Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 996
Filtrar
1.
PLoS One ; 19(10): e0311679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39374251

RESUMEN

BACKGROUND: Plant extracts have been shown to be effective agricultural strategies for improving soil fertility and quality, and promoting plant growth in soil degradation remediation. The application of plant extracts improves the material cycle of soil microecology, such as the decomposition of nitrogen, phosphorus, and potassium, while increasing plant resistance. However, there is currently no experiment to demonstrate whether plant extracts have a promoting effect on the growth of ginseng and the mechanism of action. OBJECTIVES AND METHODS: Pot experiments were carried out to investigate the effects of extracts, namely Rubia cordifolia (RC), Schisandra chinensis (SC), and Euphorbia humifusa (EH) on soil properties, enzyme activities, and plant physiological characteristics were evaluated. RESULTS: Results showed that compared with CK, plant extract-related treatments increased soil Organic carbon (OC), Available nitrogen (AN), Available phosphorus (AP) contents, and Soil urease activity. (S-UE), Soil sucrase activity (Soil sucrase), Soil acid phosphatase activity. (S-ACP). Meanwhile, plant extract-related treatments significantly increased plant physiological properties and TP (Total protein) content, and decreased the content of MDA (malondialdehyde) by 15.70% -36.59% and PRO (proline) by 30.13% -148.44%. Furthermore, plant extract-related treatments also significantly promote plant growth and reduce plant incidence, the fresh weight of ginseng increased by 27.80% -52.08%, ginseng root activity increased by 45.13% -90.07%, and ginseng incidence rate decreased by 20.00% -46.67%. Through correlation analysis between fresh weight of ginseng and root parameters and soil index, fresh weight is significantly positively correlated with root diameter, fiber root number, root activity, total protein (TP), catalytic activity (CAT) and superoxide dismutase activity (SOD), H, soil urea activity (S-UE), soil sucrose activity (S-SC), soil acid phosphate activity (S-ACP), and soil laccase activity (SL); The fresh weight was significantly negatively correlated with incidence rate, disease severity index, and malondialdehyde content (MDA). CONCLUSION: In summary, plant extract-related treatments improve soil quality and promote ginseng growth, further enhancing soil health and plant disease resistance. These findings provide new insights into ginseng cultivation and soil health management and highlight a new approach that can be applied to a wider range of agricultural practices and environmental sustainability.


Asunto(s)
Panax , Extractos Vegetales , Suelo , Suelo/química , Panax/crecimiento & desarrollo , Panax/química , Extractos Vegetales/farmacología , Fósforo/metabolismo , Nitrógeno/metabolismo , Euphorbia/química , Schisandra/química
2.
Molecules ; 29(20)2024 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-39459232

RESUMEN

Schisandra chinensis (Turcz.) Baill. (S. chinensis) and Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) are called "Wuweizi" in traditional Chinese medicine, and they have distinct clinical applications. To systematically compare the differential characteristics of S. chinensis and S. sphenanthera, this study employed ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and gas chromatography-mass spectrometry (GC-MS) to construct chemical profiles of these two species from different regions. In total, 31 non-volatiles and 37 volatiles were identified in S. chinensis, whereas 40 non-volatiles and 34 volatiles were detected in S. sphenanthera. A multivariate statistical analysis showed that the non-volatiles tigloygomisin P, schisandrol A, schisantherin C, and 6-O-benzoylgomisin O and the volatiles ylangene, γ-muurolene, and ß-pinene distinguish these species. Additionally, the metabolism of oxygen free radicals can contribute to the development of various diseases, including cardiovascular and neurodegenerative diseases. Therefore, antioxidant activities were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) scavenging assays. The results showed that S. sphenanthera exhibited significantly higher antioxidant potential. A gray relational analysis indicated that the key contributors to the antioxidant activity of S. chinensis were schisandrol A, gomisin G, schisantherin C, pregomisin, gomisin J, and schisantherin B. For S. sphenanthera, the key contributors included gomisin K2, schisantherin B, gomisin J, pregomisin, schisantherin C, schisandrin, gomisin G, schisantherin A, schisanhenol, and α-pinene. The identification of the differential chemical markers and the evaluation of the antioxidant activities provide a foundation for further research into the therapeutic applications of these species. This innovative study provides a robust framework for the quality control and therapeutic application of S. chinensis and S. sphenanthera, offering new insights into their medicinal potential.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Schisandra , Schisandra/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Lignanos/química , Lignanos/análisis , Ciclooctanos/química , Ciclooctanos/análisis , Cromatografía Líquida de Alta Presión/métodos , Compuestos Policíclicos/química , Compuestos Policíclicos/análisis , Monoterpenos Bicíclicos/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Monoterpenos/química , Monoterpenos/análisis , Compuestos Bicíclicos con Puentes/análisis , Compuestos Bicíclicos con Puentes/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología
3.
Int Immunopharmacol ; 142(Pt A): 113069, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241520

