , Función Atrial , Contracción Miocárdica/fisiología , Isoformas de Proteínas/metabolismo
20.
Am J Physiol Cell Physiol ; 326(2): C632-C644, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145303

RESUMEN

The medaka fish (Oryzias latipes) is a vertebrate model used in developmental biology and genetics. Here we explore its suitability as a model for investigating the molecular mechanisms of human myopathies caused by mutations in sarcomeric proteins. To this end, the relevant mechanical parameters of the intact skeletal muscle of wild-type medaka are determined using the transparent tail at larval stage 40. Tails were mounted at sarcomere length of 2.1 µm in a thermoregulated trough containing physiological solution. Tetanic contractions were elicited at physiological temperature (10°C-30°C) by electrical stimulation, and sarcomere length changes were recorded with nanometer-microsecond resolution during both isometric and isotonic contractions with a striation follower. The force output has been normalized for the actual fraction of the cross section of the tail occupied by the myofilament lattice, as established with transmission electron microscopy (TEM), and then for the actual density of myofilaments, as established with X-ray diffraction. Under these conditions, the mechanical performance of the contracting muscle of the wild-type larva can be defined at the level of the half-thick filament, where ∼300 myosin motors work in parallel as a collective motor, allowing a detailed comparison with the established performance of the skeletal muscle of different vertebrates. The results of this study point out that the medaka fish larva is a suitable model for the investigation of the genotype/phenotype correlations and therapeutic possibilities in skeletal muscle diseases caused by mutations in sarcomeric proteins.NEW & NOTEWORTHY The suitability of the medaka fish as a model for investigating the molecular mechanisms of human myopathies caused by mutations of sarcomeric proteins is tested by combining structural analysis and sarcomere-level mechanics of the skeletal muscle of the tail of medaka larva. The mechanical performance of the medaka muscle, scaled at the level of the myosin-containing thick filament, together with its reduced genome duplication makes this model unique for investigations of the genotype/phenotype correlations in human myopathies.


Asunto(s)
Enfermedades Musculares , Oryzias , Animales , Humanos , Sarcómeros/metabolismo , Oryzias/metabolismo , Larva/metabolismo , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA