Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Appl Environ Microbiol ; 90(7): e0031024, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38934615

RESUMEN

Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into Methylorubrum extorquens in different metabolic capacities, including as sole nitrogen and/or carbon sources. We isolated gain-of-function mutations that allowed M. extorquens PA1 to utilize dimethylglycine as a carbon source and dimethylglycine and sarcosine as nitrogen source. Characterization of mutants demonstrated selection for variants of the AraC-like regulator Mext_3735 that confer constitutive expression of the GB metabolic gene cluster, allowing direct utilization of the downstream GB derivatives. Finally, among the distinct isolates examined, we found that catabolism of the osmoprotectant used for selection (GB or dimethylglycine) enhanced osmotic stress resistance provided in the presence of that particular osmolyte. Thus, access to the carbon and nitrogen and osmoprotective effects of GB and DMG are made readily accessible through adaptive mutations. In M. extorquens PA1, the limitations to exploiting this group of compounds appear to exist predominantly at the levels of gene regulation and functional activity, rather than being constrained by transport or toxicity.IMPORTANCEOsmotic stress is a common challenge for bacteria colonizing the phyllosphere, where glycine betaine (GB) can be found as a prevalent osmoprotectant. Though Methylorubrum extorquens PA1 cannot use GB or its demethylation products, dimethylglycine (DMG) and sarcosine, as a sole carbon source, utilization is highly selectable via single nucleotide changes for both GB and DMG growth. The innate inability to use these compounds is due to limited flux through steps in the pathway and regulatory constraints. Herein, the characterization of the transcriptional regulator, Mext_3735 (GbdR), expands our understanding of the various roles in which GB derivatives can be used in M. extorquens PA1. Interestingly, increased catabolism of GB and derivatives does not interfere with, but rather improves, the ability of cells to thrive under increased salt stress conditions, suggesting that metabolic flux improves stress tolerance rather than providing a distinct tension between uses.


Asunto(s)
Betaína , Presión Osmótica , Sarcosina , Betaína/metabolismo , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928235

RESUMEN

The reaction mechanism of tthe formation of azomethine ylides from isatins and sarcosine is addressed in the literature in a general manner. This computational study aims to explore the mechanistic steps for this reaction in detail and to assess the reactivity of formed ylide in a 1,3-dipolar cycloaddition reaction with 7-oxabenzonorbornadiene. For this purpose, density functional theory (DFT) calculations at the M06-2X(SMD,EtOH)/6-31G(d,p) level were employed. The results indicate that CO2 elimination is the rate-determining step, the activation barrier for 1,3-dipolar cycloaddition is lower, and the formed ylide will readily react with dipolarophiles. The substitution of isatine with electron-withdrawal groups slightly decreases the activation barrier for ylide formation.


Asunto(s)
Compuestos Azo , Reacción de Cicloadición , Sarcosina , Tiosemicarbazonas , Tiosemicarbazonas/química , Compuestos Azo/química , Sarcosina/química , Sarcosina/análogos & derivados , Isatina/química , Modelos Moleculares , Teoría Funcional de la Densidad , Norbornanos/química , Estructura Molecular
3.
Nutrients ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892698

RESUMEN

One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.


Asunto(s)
Sangre Fetal , Homocisteína , S-Adenosilmetionina , Humanos , Femenino , Sangre Fetal/metabolismo , Sangre Fetal/química , Embarazo , Adulto , Estudios Longitudinales , Homocisteína/sangre , Japón , S-Adenosilmetionina/sangre , S-Adenosilhomocisteína/sangre , Estudios Transversales , Edad Gestacional , Carbono/metabolismo , Betaína/sangre , Cisteína/sangre , Espectrometría de Masas en Tándem , Glicina/sangre , Pueblos del Este de Asia , Sarcosina/análogos & derivados
4.
Neurochem Res ; 49(9): 2535-2555, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888830