RESUMEN

Schisandra chinensis, a traditional Chinese medicine, has been widely applied in China to treat diabetes and its complications. The aim of this study was to discover the active compounds and explain related molecular mechanism contributing to the anti-diabetic effect of Schisandra chinensis. Herein, the therapeutic effects of Schisandra chinensis extracts on type 2 diabetes mellitus (T2DM) were firstly confirmed in vivo. Subsequently, various lignans were isolated from Schisandra chinensis and tested for hypoglycemic activity in palmitic acid-induced insulin-resistant HepG2 (IR-HepG2) cells. Among these lignans, R-biar-(7S,8R)-6,7,8,9-tetrahydro-1,2,3,12,13,14-hexamethoxy-7,8-dimethyl-7-dibenzo [a, c] cyclooctenol (compound 2) and Gomisin A (compound 4) were identified significantly increased the glucose consumption in IR-HepG2 cells. Meanwhile, compounds 2 and 4 activated the insulin receptor substrate-1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/Ak strain transforming (AKT) pathway, which regulates glucose transporter 2 (GLUT2) and glucose-6-phosphatase (G6Pase), essential for gluconeogenesis and glucose uptake. These compounds also inhibited the nuclear factor-κB (NF-κB) signaling pathway, reducing interleukin-6 (IL-6) levels. Importantly, the hypoglycemic effects of compounds 2 and 4 were diminished after Toll-like receptor 4 (TLR4) knockdown. Cellular thermal shift assays confirmed increased TLR4 protein stability upon treatment with these compounds, indicating direct binding to TLR4. Furthermore, TLR4 knockdown reversed the effects of compounds 2 and 4 on the NF-κB and IRS-1/PI3K/AKT pathways. Taken together, compounds 2 and 4 alleviate IR by targeting TLR4, thereby modulating the NF-κB and IRS-1/PI3K/AKT pathways. These findings suggest that compounds 2 and 4 could be developed as therapeutic agents for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Lignanos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Schisandra , Transducción de Señal , Receptor Toll-Like 4 , Humanos , Receptor Toll-Like 4/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Schisandra/química , Lignanos/farmacología , Lignanos/uso terapéutico , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Células Hep G2 , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
4.
Carbohydr Polym ; 346: 122644, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245531

RESUMEN

A complex heteropolysaccharide SCP-2 named schisanan B (Mw = 1.005 × 105 g/mol) was obtained from water extracts of Schisandra chinensis fruits, and its planar structure was finally deduced as a galacturonoglucan by a combination of monosaccharide compositions, methylation analysis, partial acid hydrolysis, enzymatic hydrolysis and 1D/2D-nuclear magnetic resonance spectroscopy. The conformation of SCP-2 exhibited a globular shape with branching in ammonium formate aqueous solutions. The rheological properties of SCP-2 were investigated on concentrations, temperature, pH and salts. The in vitro immunomodulatory activity assay demonstrated that SCP-2 significantly enhanced the production of nitric oxide (NO) and stimulated the secretion of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in macrophages. Through a combination of high-resolution live-cell imaging, surface plasmon resonance, and molecular docking techniques, SCP-2 exhibited a strong binding affinity with the Toll-like receptor 4 (TLR4). Moreover, western blot analysis revealed that SCP-2 effectively induced downstream signaling proteins associated with TLR4 activation, thereby promoting macrophage activation. The evidence strongly indicates that TLR4 functions as a membrane protein target in the activation of macrophages and immune regulation induced by SCP-2.


Asunto(s)
Frutas , Reología , Schisandra , Receptor Toll-Like 4 , Schisandra/química , Ratones , Frutas/química , Células RAW 264.7 , Animales , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Pectinas/química , Factor de Necrosis Tumoral alfa/metabolismo , Glucanos/química , Interleucina-6/metabolismo
5.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(4): 471-481, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39223011

