Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 619
Filtrar
1.
Phytomedicine ; 130: 155469, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824821

RESUMEN

BACKGROUND: Baicalein is a flavonoid extracted from the roots of Scutellaria baicalensis G. that has anti-inflammatory and antitumor effects. However, therapeutic mechanisms of baicalein in patients with endometriosis in vivo have yet to be elucidated. As a chronic inflammatory gynecological disease, endometriosis causes pain and infertility, and has no complete treatment to date. Current treatment strategies cause several side effects and have high recurrence rates. PURPOSE: This study aimed to identify the in vivo therapeutic effects of baicalein on endometriosis and verify the action mechanisms of baicalein, focusing on regulating inflammation. METHODS: In this study, an autologous transplant mouse model and patient-derived immortalized human ovarian endometriotic stromal cells (ihOESCs) were used to investigate the therapeutic activities of baicalein. The mouse model was administered with 40 mg/kg baicalein by oral gavage for 4 weeks, and the treatment outcomes of baicalein-treated mice were compared with vehicle- and dienogest-treated groups. ihOESCs were treated with 0-5 µg/ml baicalein for in vitro studies. RESULTS: Baicalein significantly alleviated the progression of endometriosis in mouse models. Baicalein reduced the expression of proinflammatory cytokines in endometriotic lesions and ihOESCs, and cytokine expression and T cell proportions in mouse spleen. in vitro results showed that baicalein increased mitochondrial calcium flux and induced mitochondrial depolarization and ROS generation in ihOESCs. Ultimately, baicalein inactivated the MAPK/PI3K signaling and induced cell death in ihOESCs. CONCLUSION: In conclusion, baicalein effectively attenuated the progression of endometriosis through its anti-inflammatory activities. Baicalein can be an alternative or supplemental treatment for endometriosis to ameliorate the side effects of hormonal therapy.


Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Endometriosis , Flavanonas , Endometriosis/tratamiento farmacológico , Flavanonas/farmacología , Femenino , Animales , Humanos , Antiinflamatorios/farmacología , Ratones , Línea Celular , Scutellaria baicalensis/química , Citocinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Progresión de la Enfermedad , Extractos Vegetales/farmacología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38749101

RESUMEN

A magnetic composite (Fe3O4@SiO2@PNIPAM-co-NHMA) with high adsorption capacity and recoverability was developed for the enrichment and determination of flavonoids in Scutellaria Radix (SR). A magnetic solid-phase extraction (MSPE) technique using Fe3O4@SiO2@PNIPAM-co-NHMA absorbent in combination with high-performance liquid chromatography (HPLC) was developed for selectively enrichment and determination of the biologically active flavonoids in the aqueous extract of SR, including baicalein, baicalin, wogonoside and wogonin. Under the optimized experimental conditions, the magnetic adsorbent could adsorb up to 77.0 ± 0.98 % - 98.15 ± 0.15 % of four representative flavonoids from SR, with elution rates varying from 55.10 ± 0.25 % to 91.94 ± 1.85 %. The limits of detection (LOD) and limits of quantitation (LOQ) were 0.01-0.35 µg/mL and 0.03-0.98 µg/mL, respectively. In addition, it remained effective after six replicates, demonstrating its potential as a recoverable adsorbent for enriching flavonoids in traditional Chinese medicine.


Asunto(s)
Flavonoides , Límite de Detección , Scutellaria baicalensis , Extracción en Fase Sólida , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/análisis , Scutellaria baicalensis/química , Cromatografía Líquida de Alta Presión/métodos , Adsorción , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Nanopartículas de Magnetita/química , Medicamentos Herbarios Chinos/química , Modelos Lineales
3.
J Ethnopharmacol ; 332: 118355, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762213