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-ß, leading to N-methyl-D-aspartate (NMDA) receptor-dependent synaptic depression, spine elimination, and memory deficits. Glycine transporter type 1 (GlyT1) modulates glutamatergic neurotransmission via NMDA receptors (NMDAR), presenting a potential alternative therapeutic approach for AD. This study investigates the neuroprotective potential of GlyT1 inhibition in an amyloid-ß-induced AD mouse model. C57BL/6 mice were treated with N-[3-([1,1-Biphenyl]-4-yloxy)-3-(4-fluorophenyl)propyl]-N-methylglycine (NFPS), a GlyT1 inhibitor, 24 h prior to intrahippocampal injection of amyloid-ß. NFPS pretreatment prevented amyloid-ß-induced cognitive deficits in short-term and long-term memory, evidenced by novel object recognition and spatial memory tasks. Moreover, NFPS pretreatment curbed microglial activation, astrocytic reactivity, and subsequent neuronal damage from amyloid-ß injection. An extensive label-free quantitative UPLC-MSE proteomic analysis was performed on the hippocampi of mice treated with NFPS. In proteomics, KEGG enrichment analysis revealed increased in dopaminergic synapse, purine-containing compound biosynthetic process and long-term potentiation, and a reduction in Glucose catabolic process and glycolytic process pathways. The western blot analysis confirmed that NFPS treatment elevated BDNF levels, correlating with enhanced TRKB phosphorylation and mTOR activation. Moreover, NFPS treatment reduced the GluN2B expression after 6 h, which was associated with an increase on CaMKIV and CREB phosphorylation. Collectively, these findings demonstrate that GlyT1 inhibition by NFPS activates diverse neuroprotective pathways, enhancing long-term potentiation signaling and countering amyloid-ß-induced hippocampal damage.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteínas de Transporte de Glicina en la Membrana Plasmática , Hipocampo , Ratones Endogámicos C57BL , Fármacos Neuroprotectores , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Modelos Animales de Enfermedad , Sarcosina/análogos & derivados , Sarcosina/farmacología , Sarcosina/uso terapéutico , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología
5.
Biotechnol J ; 19(5): e2300664, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719620

RESUMEN

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Asunto(s)
Biodegradación Ambiental , Sistema Enzimático del Citocromo P-450 , Escherichia coli , Peróxido de Hidrógeno , Sarcosina-Oxidasa , Peróxido de Hidrógeno/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Sarcosina-Oxidasa/metabolismo , Sarcosina-Oxidasa/genética , Sarcosina-Oxidasa/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/química , Oxidación-Reducción , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/química , Sarcosina/metabolismo , Sarcosina/análogos & derivados
6.
ACS Appl Mater Interfaces ; 16(15): 19472-19479, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38572784

RESUMEN

Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine N-carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG. In this article, PSar-b-polycamptothecin block copolymers are synthesized by sequential ROP of camptothecin-based NCAs (CPT-NCAs) and Sar-NCAs. Then, the detailed and systematic comparison between PEGylation and PSarylation against the 4T1 tumor model indicates that PSar decoration can facilitate the cell endocytosis, greatly enhancing the ICD effects and antitumor efficacy. Therefore, it is believed that this well-developed PSarylation technique will achieve effective and precise cancer treatment in the near future.


Asunto(s)
Neoplasias , Péptidos , Polietilenglicoles , Sarcosina/análogos & derivados , Humanos , Camptotecina , Muerte Celular Inmunogénica , Polímeros
7.
Macromol Rapid Commun ; 45(15): e2400103, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38597209

RESUMEN

N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.


Asunto(s)
Nanopartículas , Polimerizacion , Sarcosina , Nanopartículas/química , Sarcosina/química , Sarcosina/análogos & derivados , Estructura Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Polímeros/síntesis química , Tamaño de la Partícula , Polietilenglicoles/química , Péptidos
8.
Chemistry ; 30(31): e202304375, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38563634

RESUMEN

The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.


Asunto(s)
Cloruros , Polimerizacion , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloruros/química , Polietilenglicoles/química , Polímeros/química , Boratos/química , Anhídridos/química , Péptidos
9.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513663

RESUMEN

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/química , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/ultraestructura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmisión Sináptica , Imidazoles/química , Sarcosina/análogos & derivados , Piperidinas/química
10.
Br J Nutr ; 131(11): 1915-1923, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38443197

RESUMEN

It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case-control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose-response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.