RESUMEN

Objective To investigate the effects of Schisandrae Chinensis Fructus lignans on the alertness of the rats with sleep deprived by treadmill exercise and the underlying neurobiological mechanism. Methods According to the random number table method,SD male rats were assigned into control,sleep deprivation,low-,medium-,and high-dose Schisandrae Chinensis Fructus lignans,and atomoxetine hydrochloride groups,with 8 rats in each group.The rats in other groups except the control group were subjected to sleep deprivation by treadmill exercise for 3 d.During the deprivation period,each administration group was administrated with the corresponding drug by gavage,and a 5-9 hole tester was used to test the alertness performance of rats in each group. Furthermore,other SD male rats were selected and randomized into control,sleep deprivation,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride groups,with 10 rats in each group.The rats were modeled with the sleep deprivation method the same as that above and administrated with corresponding agents.ELISA was employed to measure the serum level of orexin A in each group of rats.The protein levels of c-Fos,orexin receptor 1,and orexin receptor 2 in the prefrontal cortex of rats in each group were observed by immunofluorescence and Western blotting. Results Compared with the control group,sleep deprivation reduced the choice accuracy (P<0.001) and increased the omission responses,omission percent,and mean correct response latency (P=0.002,P=0.003,P=0.020).Compared with the sleep deprivation group,medium- and high-dose Schisandrae Chinensis Fructus lignans and atomoxetine hydrochloride improved the alertness of rats,as demonstrated by the increased choice accuracy (P=0.001,P=0.006,P<0.001) and reduced omission responses (P=0.001,P=0.001,P<0.001),omission percent (P=0.001,P=0.002,P<0.001),and mean correct response latency (P=0.018,P=0.003,P=0.014).Compared with the control group,the sleep deprivation group showed elevated level of orexin A in the serum (P<0.001),up-regulated expression of c-Fos (P<0.001),and down-regulated expression of orexin receptor 1 (P=0.037) in the prefrontal cortex.Compared with the sleep deprivation group,Schisandrae Chinensis Fructus lignans (67.2 mg/kg) and atomoxetine hydrochloride lowered the orexin A level in the serum (P=0.005,P=0.029),down-regulated the expression of c-Fos (P=0.028,P=0.036),and up-regulated the expression of orexin receptor 1 (P=0.043,P=0.013) in the prefrontal cortex. Conclusion Schisandrae Chinensis Fructus lignans may antagonize the alertness decrease caused by sleep deprivation by regulating the secretion of orexin and the expression of orexin receptor 1 in the prefrontal cortex.


Asunto(s)
Lignanos , Ratas Sprague-Dawley , Schisandra , Privación de Sueño , Animales , Lignanos/farmacología , Schisandra/química , Masculino , Privación de Sueño/metabolismo , Privación de Sueño/tratamiento farmacológico , Ratas , Orexinas/metabolismo , Neuropéptidos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo
6.
Int J Biol Macromol ; 279(Pt 1): 134952, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197630

RESUMEN

The purified neutral polysaccharide fraction, namely SBP-1, was isolated and characterized from Schisandra chinensis (Turcz.) Baill crude polysaccharides, which have anti-Parkinson's disease activity were investigated in vivo and in vitro. Experiments have shown that the main chain of SBP-1 was Glcp-(1→, →4)-Glcp-(1→ and →4,6)-Glcp-(1→. We also revealed the effect of SBP-1 on the PD mice model and the potential underlying molecular mechanism. The results showed that SBP-1 administration improved behavioral deficits, increased tyrosine hydroxylase-positive cells, attenuated loss of dopaminergic neurons in MPTP-exposed mice, and reduced cell death induced by MPP+. The MCL-1 was identified as the target of SBP-1 by the combination of docking-SPR-ITC, WB, and IF experiments. Subsequently, the study showed that SBP-1 could target MCL-1 to enhance autophagy with a change in the apoptotic response, which was further demonstrated by a change in LC3/P62, PI3K/AKT/mTOR, and possesses a change in the expression of BCL2/BAX/Caspase3. These results demonstrate that SBP-1 may protect neurons against MPP+ or MPTP-induced damage in vitro and in vivo through enhancing autophagy. In summary, these findings indicate that SBP-1 and S. chinensis show potential as effective candidates for further investigation in the prevention and treatment of PD or associated illnesses, specifically through autophagy apoptotic-based mechanisms.


Asunto(s)
Autofagia , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Enfermedad de Parkinson , Polisacáridos , Schisandra , Transducción de Señal , Animales , Schisandra/química , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Autofagia/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Regulación de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo
7.
Phytomedicine ; 133: 155929, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126923