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Radix scutellariae (the root of Scutellaria baicalensis Georgi) is a traditional Chinese medicine (TCM) used to treat a wide range of inflammation-related diseases, such as obesity, diabetes, diabetic kidney disease, and COVID-19-associated inflammatory states in the lung and kidney. Baicalin is the major anti-inflammatory component of Radix scutellariae and has shown the potential to inhibit inflammation in metabolic disorders. In this study, we explored the ability and underlying mechanisms of baicalin to modulate the macrophage to mitigate insulin resistance in obesity. MATERIALS AND METHODS: Obese mice were administered baicalin (50 mg/kg/day) intraperitoneally for 3 weeks. RAW264.7 and BMDM cells were stimulated with LPS and treated with baicalin for 24 h, while 3T3-L1 and primary white adipocytes were treated with the supernatants from baicalin-treated RAW264.7 cells for 24 h. RESULTS: The results showed that baicalin significantly improved glucose and insulin tolerance as well as decreased fat and adipose tissue macrophage levels in obese mice. Besides, baicalin significantly reduced serum and adipose tissue IL-1ß, TNF-α and IL-6 levels in obese mice, as well as suppressed LPS-induced IL-1ß, TNF-α and IL-6 expression and release in macrophages. Furthermore, treatment with the supernatant from baicalin-treated RAW264.7 cells increased the levels of PGC-1α, SIRT1, p-IRS-1 and p-AKT in adipocytes. Moreover, baicalin treatment dramatically downregulated macrophage p-p38, p-JNK, and Ac-p65Lys310 levels while increasing SIRT1 both in vivo and in vitro. Importantly, JNK inhibitor SP600125 blocked most of the effects of baicalin on SIRT1, Ac-p65Lys310 and pro-inflammatory factors in macrophages. CONCLUSION: Therefore, these results demonstrated for the first time that baicalin exerts its anti-inflammatory effects in obese adipose tissue macrophages mainly through suppressing JNK/SIRT1/p65 signaling. These findings amplified the mechanisms of baicalin and its potential to attenuate insulin resistance.


Asunto(s)
Células 3T3-L1 , Tejido Adiposo , Flavonoides , Resistencia a la Insulina , Macrófagos , Ratones Endogámicos C57BL , Obesidad , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Masculino , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Scutellaria baicalensis/química
4.
J Ethnopharmacol ; 332: 118364, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38763368

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (SBG), a widely used traditional Chinese medicine, exhibits anti-inflammatory and antioxidant properties. Wogonin is one of the primary bioactive components of SBG. Acetaminophen (APAP)-induced liver injury (AILI) represents a prevalent form of drug-induced liver damage and is primarily driven by inflammatory responses and oxidative stress. AIM OF STUDY: To investigate the therapeutic effects of Wogonin on AILI and the underlying mechanisms. MATERIALS AND METHODS: C57BL/6 J mice were pre-treated with Wogonin (1, 2.5, and 5 mg/kg bodyweight) for 3 days, followed by treatment with APAP (300 mg/kg bodyweight). The serum and liver tissue samples were collected at 24 h post-APAP treatment. Bone marrow-derived macrophages and RAW264.7 cells were cultured and pre-treated with Wogonin (5, 10, and 20 µM) for 30 min, followed by stimulation with lipopolysaccharide (LPS; 100 ng/mL) for 3 h. To examine the role of the PI3K/AKT signaling pathway in the therapeutic effect of Wogonin on AILI, mice and cells were treated with LY294002 (a PI3K inhibitor) and MK2206 (an AKT inhibitor). RESULTS: Wogonin pre-treatment dose-dependently alleviated AILI in mice. Additionally, Wogonin suppressed oxidative stress and inflammatory responses. Liver transcriptome analysis indicated that Wogonin primarily regulates immune function and cytokines in AILI. Wogonin suppressed inflammatory responses of macrophages by inhibiting the PI3K/AKT signaling pathway. Consistently, Wogonin exerted therapeutic effects on AILI in mice through the PI3K/AKT signaling pathway. CONCLUSIONS: Wogonin alleviated AILI and APAP-induced hepatotoxicity in mice through the PI3K/AKT signaling pathway.


Asunto(s)
Acetaminofén , Enfermedad Hepática Inducida por Sustancias y Drogas , Flavanonas , Ratones Endogámicos C57BL , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Flavanonas/farmacología , Flavanonas/uso terapéutico , Acetaminofén/toxicidad , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Masculino , Células RAW 264.7 , Fosfatidilinositol 3-Quinasas/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Scutellaria baicalensis/química
5.
Phytomedicine ; 129: 155706, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723528