Asunto(s)
Betaína , Carnitina , Colina , Metilaminas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Metilaminas/sangre , Colina/sangre , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/etiología , Femenino , Masculino , Estudios de Casos y Controles , Persona de Mediana Edad , Betaína/sangre , Carnitina/sangre , Carnitina/análogos & derivados , Adulto , Factores de Riesgo , Sarcosina/análogos & derivados , Sarcosina/sangre , China/epidemiología , Incidencia
11.
Exp Brain Res ; 242(5): 1203-1214, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38526743

RESUMEN

L-3,4-dihydroxyphenylalanine (L-DOPA) is the main treatment for Parkinson's disease (PD) but with long term administration, motor complications such as dyskinesia are induced. Glycine transporter 1 (GlyT1) inhibition was shown to produce an anti-dyskinetic effect in parkinsonian rats and primates, coupled with an improvement in the anti-parkinsonian action of L-DOPA. The expression of GlyT1 in the brain in the dyskinetic state remains to be investigated. Here, we quantified the levels of GlyT1 across different brain regions using [3H]-NFPS in the presence of Org-25,935. Brain sections were chosen from sham-lesioned rats, L-DOPA-naïve 6-hydroxydopamine (6-OHDA)-lesioned rats and 6-OHDA-lesioned rats exhibiting mild or severe abnormal involuntary movements (AIMs). [3H]-NFPS binding decreased in the ipsilateral and contralateral thalamus, by 28% and 41%, in 6-OHDA-lesioned rats with severe AIMs compared to sham-lesioned animals (P < 0.01 and 0.001). [3H]-NFPS binding increased by 21% in the ipsilateral substantia nigra of 6-OHDA-lesioned rats with severe AIMs compared to 6-OHDA-lesioned rats with mild AIMs (P < 0.05). [3H]-NFPS binding was lower by 19% in the contralateral primary motor cortex and by 20% in the contralateral subthalamic nucleus of 6-OHDA-lesioned rats with mild AIMs animals compared to rats with severe AIMs (both P < 0.05). The severity of AIMs scores positively correlated with [3H]-NFPS binding in the ipsilateral substantia nigra (P < 0.05), ipsilateral entopeduncular nucleus (P < 0.05) and contralateral primary motor cortex (P < 0.05). These data provide an anatomical basis to explain the efficacy of GlyT1 inhibitors in dyskinesia in PD.


Asunto(s)
Encéfalo , Proteínas de Transporte de Glicina en la Membrana Plasmática , Oxidopamina , Sarcosina/análogos & derivados , Animales , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática/antagonistas & inhibidores , Ratas , Masculino , Oxidopamina/farmacología , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Tritio , Lateralidad Funcional/fisiología
12.
Endocrine ; 85(2): 649-659, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38448678

RESUMEN

PURPOSE: To investigate the associations of choline, betaine, dimethylglycine (DMG), L-carnitine, and Trimethylamine-N-oxide (TMAO) with the risk of Gestational diabetes mellitus (GDM) as well as the markers of glucose homeostasis. METHODS: We performed a case-control study including 200 diagnosed GDM cases and 200 controls matched by maternal age (±2 years) and gestational age (±2 weeks). Concentrations of serum metabolites were measured by the high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). RESULTS: Compared to the control group, GDM group had significantly lower serum betaine concentration and betaine/choline ratio, and higher DMG concentration. Furthermore, decreased betaine concentration and betaine/choline ratio, increased DMG concentration showed significant association with the risk of GDM. In addition, serum betaine concentrations were negatively associated with blood glucose levels at 1-h post-glucose load (OGTT-1h), and both betaine and L-carnitine concentrations were positively associated with 1,5-anhydroglucitol levels. Betaine/choline ratio was negatively associated with OGTT-1h and blood glucose levels at 2-h post-glucose load (OGTT-2h) and serum choline concentrations were negatively associated with fasting blood glucose and positively associated with OGTT-2h. CONCLUSION: Decreased serum betaine concentrations and betaine/choline ratio, and elevated DMG concentrations could be significant risk factors for GDM. Furthermore, betaine may be associated with blood glucose regulation and short-term glycemic fluctuations.


Asunto(s)
Betaína , Glucemia , Colina , Diabetes Gestacional , Sarcosina , Humanos , Diabetes Gestacional/sangre , Diabetes Gestacional/epidemiología , Femenino , Betaína/sangre , Embarazo , Estudios de Casos y Controles , Adulto , Sarcosina/sangre , Sarcosina/análogos & derivados , Glucemia/análisis , Colina/sangre , Carnitina/sangre , Carnitina/análogos & derivados , Segundo Trimestre del Embarazo/sangre , Prueba de Tolerancia a la Glucosa , Metilaminas/sangre , Factores de Riesgo
13.
Int J Pharm ; 653: 123871, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38301810

RESUMEN

Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.