RESUMEN

BACKGROUND: Schisandra chinensis lignan (SCL), a major active component of the traditional functional Chinese medicine Schisandra chinensis, has been reported to have antidepressant effects. Its mechanisms include alleviating intestinal barrier injury (IBI) by resolving intestinal microflora, anti-inflammation, and neuroprotection. SCL also regulates endogenous cannabinoid system, and it is closely related to the onset and development of depression. PURPOSE: We investigated a new treatment strategy for depression, i.e., alleviating IBI by regulating the endogenous cannabinoid system for antidepressant effects, as well as conducted in-depth research to explore the specific mechanism. METHODS: Behavioral analysis was conducted to detect the occurrence of depressive-like behavior in C57BL/6 mice. We used hematoxylin-eosin staining, periodic acid-Schiff staining, and immunofluorescence to evaluate IBI. Network pharmacology and Western blotting (WB) were used to predict and confirm that the amelioration effect of SCL was associated with anti-inflammation and anti-apoptosis. Combined with the levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), we conducted the Pearson analysis between the AEA, 2-AG levels and the major targets identified and validated by network pharmacology and WB. Subsequently, URB-597, a fatty acid amide hydrolase (FAAH) antagonist with an AEA hydrolase-inhibiting effect, was administered to the mice, and behavioral analysis and apoptotic proteins were verified. Plasma endocannabinoid levels after URB-597 supplementation were measured via 6470 Triple Quadrupole LC/MS. Finally, the cannabinoid receptor type 2 (CB2R) antagonist AM630 was administered to mice, and immunofluorescence and WB were performed to assess the proteins of IBI and anti-inflammation. RESULTS: The study demonstrated that SCL alleviated depressive-like behaviours and ameliorated IBI. Network pharmacology and WB confirmed that the improvement of IBI was related to the anti-inflammatory and anti-apoptotic pathways. Pearson results showed that AEA levels were positively correlated with inflammation and apoptosis, with a greater contribution to apoptosis. In-depth studies validated that the URB-597 administration reversed the positive effects of SCL on depressive-like behavior and anti-apoptosis. Similarly, URB-597 counteracted AEA levels reduced by SCL and decreased 2-AG levels. Furthermore, AM630 supplementation antagonized SCL's effect of improving IBI by reactivating the MAPK/NF-κB inflammation pathway. CONCLUSION: Overall, SCL, in collaboration with the endogenous cannabinoid system regulated by SCL, alleviates depression associated IBI. The specific mechanism involes SCL decreasing AEA levels to inhibit colon tissue cell apoptosis by up-regulating FAAH. Simultaneously, it directly triggers CB2R to reduce inflammation responses, further alleviating IBI.


Asunto(s)
Antidepresivos , Ácidos Araquidónicos , Depresión , Endocannabinoides , Lignanos , Ratones Endogámicos C57BL , Alcamidas Poliinsaturadas , Schisandra , Animales , Lignanos/farmacología , Depresión/tratamiento farmacológico , Masculino , Alcamidas Poliinsaturadas/farmacología , Schisandra/química , Antidepresivos/farmacología , Ratones , Apoptosis/efectos de los fármacos , Glicéridos/farmacología , Farmacología en Red , Amidohidrolasas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Antiinflamatorios/farmacología , Benzamidas , Carbamatos , Indoles
8.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974120

RESUMEN

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Ferroptosis , Neoplasias Hepáticas , Polen , Schisandra , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animales , Schisandra/química , Polen/química , Ferroptosis/efectos de los fármacos , Abejas/química , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Transducción de Señal/efectos de los fármacos , Productos Biológicos , Polifenoles
9.
Neuroscience ; 555: 92-105, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39032805

RESUMEN

This study utilized network pharmacology and docking analyses to explore a groundbreaking therapeutic approach for managing the neuropathic pain and depressive disorder (NP/DD) comorbidity. Schisandra chinensis (SC), a common Chinese medicine, has demonstrated numerous beneficial effects in treating neuropsychological disorders. The main objective of this study was to identify potential bioactive components of SC and investigate their interactions with relevant target genes associated with NP/DD. To gain insights into the underlying molecular mechanisms, GO and KEGG analyses were conducted. Furthermore, molecular docking analysis was employed to validate the therapeutic relevance of SC's active ingredients. Seven bioactive components of SC, namely Longikaurin A, Deoxyharringtonine, Angeloylgomisin O, Schisandrin B, Gomisin A, Gomisin G, and Gomisin R, exhibited effectiveness in the treatment of NP/DD. From this list, the first five components were selected for further analysis. The analyses revealed a complex network of interactions between the targets of SC and NP/DD, providing valuable information about the molecular mechanisms involved in the treatment of NP/DD with SC. SC components demonstrated the ability to regulate pathways involving tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), and other growth hormones (GH). Overall, this study contributes to our understanding of the molecular mechanisms underlying the effects of SC in treating NP/DD. Further investigation is necessary to explore the therapeutic potential of SC as a viable strategy for NP/DD comorbidity. These findings lay a solid foundation for future research endeavors in this field, holding potential implications for the development of novel therapeutic interventions targeting NP/DD.