RESUMEN

BACKGROUND: The pathogenesis of lower respiratory tract infections (LRTIs) has been demonstrated to be strongly associated with dysbiosis of respiratory microbiota. Scutellaria baicalensis, a traditional Chinese medicine, is widely used to treat respiratory infections. However, whether the therapeutic effect of S. baicalensis on LRTIs depends upon respiratory microbiota regulation is largely unclear. PURPOSE: To investigate the potential effect and mechanism of S. baicalensis on the respiratory microbiota of LRTI mice. METHODS: A mouse model of LRTI was established using Klebsiella pneumoniae or Streptococcus pneumoniae. Antibiotic treatment was administered, and transplantation of respiratory microbiota was performed to deplete the respiratory microbiota of mice and recover the destroyed microbial community, respectively. High-performance liquid chromatography (HPLC) was used to determine and quantify the chemical components of S. baicalensis water decoction (SBWD). Pathological changes in lung tissues and the expressions of serum inflammatory cytokines, including interleukin-17A (IL-17A), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), were determined by hematoxylin and eosin (H&E) staining and enzyme-linked immunosorbent assay (ELISA), respectively. Quantitative real-time PCR (qRT-PCR) analysis was performed to detect the mRNA expression of GM-CSF. Metagenomic sequencing was performed to evaluate the effect of SBWD on the composition and function of the respiratory microbiota in LRTI mice. RESULTS: Seven main components, including scutellarin, baicalin, oroxylin A-7-O-ß-d-glucuronide, wogonoside, baicalein, wogonin, and oroxylin A, were identified and their levels in SBWD were quantified. SBWD ameliorated pulmonary pathological injury and inflammatory responses in K. pneumoniae and S. pneumoniae-induced LRTI mice, as evidenced by the dose-dependent reductions in the levels of serum inflammatory cytokines, IL-6 and TNF-α. SBWD may exert a bidirectional regulatory effect on the host innate immune responses in LRTI mice and regulate the expressions of IL-17A and GM-CSF in a microbiota-dependent manner. K. pneumoniae infection but not S. pneumoniae infection led to dysbiosis in the respiratory microbiota, evident through disturbances in the taxonomic composition characterized by bacterial enrichment, including Proteobacteria, Enterobacteriaceae, and Klebsiella. K. pneumoniae and S. pneumoniae infection altered the bacterial functional profile of the respiratory microbiota, as indicated by increases in lipopolysaccharide biosynthesis, metabolic pathways, and carbohydrate metabolism. SBWD had a certain trend on the regulation of compositional disorders in the respiratory flora and modulated partial microbial functions embracing carbohydrate metabolism in K. pneumoniae-induced LRTI mice. CONCLUSION: SBWD may exert an anti-infection effect on LRTI by targeting IL-17A and GM-CSF through respiratory microbiota regulation. The mechanism of S. baicalensis action on respiratory microbiota in LRTI treatment merits further investigation.


Asunto(s)
Pulmón , Scutellaria baicalensis , Animales , Scutellaria baicalensis/química , Pulmón/efectos de los fármacos , Pulmón/microbiología , Ratones , Klebsiella pneumoniae/efectos de los fármacos , Microbiota/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología , Extractos Vegetales/farmacología , Masculino , Streptococcus pneumoniae/efectos de los fármacos , Citocinas/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Flavanonas/farmacología , Ratones Endogámicos C57BL , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Flavonoides/farmacología , Infecciones Neumocócicas/tratamiento farmacológico , Infecciones Neumocócicas/microbiología , Apigenina/farmacología , Disbiosis/tratamiento farmacológico , Disbiosis/microbiología
7.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715318

RESUMEN

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Asunto(s)
Astrocitos , Flavanonas , Flavonoides , Lipopolisacáridos , Neuronas , Extractos Vegetales , Scutellaria baicalensis , Ácido gamma-Aminobutírico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Flavanonas/farmacología , Scutellaria baicalensis/química , Ratones , Ácido gamma-Aminobutírico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Flavonoides/farmacología , Extractos Vegetales/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Inhibición Neural/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
8.
Food Chem ; 450: 139195, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615525

RESUMEN

The characterization of structure of organic salts in complex mixtures has been a difficult problem in analytical chemistry. In the analysis of Scutellariae Radix (SR), the pharmacopoeia of many countries stipulates that the quality control component is baicalin (≥9% by high performance liquid chromatography (HPLC)). The component with highest response in SR was also baicalin detected by liquid chromatography-mass spectrometry (LC-MS). However, in the attenuated total reflection Fourier transform infrared spectroscopy, the carbonyl peak of glucuronic acid of baicalin did not appear in SR. The results of element analysis, time of flight secondary ion mass spectrometry, matrix assisted laser desorption ionization mass spectrometry and solid-state nuclear magnetic resonance all supported the existence of baicalin magnesium salt. Based on this, this study proposes an analysis strategy guided by infrared spectroscopy and combined with multi-spectroscopy techniques to analyze the structure of organic salt components in medicinal plant. It is meaningful for the research of mechanisms, development of new drugs, and quality control.