Asunto(s)
Péptidos , Sarcosina , Sarcosina/análogos & derivados , Péptidos/química , Sarcosina/química , Polímeros , Materiales Biocompatibles , Polietilenglicoles/química
14.
Nat Protoc ; 19(4): 1235-1251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38291250

RESUMEN

Tau protein aggregation is associated with posttranslational modifications (PTMs) in 75% of all dementia cases. The distribution of tau pathology and the presence of specific tau phosphorylation sites of interest are typically visualized and measured using antibodies. However, previous knowledge of the target epitopes is required. Additionally, antibodies can be used in a semi-quantitative manner but cannot be used to determine the absolute amount of tau or the extent of the modifications at specific sites or domains. Here we present a discovery assay that characterizes the global qualitative and quantitative tau modification landscape of a sample without a priori knowledge. Our workflow uses sarkosyl fractionation to extract the pathological tau species from sample-limited brain specimens, followed by mass spectrometry (MS) to characterize and quantify tau PTMs. The two-step MS-based proteomics approach includes an exploratory tau PTM analysis and a targeted full-length expressed stable isotope-labeled tau assay, which monitors specific unmodified tau peptides using a heavy isotope-labeled internal standard as a reference. This enables the absolute quantification of the respective tau peptides and the total tau amount in the sample, thus providing the modification extent of tau PTMs. This approach provides precise, comprehensive, qualitative and quantitative tau PTM profiling of the sample. It also enables the detailed molecular comparison of tau across multiple experiments, including a comparison between neurodegenerative diseases, stages of the disease, human patient heterogeneity and characterization of animal models. The approach is useful for studying the molecular features of pathological tau in neurodegeneration. The procedure requires 7-8 d and is suitable for users with expertise in targeted and untargeted MS-based protein analysis.


Asunto(s)
Procesamiento Proteico-Postraduccional , Sarcosina/análogos & derivados , Proteínas tau , Animales , Humanos , Espectrometría de Masas/métodos , Proteínas tau/química , Péptidos , Isótopos
15.
J Clin Endocrinol Metab ; 109(7): 1793-1802, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38214112

RESUMEN

CONTEXT: Current metabolomics studies in diabetes have focused on the fasting state, while only a few have addressed the satiated state. OBJECTIVE: We combined the oral glucose tolerance test (OGTT) and metabolomics to examine metabolite-level changes in populations with different glucose tolerance statuses and to evaluate the potential risk of these changes for diabetes. METHODS: We grouped participants into those with normal glucose tolerance (NGT), impaired glucose regulation (IGR), and newly diagnosed type 2 diabetes (NDM). During the OGTT, serum was collected at 0, 30, 60, 120, and 180 minutes. We evaluated the changes in metabolite levels during the OGTT and compared metabolic profiles among the 3 groups. The relationship between metabolite levels during the OGTT and risk of diabetes and prediabetes was analyzed using a generalized estimating equation (GEE). The regression results were adjusted for sex, body mass index, fasting insulin levels, heart rate, smoking status, and blood pressure. RESULTS: Glucose intake altered metabolic profile and induced an increase in glycolytic intermediates and a decrease in amino acids, glycerol, ketone bodies, and triglycerides. Isoleucine levels differed between the NGT and NDM groups and between the NGT and IGR groups. Changes in sarcosine levels during the OGTT in the diabetes groups were opposite to those in glycine levels. GEE analysis revealed that during OGTT, isoleucine, sarcosine, and acetic acid levels were associated with NDM risks, and isoleucine and acetate levels with IGR risks. CONCLUSION: Metabolic profiles differ after glucose induction in individuals with different glucose tolerance statuses. Changes in metabolite levels during OGTT are potential risk factors for diabetes development.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Prueba de Tolerancia a la Glucosa , Isoleucina , Sarcosina , Humanos , Masculino , Femenino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Isoleucina/sangre , Factores de Riesgo , Sarcosina/análogos & derivados , Sarcosina/sangre , Glucemia/análisis , Glucemia/metabolismo , Adulto , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/epidemiología , Intolerancia a la Glucosa/metabolismo , Estado Prediabético/sangre , Estado Prediabético/epidemiología , Estado Prediabético/metabolismo , Metabolómica , Anciano , Biomarcadores/sangre
16.
J Cosmet Dermatol ; 23(4): 1351-1359, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990616