Asunto(s)
Simulación del Acoplamiento Molecular , Farmacología en Red , Neuralgia , Schisandra , Schisandra/química , Simulación del Acoplamiento Molecular/métodos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Animales , Depresión/tratamiento farmacológico , Comorbilidad , Trastorno Depresivo/tratamiento farmacológico , Trastorno Depresivo/metabolismo
10.
J Pharm Pharmacol ; 76(10): 1352-1361, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39024474

RESUMEN

BACKGROUND: In this study, Schisandrin B (SCHB), the main active component of Schisandra chinensis extract (SCE), was taken as the research object. From gene, microRNA (miR-124), and the level of protein expression system to study the influences of microglia phenotype to play the role of nerve inflammation. METHODS: In this study, we investigated the role of miR-124 in regulating microglial polarization alteration and NF-κB/TLR4 signaling and MAPK signaling in the LPS-induced BV2 by PCR, western blot, ELISA, immunofluorescence, and cytometry. RESULTS: SCE and SCHB significantly reduced the NO-releasing, decreased the levels of TNF-α, iNOS, IBA-1, and ratio of CD86+/CD206+, and increased the levels of IL-10, Arg-1. In addition, SCE and SCHB inhibited the nucleus translocation of NF-κB, decreased the expressions of IKK-α, and increased the expressions of IκB-α. Besides, the expressions of TLR4 and MyD88, and the ratios of p-p38/p38, p-ERK/ERK, and p-JNK/JNK were reduced by SCE and SCHB treatments. Furthermore, SCHB upregulated the mRNA levels of miR-124. However, the effects of SCHB were reversed by the miR-124 inhibitor. CONCLUSIONS: These findings suggested SCHB downregulated NF-κB/TLR4/MyD88 signaling pathway and MAPK signaling pathway via miR-124 to restore M1/M2 balance and alleviate depressive symptoms.


Asunto(s)
Ciclooctanos , Lignanos , Lipopolisacáridos , MicroARNs , Microglía , FN-kappa B , Compuestos Policíclicos , Receptor Toll-Like 4 , MicroARNs/metabolismo , Ciclooctanos/farmacología , Compuestos Policíclicos/farmacología , Lignanos/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Animales , Ratones , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Línea Celular , Transducción de Señal/efectos de los fármacos , Schisandra/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Extractos Vegetales/farmacología
11.
J Ethnopharmacol ; 333: 118483, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38914150

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acetaminophen (APAP) induced liver injury (AILI) is a common cause of clinical hepatic damage and even acute liver failure. Our previous research has shown that Schisandra chinensis lignan extract (SLE) can exert a hepatoprotective effect by regulating lipid metabolism. Although polysaccharides from Schisandra chinensis (S. chinensis), like lignans, are important components of S. chinensis, their pharmacological activity and target effects on AILI have not yet been explored. AIM OF THE STUDY: This study aims to quantitatively reveal the role of SCP in the pharmacological activity of S. chinensis, and further explore the pharmacological components, potential action targets and mechanisms of S. chinensis in treating AILI. MATERIALS AND METHODS: The therapeutic effect of SCP on AILI was systematically determined via comparing the efficacy of SCP and SLE on in vitro and in vivo models. Network pharmacology, molecular docking and multi-omics techniques were then used to screen and verify the action targets of S. chinensis against AILI. RESULTS: SCP intervention could significantly improve AILI, and the therapeutic effect was comparable to that of SLE. Notably, the combination of SCP and SLE did not produce mutual antagonistic effects. Subsequently, we found that both SCP and SLE could significantly reverse the down-regulation of GPX4 caused by the APAP modeling, and then further improving lipid metabolism abnormalities. CONCLUSIONS: Hepatoprotective effects of SCP and SLE is most correlated with their regulation of GSH/GPX4-mediated lipid accumulation. This is the first exploration of the hepatoprotective effect and potential mechanism of SCP in treating AILI, which is crucial for fully utilizing S. chinensis and developing promising AILI therapeutic agents.


Asunto(s)
Glutatión , Lignanos , Metabolismo de los Lípidos , Polisacáridos , Schisandra , Lignanos/farmacología , Schisandra/química , Polisacáridos/farmacología , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Simulación del Acoplamiento Molecular , Acetaminofén , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Ratones , Extractos Vegetales/farmacología
12.
Phytomedicine ; 132: 155811, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924927

RESUMEN

Oxidative stress is one of the earlier events causing neuronal dysfunction in Alzheimer's disease (AD). Gomisin N (GN), a lignin isolated from Schisandra chinensis, has anti-oxidative stress effects. There are currently no studies on the neuroprotective potential of GN in AD. In this study, two AD models were treated with GN for 8 weeks. The cognitive functions, amyloid deposition, and neuronal death were assessed. Additionally, the expressions of critical proteins in the GSK3ß/Nrf2 signaling pathway were determined in vivo and in vitro. We showed that GN significantly upregulated the expressions of Nrf2, p-GSK3ßSer9/GSK3ß, NQO1 and HO-1 proteins in SHSY-5Y/APPswe cells after H2O2 injury, whereas the PI3K inhibitor LY294002 reversed the increase in the expressions of Nrf2, p-GSK3ßSer9/GSK3ß, NQO1 and HO-1 proteins induced by GN administration. In a further study, GN could significantly improve the learning and memory dysfunctions of the rat and mouse AD models, reduce the area of Aß plaques in the hippocampus and cortex, and increase the number and function of neurons. Here, we first demonstrate the neuroprotective effects of GN on AD in vivo and in vitro. A possible mechanism by which GN prevents AD is proposed: GN significantly increased the expressions of Nrf2, p-GSK3Ser9/GSK3ß and NQO1 proteins in the brain of AD animal models and promoted Nrf2 nuclear translocation, then activated Nrf2 downstream genes to combat oxidative stress in AD pathogenesis. GN might be a promising therapeutic agent for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Glucógeno Sintasa Quinasa 3 beta , Lignanos , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Estrés Oxidativo , Transducción de Señal , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal/efectos de los fármacos , Lignanos/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Humanos , Ratones , Ratas Sprague-Dawley , Ratas , Modelos Animales de Enfermedad , Schisandra/química , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ciclooctanos/farmacología , Línea Celular Tumoral , Cromonas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo
13.
Funct Integr Genomics ; 24(3): 112, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849609