Asunto(s)
Plantas Medicinales , Plantas Medicinales/química , Espectroscopía Infrarroja por Transformada de Fourier , Cromatografía Líquida de Alta Presión , Flavonoides/química , Flavonoides/análisis , Scutellaria baicalensis/química , Espectroscopía de Resonancia Magnética , Sales (Química)/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas , Extractos Vegetales/química , Estructura Molecular
9.
J Ethnopharmacol ; 329: 118155, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593962

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: A drug pair is a fundamental aspect of traditional Chinese medicine prescriptions. Scutellaria baicalensis Georgi and Coptis chinensis Franch, commonly used as an herb couple (SBCC), are representative heat-clearing and dampness-drying drugs. They possess functions such as clearing heat, drying dampness, purging fire, and detoxifying. These herbs are used in both traditional and modern medicine for treating inflammation. AIM OF THE STUDY: This study investigated the effects of SBCC on cytokine storm syndrome (CSS) and explored its potential regulatory mechanism. MATERIALS AND METHODS: We assessed the impact of SBCC in a sepsis-induced acute lung injury mouse model by administering an intraperitoneal injection of LPS (15 mg/kg). The cytokine levels in the serum and lungs, the wet-to-dry ratio of the lungs, and lung histopathological changes were evaluated. The macrophages in the lung tissue were examined through transmission electron microscopy. Western blot was used to measure the levels of the CD39/NLRP3/GSDMD pathway-related proteins. Immunofluorescence imaging was used to assess the activation of pro-caspase-1 and ASC and their interaction. AMP-Glo™ assay was used to screen for active ingredients in SBCC targeting CD39. One of the ingredients was selected, and its effect on cell viability was assessed. We induced inflammation in macrophages using LPS + ATP and detected the levels of proinflammatory factors. The images of cell membrane large pores were captured using scanning electron microscopy, the interaction between NLRP3 and ASC was detected using immunofluorescence imaging, and the levels of CD39/NLRP3/GSDMD pathway-related proteins were assessed using Western blot. RESULTS: SBCC administration effectively mitigated LPS-induced cytokine storm, pulmonary edema and lung injury. Furthermore, it repressed the programmed death of lung tissue macrophages by inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. Based on the results of the AMP-Glo™ assay, we selected wogonoside for further valuation. Wogonoside alleviated LPS + ATP-induced inflammatory damage by regulating the inhibiting the NLRP3/GSDMD pyroptosis pathway and regulating the CD39 purinergic pathway. However, its effect on NLRP3 is not mediated though CD39. CONCLUSION: SBCC and its active small-molecule ingredient, wogonoside, improved CSS by regulating the NLRP3/GSDMD pyroptosis pathway and its upstream CD39 purinergic pathway. It is essential to note that the regulatory effect of wogonoside on NLRP3 is not mediated by CD39.