RESUMEN

BACKGROUND: The human skin microbiome and lipidome are essential for skin homeostasis and barrier function, and have become a focus in both dermatological and cosmetic fields. However, the influence of surfactants commonly used in cosmetic products on the skin resident microbiome and lipidome remains poorly characterized. METHODS: We conducted self-control experiments to systematically study the effects of surfactant (sodium lauroyl sarcosinate [SLS]) on facial skin. Wrinkles, pores, porphyrins, and superficial lipids were examined to evaluate the biophysical state of skin. Quantitative real-time PCR was used to detect the numbers of bacteria and fungi. The diversity and structure of prokaryotic and eukaryotic microbiomes were assessed using 16S rDNA and ITS amplicon sequencing, respectively. Moreover, 22 lipids were identified to evaluate lipidome variations. SPSS software was used for statistical analysis. RESULTS: SLS in facial cleanser did not extensively influence skin biophysical parameters, but caused a decrease in porphyrin. After using the SLS-added facial cleanser for 3 weeks, the alpha diversity of the prokaryotic microbial community decreased significantly, while the eukaryotic microbial community showed a continuous downward trend but no statistically significant. A shift in the structure of prokaryotic microbiome was observed as a result of SLS exposure, mainly reflected by the increase in Acinetobacter, Escherichia-Shigella, Streptococcus, and Ralstonia, while the SLS had little effect on the structure of the eukaryotic microbiome. Furthermore, SLS exposure had a great impact on skin lipidome, mainly manifested by the increase of phosphatidylglycerol (PG) and phosphatidylcholine (PC), and the decrease of ceramides. Spearman's correlations analysis showed that Escherichia-Shigella, Pseudomonas, and Acinetobacter are positively correlated with PG and PC; however, the correlation is not statistically significant. CONCLUSION: In this study, we found the SLS in facial cleanser primarily affected lipidome and the prokaryotic microbiome of facial skin. These findings are useful for reminding us to be vigilant about the ingredients in personal care products, even the common ingredients, and designing effective formulations for repairing ecological balance of skin.


Asunto(s)
Cosméticos , Microbiota , Sarcosina/análogos & derivados , Humanos , Lipidómica , Piel , Tensoactivos , Cosméticos/farmacología , Lípidos/farmacología
17.
J Agric Food Chem ; 72(5): 2708-2717, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38131116

RESUMEN

Our previous study screened out dietary 0.1% dimethylglycine (DMG), which had beneficial effects on egg production and fat deposition in laying hens during the late laying period. In this paper, it was further found that dietary DMG alleviated fatty liver disease and enhanced lipid deposited into the yolk while promoting hepatic lipid transport. There are intestinal estrogen-metabolizing bacteria (EBM) having ß-glucuronase (GUS) activity that regulates the content of circulating estrogen (E2) in mammals. There were 39 related bacteria found in laying hens, and DMG increased E2 in blood, Staphylococcus abundance among EBM and GUS activity in cecum chyme. Interfered in situ, Staphylococcus with GUS activity was proved the target bacteria for DMG. Furthermore, E2 could modify hepatic lipid deposition through promoting lipid transport by the steatosis LMH model. These perspectives confirm that DMG, mediated by Staphylococcus, alleviates the restriction of hepatic lipid transport due to reduced levels of E2 in laying hens.


Asunto(s)
Pollos , Enfermedad del Hígado Graso no Alcohólico , Sarcosina/análogos & derivados , Animales , Femenino , Pollos/fisiología , Hígado/metabolismo , Dieta , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lípidos , Estrógenos/metabolismo , Alimentación Animal/análisis , Mamíferos
18.
Ecotoxicol Environ Saf ; 244: 114053, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36084503

RESUMEN

Heat stress, a widely occurred in subtropical climate regions, causes ecosystem destruction, and intestine injury in humans and animals. As an important compound in the metabolic pathway of choline, dimethylglycine (DMG) shows anti-inflammatory effects. This study examines the beneficial effects of dietary DMG against heat stress-induced intestine injury and further explores the underlying molecular mechanisms using a broiler model. Here, we showed that DMG supplements exhibited positive effects to growth performance, as evidenced by the significantly increased body weight and feed conversion rate. These therapeutic effects attributed to repaired gut barrier integrity, increased content of anti-inflammatory cytokines IL-10, decreased content of pro-inflammatory cytokines IL-6, and down-regulated gene expression of the NF-κB signaling pathway. DMG treatment led to the reshaping of the gut microbiota composition, mainly increasing the short-chain fatty acid (SCFAs) strains such as Faecalibacterium, and Marvinbryantia. DMG treatment also increased two main members of SCFAs, including acetate acid and isobutyrate. Particularly, distinct effects were found which mediated the tryptophan metabolism in intestines such as increased tryptophan and 5-HT, which further alleviate the occurrence of intestinal barrier damage caused by heat stress. Additionally, DMG treatment promoted neuroendocrine function and stimulated the hypothalamic neurotransmitter metabolism by activating tryptophan metabolism in the hypothalamus. Overall, DMG supplementation effectively reduced the occurrence of intestinal inflammation induced by heat stress through modulating cecal microbial communities and improving the metabolism function of microbiota gut brain axis. Our findings revealed a novel mechanism by which gut microbiota could improve host health.