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC), a globally common cancer, often presents late and shows high resistance to chemotherapy, resulting in suboptimal treatment efficacy. Components from traditional Chinese medicines have been recognized for their anti-cancer properties. OBJECTIVE: Exploring the mechanism of Schisandra chinensis lignans and acteoside in suppressing Epithelial-Mesenchymal Transition (EMT) in hepatoma cells through the Extracellular signal-Regulated Kinases (ERK)1/2 pathway and identifying biomarkers, molecular subtypes, and targets via multi-omics for precision oncology. METHODS: Proliferation was assessed using cell counting kit-8 (CCK-8) assays, with scratch and transwell assays for evaluating invasion and migration. Flow cytometry quantified apoptosis rates. Expression levels of CCL20, p-ERK1/2, c-Myc, Vimentin, and E-cadherin/N-cadherin were analyzed by real-time PCR and Western blot. Tumor volume was calculated with a specific formula, and growth. RESULTS: The Schisandra chinensis lignans and acteoside combination decreased CCL20 expression, inhibited hepatoma proliferation and migration, and enhanced apoptosis in a dose- and time-dependent manner. Molecular analysis revealed increased E-cadherin and decreased N-cadherin, p-ERK1/2, c-Myc, and Vimentin expression, indicating ERK1/2 pathway modulation. In vivo, treated nude mice showed significantly reduced tumor growth and volume. CONCLUSION: Schisandra chinensis lignans and acteoside potentially counteract CCL20-induced EMT, invasion, and migration in hepatocellular carcinoma cells via the ERK1/2 pathway, enhancing apoptosis. Multi-omics analysis further aids in pinpointing novel biomarkers for precision cancer therapy.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Proliferación Celular , Transición Epitelial-Mesenquimal , Glucósidos , Lignanos , Neoplasias Hepáticas , Sistema de Señalización de MAP Quinasas , Fenoles , Schisandra , Transición Epitelial-Mesenquimal/efectos de los fármacos , Humanos , Lignanos/farmacología , Schisandra/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fenoles/farmacología , Glucósidos/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Ratones Desnudos , Línea Celular Tumoral , Quimiocina CCL20/metabolismo , Quimiocina CCL20/genética , Ratones Endogámicos BALB C , Células Hep G2 , Multiómica , Polifenoles
14.
Anal Bioanal Chem ; 416(19): 4275-4288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38853180

RESUMEN

Radix ginseng and Schisandra chinensis have been extensively documented in traditional Chinese medicine (TCM) for their potential efficacy in treating dementia. However, the precise mechanism of their therapeutic effects remains to be fully elucidated. In this study, air flow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) and network pharmacology are used to investigate the pharmacodynamics and mechanism underlying the herbal combination consisting of Radix ginseng-Schisandra chinensis (RS) in a rodent model for Alzheimer's disease (AD). Brain histopathological findings suggested that RS attenuates hippocampal damage in AD mice, making this combination a potential AD treatment. Twenty-eight biomarkers were identified by spatial metabolomics analysis, which are intricately linked to neuroinflammation, neurotransmitter imbalance, energy deficiency, oxidative stress, and aberrant fatty acid metabolism in AD. The total extract of RS (TE) affected 22 of these biomarkers, with the small molecule components of RS (SN) significantly influencing 19 and the large molecule components of RS (PR) impacting 14. Nine small molecule components are likely to dominate the pharmacodynamics of RS. We constructed a target interaction network based on the corresponding bioactivities that revealed relationships amongst 11 key biomarkers, 8 active ingredients and 12 critical targets. This research illustrates the immense potential of spatial metabolomics and network pharmacology in the study of TCM, revealing the targets and mechanisms underlying herbal formulas.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Metabolómica , Farmacología en Red , Panax , Schisandra , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Metabolómica/métodos , Panax/química , Schisandra/química , Farmacología en Red/métodos , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Masculino , Biomarcadores/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
15.
Appl Microbiol Biotechnol ; 108(1): 322, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713216