Asunto(s)
Lesión Pulmonar Aguda , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Ratones Endogámicos C57BL , Glucósidos/farmacología , Scutellaria baicalensis/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Proteínas de Unión a Fosfato/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Células RAW 264.7 , Antígenos CD/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad
10.
J Ethnopharmacol ; 331: 118263, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38677575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellaria baicalensis Georgi (Scutellariae Radix, SR) and Coptis chinensis Franch (Coptidis Rhizoma, CR) is a classic herbal pair used in many Traditional Chinese Medicine formulations in the treatment of hyperlipidemia (HLP). As effective ingredients of the drug pair, the effects and mechanisms of berberine and baicalin in the treatment of HLP in the form of components compatibility are still unclear. AIM OF THE STUDY: To explore the mechanism of the components compatibility of SR and CR in the treatment of HLP. MATERIALS AND METHODS: The HLP model was established by a high-fat diet. Serum biochemical indexes were detected. Transcriptomics and metabolomics were detected. RT-PCR and Western Blot were used to analyze the effect of RA on the expression of the Cyp4a family during the treatment of HLP. RESULTS: Berberine-baicalin (RA) has a good effect in the treatment of HLP. RA can significantly reduce the body weight and liver weight of HLP, reduce the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), and increase the level of high-density lipoprotein (HDL-C). Through transcriptomic analysis, RA significantly reversed the gene expression of Cyp4a10, Cyp4a12 b, Cyp4a31, and Cyp4a32 in cytochrome P450 family 4 subfamily a (Cyp4a) which related to fatty acid degradation in the liver of HLP mice. The results of fatty acid detection showed that RA could significantly regulate heptanoic acid, EPA, adrenic acid, DH-γ-linolenic acid, and DPA in the cecum of HLP mice. The Cyp4a family genes regulated by RA are closely related to a variety of fatty acids regulated by RA. RT-PCR confirmed that RA could regulate Cyp4a mRNA expression in HLP mice. WB also showed that RA can regulate the protein expression level of Cyp4a. CONCLUSION: The components compatibility of SR and CR can effectively improve the blood lipid level of HLP mice, its mechanism may be related to regulating Cyp4a gene expression and affecting fatty acid degradation, regulating the level of fatty acid metabolism in the body.


Asunto(s)
Berberina , Coptis chinensis , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Hiperlipidemias , Scutellaria baicalensis , Animales , Hiperlipidemias/tratamiento farmacológico , Scutellaria baicalensis/química , Masculino , Berberina/farmacología , Berberina/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Flavonoides/farmacología , Ratones Endogámicos C57BL , Familia 4 del Citocromo P450/genética , Familia 4 del Citocromo P450/metabolismo , Coptis/química , Hipolipemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Lípidos/sangre , Modelos Animales de Enfermedad , Rizoma
11.
Asian Pac J Cancer Prev ; 25(4): 1349-1355, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679996

RESUMEN

BACKGROUND: Baicalin is a flavonoid obtained from the Chinese herb Scutellaria baicalensis, which has a wide varieties of health benefits and scope to be studied for its therapeutic potential in oral fibrosis. AIM: The aim of the study was to investigate the antifibrotic effect of a Baicalin in arecoline induced human oral fibroblast in vitro setting. MATERIAL AND METHODS: Arecoline and ethanolic extracts of Baicalin were commercially purchased from Sigma-Aldrich. Human oral fibroblasts were cultured and characterized with specific fibroblast markers, and cells were stimulated with arecoline. An MTT assay (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) was executed to determine the half-maximal inhibitory concentration of arecoline and Baicalin. Arecoline-induced cells (25µg/ml) were treated with a non-toxic dose of Baicalin (proliferative dose of 25µg/ml). Cytokine (CCL2, CXCL-8, IL17, IL-beta, and IL-6) and fibrotic marker genes were studied by reverse transcription-polymerase chain reaction (RT-PCR). The inhibitory effect of Baicalin was studied to prove its antifibrotic properties. RESULTS: Arecoline significantly upregulated all inflammatory and fibrotic markers. On treatment with 25µg/ml of Baicalin, all inflammatory and fibrotic markers were inhibited. Arecoline affects fibroblast morphology, supporting the fact that arecoline is cytotoxic to cells. CONCLUSION: Baicalin can be used as an antifibrotic herb to treat OSMF.


Asunto(s)
Arecolina , Fibroblastos , Flavonoides , Flavonoides/farmacología , Humanos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Arecolina/farmacología , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Fibrosis/tratamiento farmacológico , Técnicas In Vitro , Scutellaria baicalensis/química , Antifibróticos/farmacología
12.
Drug Des Devel Ther ; 18: 1199-1219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38645989