Asunto(s)
Interleucina-10 , Microbiota , Animales , Eje Cerebro-Intestino , Pollos/metabolismo , Colina/farmacología , Ácidos Grasos Volátiles/metabolismo , Respuesta al Choque Térmico , Humanos , Interleucina-6 , Isobutiratos , FN-kappa B , Neurotransmisores , Sarcosina/análogos & derivados , Serotonina , Triptófano
19.
Molecules ; 27(9)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35566078

RESUMEN

The intestinal absorption of hydrophobic compounds is severely influenced by their transportation rate through the unstirred water layer in the intestinal lumen. A member of the vitamin E family, α-Tocotrienol (α-T3) has remarkable pharmacological effects, but its intestinal absorption is hampered due to its hydrophobicity. Here, we prepared three ester derivatives of 2R-α-T3, and we selected a suitable prodrug compound using rat plasma and liver microsomes. The micellization profile of the selected compound in the presence of taurocholic acid (TCA) was evaluated. After gastrostomy administration of the prodrug candidate or α-T3 solution containing TCA, AUC values were determined for α-T3 in plasma obtained from bile duct-ligated rats. Among the three types in the efficiency of the reconversion to the parent drug, α-T3 N,N-dimethylglycinate (α-T3DMG) was the best prodrug; α-T3DMG formed mixed micelles via ion pairs with anionic TCA. The solubility of α-T3DMG in n-octanol/water depended on its ratio to TCA. The AUC after α-T3DMG administration to ligated rats was 2-fold higher than that after α-T3 administration, suggesting a smooth interaction with intrinsic bile acids. In conclusion, utilization of the prodrug synthesized using N,N-dimethylglycine ester may be a beneficial approach to promote intestinal absorption of α-T3 via self-micellization with intrinsic bile acid.


Asunto(s)
Profármacos , Animales , Aniones/farmacología , Ácidos y Sales Biliares/farmacología , Disponibilidad Biológica , Cationes/farmacología , Ésteres/farmacología , Absorción Intestinal , Profármacos/química , Ratas , Sarcosina/análogos & derivados , Ácido Taurocólico , Tocotrienoles , Agua/farmacología
20.
FASEB J ; 36(5): e22305, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35394692

RESUMEN

Identifying novel molecules involved in axon regeneration of neurons in the peripheral nervous system (PNS) will be of benefit in obtaining a therapeutic strategy for repairing axon damage both in the PNS and the central nervous system (CNS). Metabolism and axon regeneration are tightly connected. However, the overall metabolic processes and the landscape of the metabolites in axon regeneration of PNS neurons are uncovered. Here, we used an ultra high performance liquid tandem chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOFMS)-based untargeted metabolomics to analyze dorsal root ganglia (DRG) metabolic characteristics at different time points post sciatic nerve injury and acquired hundreds of differentially changed metabolites. In addition, the results reveal that several metabolic pathways were significantly altered, such as 'Histidine metabolism', 'Glycine serine and threonine metabolism', 'Arginine and proline metabolism', 'taurine and hypotaurine metabolism' and so on. Given metabolite could alter a cell's or an organism's phenotype, further investigation demonstrated that N, N-dimethylglycine (DMG) has a promoting effect on the regenerative ability post injury. Overall, our data may serve as a resource useful for further understanding how metabolites contribute to axon regeneration in DRG during sciatic nerve regeneration and suggest DMG may be a candidate drug to repair nerve injury.


Asunto(s)
Ganglios Espinales , Regeneración Nerviosa , Axones/metabolismo , Ganglios Espinales/metabolismo , Metabolómica , Regeneración Nerviosa/fisiología , Neuronas , Sarcosina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...