RESUMEN

Schisandra henryi is an endemic species of medicinal potential known from traditional Chinese medicine. As part of this study, a complex biotechnological and phytochemical assessment was conducted on S. henryi with a focus on phenolic compounds and antioxidant profiling. The following in vitro cultures were tested: microshoot agar and callus, microshoot agitated, and suspension, along with the microshoot culture in PlantForm bioreactors. Qualitative profiling was performed by ultra-high-performance liquid chromatography with a photodiode array detector coupled with ion-trap mass spectrophotometry with electrospray ionization and then quantitative analysis by high-performance liquid chromatography with a diode array detector using standards. In the extracts, mainly the compounds from procyanidins were identified as well as phenolic acids (neochlorogenic acid, caffeic acid, protocatechuic acid) and catechin. The highest content of phenolic compounds was found for in vitro agar microshoot culture (max. total content 229.87 mg/100 g DW) and agitated culture (max. total content 22.82 mg/100 g DW). The max. TPC measured using the Folin-Ciocalteu assay was equal to 1240.51 mg GAE/100 g DW (agar microshoot culture). The extracts were evaluated for their antioxidant potential by the DPPH, FRAP, and chelate iron ion assays. The highest potential was indicated for agar microshoot culture (90% of inhibition and 59.31 nM/L TEAC, respectively). The research conducted on the polyphenol profiling and antioxidant potential of S. henryi in vitro culture extracts indicates the high therapeutic potential of this species. KEY POINTS: • Different types of S. henryi in vitro cultures were compared for the first time. • The S. henryi in vitro culture strong antioxidant potential was determined for the first time. • The polyphenol profiling of different types of S. henryi in vitro cultures was shown.


Asunto(s)
Polifenoles , Schisandra , Polifenoles/análisis , Cromatografía Líquida de Alta Presión , Fitoquímicos/análisis , Antioxidantes/análisis , Reactores Biológicos , Técnicas de Cultivo , Schisandra/química , Schisandra/crecimiento & desarrollo
16.
Arch Microbiol ; 206(6): 259, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739151

RESUMEN

Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.


Asunto(s)
Antioxidantes , Cordyceps , Fermentación , Nucleótidos , Schisandra , Cordyceps/metabolismo , Cordyceps/química , Schisandra/química , Schisandra/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análisis , Nucleótidos/metabolismo , Medios de Cultivo/química , Concentración de Iones de Hidrógeno
17.
Fitoterapia ; 176: 106029, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38768792

RESUMEN

An intensive phytochemical investigation into the fruits of Schisandra chinensis afforded 28 triterpenoids incorporating diverse backbones with methyl-migration, ring-expansion and ring-opening features. Among them, ten compounds (1-10) including three likely extracting artefacts (8-10) were described for the first time. Their structures were fully characterized by comprehensive spectroscopic analyses, with the absolute configurations established via electronic circular dichroism and Mosher's NMR techniques. Preliminary biological evaluations revealed that nine isolates showed inhibitory activity against the hyperglycemic target α-glycosidase and 12 compounds exerted cytotoxicity toward three female tumor cell lines (Hela (cervical), MDA-MB231 and MCF-7 (breast)). Compound 6 exhibited the most promising potency on all the three tested cancer cells, and further assessment demonstrated that it could induce significant cell apoptosis and cycle arrest, as well as suppress cell migration, by regulating relevant proteins in MDA-MB231 cells.


Asunto(s)
Antineoplásicos Fitogénicos , Apoptosis , Frutas , Inhibidores de Glicósido Hidrolasas , Fitoquímicos , Schisandra , Triterpenos , Schisandra/química , Humanos , Frutas/química , Estructura Molecular , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Triterpenos/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Apoptosis/efectos de los fármacos , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Movimiento Celular/efectos de los fármacos , Línea Celular Tumoral , China
18.
Int J Biol Macromol ; 271(Pt 1): 132590, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788881

RESUMEN

Schisandra chinensis (SC), a plant of the Magnoliaceae family, commonly known as "North Schisandra chinensis", has been listed as a top-grade Chinese medicine in the Shennong Materia Medica Classic for its high medicinal value since ancient times. Polysaccharides from S. chinensis fruits (SCPs) are an active component in SC, which have various biological activity, including immune regulation, anti-tumor, antioxidant, liver protective, anti-inflammatory and hypoglycemic activity. Research has shown that the extraction methods of SCPs include hot water extraction, water extraction and alcohol precipitation, ultrasonic-assisted, microwave-assisted and so on. Different extraction methods can affect the yield and purity of polysaccharides, and to improve the extraction yield of SCPs, two or more extraction methods can be combined. SCPs are mainly composed of glucose, mannose, rhamnose, galactose, galacturonic acid and arabinose. This article aims to provide a systematic review of the research progress in the extraction and separation methods, structural characterization, and biological activity of SCPs both domestically and internationally in recent years. This deeply explores the pharmacological activity and action mechanism of SCPs, and provides a certain point of reference for the research and clinical application of SC.