RESUMEN

Aim: Scutellaria baicalensis, a traditional Chinese medicinal herb renowned for its anti-inflammatory, antioxidant, and anti-tumor properties, has shown promise in alleviating cognitive impairment associated with Alzheimer's disease. Nonetheless, the exact neuroprotective mechanism of Scutellaria baicalensis against Alzheimer's disease remains unclear. In this study, network pharmacology was employed to explore the possible mechanisms by which Scutellaria baicalensis protects against Alzheimer's disease. Methods: The active compounds of Scutellaria baicalensis were retrieved from the TCMSP database, and their corresponding targets were identified. Alzheimer's disease-related targets were obtained through searches in the GeneCards and OMIM databases. Cytoscape 3.6.0 software was utilized to construct a regulatory network illustrating the "active ingredient-target" relationships. Subsequently, the target genes affected by Scutellaria baicalensis in the context of Alzheimer's disease were input into the String database to establish a PPI network. GO analysis and KEGG analysis were conducted using the DAVID database to predict the potential pathways associated with these key targets. Following this, the capacity of these active ingredients to bind to core targets was confirmed through molecular docking. In vitro experiments were then carried out for further validation. Results: A total of 36 active ingredients from Scutellaria baicalensis were screened out, which corresponded to 365 targets. Molecular docking results demonstrated the robust binding abilities of Baicalein, Wogonin, and 5,2'-Dihydroxy-6,7,8-trimethoxyflavone to key target proteins (SRC, PIK3R1, and STAT3). In vitro experiments showed that the active components of Scutellaria baicalensis can inhibit STAT3 expression by downregulating the PIK3R1/SRC pathway in Neuro 2A cells. Conclusion: In summary, these findings collectively suggest that Scutellaria baicalensis holds promise as a viable treatment option for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Simulación del Acoplamiento Molecular , Farmacología en Red , Scutellaria baicalensis , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Scutellaria baicalensis/química , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Extractos Vegetales/farmacología , Extractos Vegetales/química
13.
J Pharm Biomed Anal ; 245: 116162, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678857

RESUMEN

Ritonavir, an excellent inhibitor of CYP3A4, has recently been combined with nirmatrelvir to form Paxlovid for the treatment of severe acute respiratory syndrome coronavirus 2 infections. The root of Scutellaria baicalensis Georgi (S. baicalensis), a traditional Chinese medicinal (TCM) herb commonly used to treat heat/inflammation in the lung and digestive tracts, which are major organs targeted by viral infections, contains flavones that can influence the CYP3A metabolism pathway. To investigate the ability of ritonavir to cross the bloodbrain barrier (BBB) and its potential herb-drug interactions with an equivalent TCM clinical dose of S. baicalensis, multisite microdialysis coupled with an LCMS/MS system was developed using rat model. Pretreatment with S. baicalensis extract for 5 days, which contains less flavones than those used in previous studies, had a significant influence on ritonavir, resulting in a 2-fold increase in the total concentration of flavones in the blood and brain. Treatment also boosted the maximum blood concentration of flavones by 1.5-fold and the maximum brain concentration of flavones by 2-fold, all the while exerting no noticeable influence on the transfer ratio across the bloodbrain barrier. These experimental results demonstrated that the use of a typical traditional Chinese medicinal dose of S. baicalensis is sufficient to influence the metabolic pathway and synergistically increase the concentration of ritonavir in rats.


Asunto(s)
Antivirales , Barrera Hematoencefálica , Interacciones de Hierba-Droga , Microdiálisis , Extractos Vegetales , Ratas Sprague-Dawley , Ritonavir , Scutellaria baicalensis , Animales , Ritonavir/farmacocinética , Ritonavir/farmacología , Scutellaria baicalensis/química , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Ratas , Microdiálisis/métodos , Masculino , Antivirales/farmacocinética , Extractos Vegetales/farmacocinética , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem/métodos , Encéfalo/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación
14.
Phytomedicine ; 128: 155558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547614

RESUMEN

BACKGROUND: The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE: This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS: Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS: These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION: This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Flavanonas , Interferón gamma , Quinasas Janus , Miocarditis , Miocitos Cardíacos , Factor de Transcripción STAT1 , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Quinasas Janus/metabolismo , Ratones , Flavanonas/farmacología , Masculino , Interferón gamma/metabolismo , Apoptosis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Miocarditis/tratamiento farmacológico , Factor de Transcripción STAT4/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Ratones Endogámicos BALB C , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Scutellaria baicalensis/química , Células TH1/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
15.
Phytomedicine ; 128: 155423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518646

RESUMEN

BACKGROUND: Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE: This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS: Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS: Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS: Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.


