Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 3670, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574598

RESUMEN

Previous studies have demonstrated stimulation of endocrine pancreas function by vagal nerve electrical stimulation. While this increases insulin secretion, expected concomitant reductions in circulating glucose do not occur. A complicating factor is the non-specific nature of electrical nerve stimulation. Optogenetic tools, however, provide the potential for cell-type specific neural stimulation using genetic targeting and/or spatially shaped excitation light. Here, we demonstrate light-activated stimulation of the endocrine pancreas by targeting parasympathetic (cholinergic) axons. In a mouse model expressing ChannelRhodopsin2 (ChR2) in cholinergic cells, serum insulin and glucose were measured in response to (1) ultrasound image-guided optical stimulation of axon terminals in the pancreas or (2) optical stimulation of axons of the cervical vagus nerve. Measurements were made in basal-glucose and glucose-stimulated conditions. Significant increases in plasma insulin occurred relative to controls under both pancreas and cervical vagal stimulation, while a rapid reduction in glycemic levels were observed under pancreatic stimulation. Additionally, ultrasound-based measurements of blood flow in the pancreas were increased under pancreatic stimulation. Together, these results demonstrate the utility of in-vivo optogenetics for studying the neural regulation of endocrine pancreas function and suggest its therapeutic potential for the control of insulin secretion and glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Nervio Vago/metabolismo , Animales , Axones/metabolismo , Glucemia/genética , Channelrhodopsins/genética , Colina O-Acetiltransferasa/genética , Fibras Colinérgicas/efectos de los fármacos , Fibras Colinérgicas/patología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Glucagón/metabolismo , Glucosa/metabolismo , Humanos , Insulina/biosíntesis , Insulina/efectos de la radiación , Secreción de Insulina/genética , Secreción de Insulina/efectos de la radiación , Islotes Pancreáticos/efectos de la radiación , Ratones , Optogenética/tendencias , Páncreas/patología , Nervio Vago/patología , Estimulación del Nervio Vago
2.
Metabolism ; 104: 154143, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31927009

RESUMEN

Insulin deficiency in type 2 diabetes mellitus (DM) involves a decline in both pancreatic ß-cell mass and function. Enhancing ß-cell preservation represents an important therapeutic strategy to treat type 2 DM. Far-infrared (FIR) radiation has been found to induce promyelocytic leukemia zinc finger protein (PLZF) activation to protect the vascular endothelium in diabetic mice. The influence of FIR on ß-cell preservation is unknown. Our previous study reveals that the biologically effective wavelength of FIR is 8-10 µm. In the present study, we investigated the biological effects of FIR (8-10 µm) on both survival and insulin secretion function of ß-cells. FIR reduced pancreatic islets loss and increased insulin secretion in nicotinamide-streptozotocin-induced DM mice, but only promoted insulin secretion in DM PLZF-/- mice. FIR-upregulated PLZF to induce an anti-apoptotic effect in a ß cell line RIN-m5f. FIR also upregulated mitochondrial function and the ratio of NAD+/NADH, and then induced Sirtuin1 (Sirt1) expression. The mitochondria Complex I inhibitor rotenone blocked FIR-induced PLZF and Sirt1. The Sirt1 inhibitor EX527 and Sirt1 siRNA inhibited FIR-induced PLZF and insulin respectively. Sirt1 upregulation also increased CaV1.2 expression and calcium influx that promotes insulin secretion in ß-cells. In summary, FIR-enhanced mitochondrial function prevents ß-cell apoptosis and enhances insulin secretion in DM mice through the Sirt1 pathway.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/radioterapia , Rayos Infrarrojos , Células Secretoras de Insulina/patología , Células Secretoras de Insulina/efectos de la radiación , Sirtuina 1/metabolismo , Sirtuina 1/efectos de la radiación , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/efectos de la radiación , Prueba de Tolerancia a la Glucosa , Secreción de Insulina/efectos de la radiación , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/patología , Islotes Pancreáticos/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Niacinamida , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Sirtuina 1/antagonistas & inhibidores , Análisis de Supervivencia , Regulación hacia Arriba
3.
Int J Radiat Biol ; 94(9): 850-857, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29913098

RESUMEN

PURPOSE: There is a great concern regarding the possible adverse effects of electromagnetic radiation (EMR). This study investigated the effects of EMR induced by Wi-Fi (2.45 GHz) on insulin secretion and antioxidant redox systems in the rat pancreas. MATERIALS AND METHODS: Adult male Sprague-Dawley rats in the weight range of 230-260 g were divided into control, sham, Wi-Fi exposed groups. After long-term exposure (4 h/day for 45 days) to Wi-Fi EMR, plasma levels of glucose and insulin during intraperitoneal glucose tolerance test were measured. Islet insulin secretion and content, lipid peroxidation, and antioxidant status in pancreas of rats were determined. RESULTS: Our data showed that the weight gain in the WI-FI exposed group was significantly lower than the control group (p < .05). Wi-Fi (2.45 GHz)-exposed group showed hyperglycemia. Plasma insulin level and glucose-stimulated insulin secretion from pancreatic islet were significantly reduced in the Wi-Fi-exposed group. EMR emitted from Wi-Fi caused a significant increase in lipid peroxidation and a significant decrease in GSH level, SOD, and GPx activities of the pancreas. CONCLUSIONS: These data showed that EMR of Wi-Fi leads to hyperglycemia, increased oxidative stress, and impaired insulin secretion in the rat pancreatic islets.


Asunto(s)
Secreción de Insulina/efectos de la radiación , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Ondas de Radio/efectos adversos , Tecnología Inalámbrica , Animales , Antioxidantes/metabolismo , Glucemia/metabolismo , Peso Corporal/efectos de la radiación , Insulina/sangre , Resistencia a la Insulina/efectos de la radiación , Peroxidación de Lípido/efectos de la radiación , Masculino , Tamaño de los Órganos/efectos de la radiación , Ratas , Ratas Sprague-Dawley
4.
Sci Rep ; 7(1): 9357, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28839233

RESUMEN

Pancreatic ß-cell insulin production is orchestrated by a complex circuitry involving intracellular elements including cyclic AMP (cAMP). Tackling aberrations in glucose-stimulated insulin release such as in diabetes with pharmacological agents, which boost the secretory capacity of ß-cells, is linked to adverse side effects. We hypothesized that a photoactivatable adenylyl cyclase (PAC) can be employed to modulate cAMP in ß-cells with light thereby enhancing insulin secretion. To that end, the PAC gene from Beggiatoa (bPAC) was delivered to ß-cells. A cAMP increase was noted within 5 minutes of photostimulation and a significant drop at 12 minutes post-illumination. The concomitant augmented insulin secretion was comparable to that from ß-cells treated with secretagogues. Greater insulin release was also observed over repeated cycles of photoinduction without adverse effects on viability and proliferation. Furthermore, the expression and activation of bPAC increased cAMP and insulin secretion in murine islets and in ß-cell pseudoislets, which displayed a more pronounced light-triggered hormone secretion compared to that of ß-cell monolayers. Calcium channel blocking curtailed the enhanced insulin response due to bPAC activity. This optogenetic system with modulation of cAMP and insulin release can be employed for the study of ß-cell function and for enabling new therapeutic modalities for diabetes.


Asunto(s)
Secreción de Insulina/efectos de la radiación , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efectos de la radiación , Luz , Optogenética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/efectos de la radiación , Ratones , Optogenética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...