Asunto(s)
Polisacáridos , Schisandra , Schisandra/química , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Humanos , Fraccionamiento Químico/métodos , Frutas/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales
19.
Phytomedicine ; 129: 155625, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692077

RESUMEN

BACKGROUND: Shengmai Formula (SMF), a classic formula in treating Qi-Yin deficiency, is composed of Ginseng Radix et Rhizoma Rubra (GRR), Ophiopogon Radix (OR), and Schisandra chinensis Fructus (SC), and has been developed into various dosage forms including Shengmai Yin Oral Liquid (SMY), Shengmai Capsules (SMC), and Shengmai Injection (SMI). The pharmacological effects of compound Chinese medicine are attributed to the integration of multiple components. Yet the quality criteria of SMF are limited to monitoring schisandrol A or ginsenosides Rg1 and Re, but none for OR. Since the complexity of raw materials and preparations, establishing a economical and unified method for SMF is challenging. It is urgent to simultaneously quantify multiple components with different structures using a universal method for quality control of SMF. Charged aerosol detector (CAD) overcame the above shortcomings owing to its characteristics of high responsiveness, nondiscrimination, and low cost. PURPOSE: We aimed to establish a versatile analysis strategy using HPLC-CAD for simultaneously quantifying the structurally diverse markers in quality control of SMF from raw materials to preparations. METHOD: By optimizing the column, mobile phase, column temperature, flow rate, and CAD parameters, a HPLC-CAD method that integrated multi-component characterization, authenticity identification, transfer information of raw materials and quantitative determination of Shengmai preparations was established. RESULTS: In total 50 components from SMF were characterized (28 in GRR, 13 in SC, and 9 in OR). The differences in raw materials between species of SC and Schisandrae sphenantherae Fructus (SS), processing methods of Ginseng Radix (GR) and GRR, and locations of OR from Sichuan (ORS) and Zhejiang (ORZ) were compared. Fourteen components in 19 batches of SMY, SMC and SMI from different manufacturers were quantified, including 11 ginsenosides and 3 lignans. The multivariate statistical analysis results further suggested that Rb1, Rg1 and Ro were the main differences among Shengmai preparations. CONCLUSION: The established versatile analysis strategy based on HPLC-CAD was proven sensitive, simple, convenient, overcoming the discriminatory effect of UV detector, revealing the composition and transfer information of SMF and applicable for authentication of the ingredient herbs and improving the quality of Shengmai preparations.


Asunto(s)
Combinación de Medicamentos , Medicamentos Herbarios Chinos , Control de Calidad , Schisandra , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/normas , Schisandra/química , Ginsenósidos/análisis , Ginsenósidos/química , Lignanos/análisis , Ciclooctanos/análisis , Ciclooctanos/química , Panax/química
20.
Am J Chin Med ; 52(3): 717-752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716620

RESUMEN

Schisandra chinensis (S. chinensis) has a long history as a traditional Chinese medicine that is astringent, beneficial to vital energy, tonifies the kidney, tranquilizes the heart, etc. Significantly, Schisandrol A (SA) is extracted from S. chinensis and shows surprising and satisfactory biological activity, including anti-inflammatory, hepatoprotective, cardiovascular protection, and antitumor properties, among others. SA has a more pronounced protective effect on central damaged nerves among its numerous pharmacological effects, improving neurodegenerative diseases such as Alzheimer's and Parkinson's through the protection of damaged nerve cells and the enhancement of anti-oxidant capacity. Pharmacokinetic studies have shown that SA has a pharmacokinetic profile with a rapid absorption, wide distribution, maximal concentration in the liver, and primarily renal excretion. However, hepatic and intestinal first-pass metabolism can affect SA's bioavailability. In addition, the content of SA, as an index component of S. chinensis Pharmacopoeia, should not be less than 0.40%, and the content of SA in S. chinensis compound formula was determined with the help of high-performance liquid chromatography (HPLC), which is a stable and reliable method, and it can lay a foundation for the subsequent quality control. Therefore, this paper systematically reviews the preparation, pharmacological effects, pharmacokinetic properties, and content determination of SA with the goal of updating and deepening the understanding of SA, as well as providing a theoretical basis for the study of SA at a later stage.


Asunto(s)
Ciclooctanos , Lignanos , Schisandra , Schisandra/química , Lignanos/farmacocinética , Ciclooctanos/farmacocinética , Humanos , Antiinflamatorios/farmacocinética , Animales , Antioxidantes/farmacocinética , Disponibilidad Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...