Asunto(s)
Ferroptosis , Flavanonas , Ovario , Estrés Oxidativo , Placenta , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Flavanonas/farmacología , Ferroptosis/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Embarazo , Placenta/efectos de los fármacos , Placenta/metabolismo , Ovario/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Scutellaria baicalensis/química , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino
16.
Ying Yong Sheng Tai Xue Bao ; 35(2): 424-430, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523100

RESUMEN

Canopy spectral composition significantly affects growth and functional traits of understory plants. In this study, we explored the optimal light condition suitable for enhancing Scutellaria baicalensis's yield and quality, aiming to provide scientific reference for the exploitation and utilization of medicinal plant resources in the understory of forests. We measured the responses of growth, morphology, biomass allocation, physiological traits, and secon-dary metabolites of S. baicalensis to different light qualities. S. baicalensis was cultured under five LED-light treatments including full spectrum light (control), ultraviolet-A (UV-A) radiation, blue, green, and red light. Results showed that UV-A significantly reduced plant height, base diameter, leaf thickness, leaf area ratio, and biomass of each organ. Red light significantly reduced base diameter, biomass, effective quantum yield of photosystem Ⅱ (ФPSⅡ), and total flavonoid concentration. Under blue light, root length and total biomass of S. baicalensis significantly increased by 48.0% and 10.8%, respectively, while leaf number and chlorophyll content significantly decreased by 20.0% and 31.6%, respectively. The other physiological and biochemical traits were consistent with their responses in control. Our results suggested that blue light promoted photosynthesis, biomass accumulation, and secondary metabolite synthesis of S. baicalensis, while red light and UV-A radiation negatively affected physiological and biochemical metabolic processes. Therefore, the ratio of blue light could be appropriately increased to improve the yield and quality of S. baicalensis.


Asunto(s)
Plantas Medicinales , Scutellaria baicalensis , Scutellaria baicalensis/química , Scutellaria baicalensis/metabolismo , Fotosíntesis , Flavonoides , Clorofila/metabolismo
17.
Phytomedicine ; 128: 155425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518634

RESUMEN

BACKGROUND: Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE: In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS: Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS: Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION: Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.


Asunto(s)
Colitis , Flavanonas , Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Flavanonas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Linfocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Masculino , Scutellaria baicalensis/química , Mucosa Intestinal/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Colon/efectos de los fármacos
18.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396723

RESUMEN

The water and ethanol extracts of huangqin, the roots of Scutellaria baicalensis Georgi. with potential antiviral properties and antioxidant activities, were investigated for their chemical profiles and their abilities to interfere with the interaction between SARS-CoV-2 spike protein and ACE2, inhibiting ACE2 activity and scavenging free radicals. A total of 76 compounds were tentatively identified from the extracts. The water extract showed a greater inhibition on the interaction between SARS-CoV-2 spike protein and ACE2, but less inhibition on ACE2 activity than that of the ethanol extract on a per botanical weight concentration basis. The total phenolic content was 65.27 mg gallic acid equivalent (GAE)/g dry botanical and the scavenging capacities against HO●, DPPH●, and ABTS●+ were 1369.39, 334.37, and 533.66 µmol trolox equivalent (TE)/g dry botanical for the water extract, respectively. These values were greater than those of the ethanol extract, with a TPC of 20.34 mg GAE/g, and 217.17, 10.93, and 50.21 µmol TE/g against HO●, DPPH●, and ABTS●+, respectively. The results suggested the potential use of huangqin as a functional food ingredient in preventing COVID-19.


Asunto(s)
Benzotiazoles , COVID-19 , Scutellaria baicalensis , Ácidos Sulfónicos , Humanos , Scutellaria baicalensis/química , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , SARS-CoV-2 , Extractos Vegetales/farmacología , Extractos Vegetales/química , Radicales Libres , Etanol , Agua
19.
Biomed Res Int ; 2024: 1236910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322303

RESUMEN

Objective: Oral squamous cell carcinoma (OSCC) is the most frequent oral cancer, constituting more than 90% of all oral carcinomas. The 5-year survival rate of OSCC patients is not satisfactory, and therefore, there is an urgent need for new practical therapeutic approaches besides the current therapies to overcome OSCC. Scutellaria baicalensis Georgi (SBG) is a plant of the family Lamiaceae with several pharmaceutical properties such as antioxidant, anti-inflammatory, and anticancer effects. Previous studies have demonstrated the curative effects of SBG in OSCC. Methods: A systems biology approach was conducted to identify differentially expressed miRNAs (DEMs) in OSCC patients with a dismal prognosis compared to OSCC patients with a favorable prognosis. A protein interaction map (PIM) was built based on DEMs targets, and the hub genes within the PIM were indicated. Subsequently, the prognostic role of the hubs was studied using Kaplan-Meier curves. Next, the binding affinity of SBG's main components, including baicalein, wogonin, oroxylin-A, salvigenin, and norwogonin, to the prognostic markers in OSCC was evaluated using molecular docking analysis. Results: Survival analysis showed that overexpression of CAV1, SERPINE1, ACTB, SMAD3, HMGA2, MYC, EIF2S1, HSPA4, HSPA5, and IL6 was significantly related to a poor prognosis in OSCC. Besides, molecular docking analysis demonstrated the ΔGbinding and inhibition constant values between SBG's main components and SERPINE1, ACTB, HMGA2, EIF2S1, HSPA4, and HSPA5 were as <-8.00 kcal/mol and nanomolar concentration, respectively. The most salient binding affinity was observed between wogonin and SERPINE1 with a criterion of ΔGbinding < -10.02 kcal/mol. Conclusion: The present results unraveled potential mechanisms involved in therapeutic effects of SBG in OSCC based on systems biology and structural bioinformatics analyses.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Scutellaria baicalensis/química , Simulación del Acoplamiento Molecular , Neoplasias de la Boca/patología , Biología Computacional , Biología de Sistemas
20.
Chin J Integr Med ; 30(2): 135-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37434030

RESUMEN

OBJECTIVE: To investigate the effect of Huangqin Decoction (HQD) on nuclear factor erythroid 2 related-factor 2 (Nrf2)/heme oxygenase (HO-1) signaling pathway by inducing the colitis-associated carcinogenesis (CAC) model mice with azoxymethane (AOM)/dextran sodium sulfate (DSS). METHODS: The chemical components of HQD were analyzed by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS) to determine the molecular constituents of HQD. Totally 48 C57BL/6J mice were randomly divided into 6 groups by a random number table, including control, model (AOM/DSS), mesalazine (MS), low-, medium-, and high-dose HQD (HQD-L, HQD-M, and HQD-H) groups, 8 mice in each group. Except for the control group, the mice in the other groups were intraperitoneally injected with AOM (10 mg/kg) and administrated with 2.5% DSS orally for 1 week every two weeks (totally 3 rounds of DSS) to construct a colitis-associated carcinogenesis mouse model. The mice in the HQD-L, HQD-M and HQD-H groups were given HQD by gavage at doses of 2.925, 5.85, and 11.7 g/kg, respectively; the mice in the MS group was given a suspension of MS at a dose of 0.043 g/kg (totally 11 weeks). The serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay. The mRNA and protein expression levels of Nrf2, HO-1, and inhibitory KELCH like ECH-related protein 1 (Keap1) in colon tissue were detected by quantitative real-time PCR, immunohistochemistry, and Western blot, respectively. RESULTS: LC-Q-TOF-MS/MS analysis revealed that the chemical constituents of HQD include baicalin, paeoniflorin, and glycyrrhizic acid. Compared to the control group, significantly higher MDA levels and lower SOD levels were observed in the model group (P<0.05), whereas the expressions of Nrf2 and HO-1 were significantly decreased, and the expression of Keap1 increased (P<0.01). Compared with the model group, serum MDA level was decreased and SOD level was increased in the HQD-M, HQD-H and MS groups (P<0.05). Higher expressions of Nrf2 and HO-1 were observed in the HQD groups. CONCLUSION: HQD may regulate the expression of Nrf2 and HO-1 in colon tissue, reduce the expression of MDA and increase the expression of SOD in serum, thus delaying the progress of CAC in AOM/DSS mice.


Asunto(s)
Antioxidantes , Colitis , Ratones , Animales , Antioxidantes/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Scutellaria baicalensis/química , Scutellaria baicalensis/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Espectrometría de Masas en Tándem , Ratones Endogámicos C57BL , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colitis/metabolismo , Transducción de Señal , Carcinogénesis , Azoximetano/farmacología , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA