Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Methods Mol Biol ; 2856: 79-117, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283448

RESUMEN

Over a decade has passed since the development of the Hi-C method for genome-wide analysis of 3D genome organization. Hi-C utilizes next-generation sequencing (NGS) technology to generate large-scale chromatin interaction data, which has accumulated across a diverse range of species and cell types, particularly in eukaryotes. There is thus a growing need to streamline the process of Hi-C data analysis to utilize these data sets effectively. Hi-C generates data that are much larger compared to other NGS techniques such as chromatin immunoprecipitation sequencing (ChIP-seq) or RNA-seq, making the data reanalysis process computationally expensive. In an effort to bridge this resource gap, the 4D Nucleome (4DN) Data Portal has reanalyzed approximately 600 Hi-C data sets, allowing users to access and utilize the analyzed data. In this chapter, we provide detailed instructions for the implementation of the common workflow language (CWL)-based Hi-C analysis pipeline adopted by the 4DN Data Portal ecosystem. This reproducible and portable pipeline generates standard Hi-C contact matrices in formats such as .hic or .mcool from FASTQ files. It enables users to output their own Hi-C data in the same format as those registered in the 4DN Data portal, facilitating comparative analysis using data registered in the portal. Our custom-made scripts are available on GitHub at https://github.com/kuzobuta/4dn_cwl_pipeline .


Asunto(s)
Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Flujo de Trabajo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cromatina/genética , Cromatina/metabolismo , Humanos , Genómica/métodos , Biología Computacional/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos
2.
Methods Mol Biol ; 2856: 401-418, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283465

RESUMEN

This chapter describes the computational pipeline for the processing and visualization of Protec-Seq data, a method for purification and genome-wide mapping of double-stranded DNA protected by a specific protein at both ends. In the published case, the protein of choice was Saccharomyces cerevisiae Spo11, a conserved topoisomerase-like enzyme that makes meiotic double-strand breaks (DSBs) to initiate homologous recombination, ensuring proper segregation of homologous chromosomes and fertility. The isolated DNA molecules were thus termed double DSB (dDSB) fragments and were found to represent 34 to several hundred base-pair long segments that are generated by Spo11 and are enriched at DSB hotspots, which are sites of topological stress. In order to allow quantitative comparisons between dDSB profiles across experiments, we implemented calibrated chromatin immunoprecipitation sequencing (ChIP-Seq) using the meiosis-competent yeast species Saccharomyces kudriavzevii as calibration strain. Here, we provide a detailed description of the computational methods for processing, analyzing, and visualizing Protec-Seq data, comprising the download of the raw data, the calibrated genome-wide alignments, and the scripted creation of either arc plots or Hi-C-style heatmaps for the illustration of chromosomal regions of interest. The workflow is based on Linux shell scripts (including wrappers for publicly available, open-source software) as well as R scripts and is highly customizable through its modular structure.


Asunto(s)
Roturas del ADN de Doble Cadena , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Programas Informáticos , Meiosis/genética , Genoma Fúngico , Mapeo Cromosómico/métodos , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Biología Computacional/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo
3.
Methods Mol Biol ; 2856: 341-356, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39283463

RESUMEN

To reveal gene regulation mechanisms, it is essential to understand the role of regulatory elements, which are possibly distant from gene promoters. Integrative analysis of epigenetic and transcriptomic data can be used to gain insights into gene-expression regulation in specific phenotypes. Here, we discuss STITCHIT, an approach to dissect epigenetic variation in a gene-specific manner across many samples for the identification of regulatory elements without relying on peak calling algorithms. The obtained genomic regions are then further refined using a regularized linear model approach, which can also be used to predict gene expression. We illustrate the use of STITCHIT using H3k27ac ChIP-seq and RNA-seq data from the International Human Epigenome Consortium (IHEC).


Asunto(s)
Epigénesis Genética , Epigenómica , Transcriptoma , Humanos , Epigenómica/métodos , Transcriptoma/genética , Elementos de Facilitación Genéticos , Programas Informáticos , Biología Computacional/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica , Algoritmos , Histonas/genética , Histonas/metabolismo , Perfilación de la Expresión Génica/métodos
4.
Methods Mol Biol ; 2848: 105-116, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240519

RESUMEN

The generation of quality data from a single-nucleus profiling experiment requires nuclei to be isolated from tissues in a gentle and efficient manner. Nuclei isolation must be carefully optimized across tissue types to preserve nuclear architecture, prevent nucleic acid degradation, and remove unwanted contaminants. Here, we present an optimized workflow for generating a single-nucleus suspension from ocular tissues of the embryonic chicken that is compatible with various downstream workflows. The described protocol enables the rapid isolation of a high yield of aggregate-free nuclei from the embryonic chicken eye without compromising nucleic acid integrity, and the nuclei suspension is compatible with single-nucleus RNA and ATAC sequencing. We detail several stopping points, either via cryopreservation or fixation, to enhance workflow adaptability. Further, we provide a guide through multiple QC points and demonstrate proof-of-principle using two commercially available kits. Finally, we demonstrate that existing in silico genotyping methods can be adopted to computationally derive biological replicates from a single pool of chicken nuclei, greatly reducing the cost of biological replication and allowing researchers to consider sex as a variable during analysis. Together, this tutorial represents a cost-effective, simple, and effective approach to single-nucleus profiling of embryonic chicken eye tissues and is likely to be easily modified to be compatible with similar tissue types.


Asunto(s)
Núcleo Celular , Pollos , Análisis de la Célula Individual , Animales , Núcleo Celular/metabolismo , Núcleo Celular/genética , Embrión de Pollo , Análisis de la Célula Individual/métodos , Ojo/embriología , Ojo/metabolismo , Criopreservación/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos
5.
Nat Commun ; 15(1): 6852, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127768

RESUMEN

Cis-regulatory elements (CREs) are pivotal in orchestrating gene expression throughout diverse biological systems. Accurate identification and in-depth characterization of functional CREs are crucial for decoding gene regulation networks during cellular processes. In this study, we develop Kethoxal-Assisted Single-stranded DNA Assay for Transposase-Accessible Chromatin with Sequencing (KAS-ATAC-seq) to quantitatively analyze the transcriptional activity of CREs. A main advantage of KAS-ATAC-seq lies in its precise measurement of ssDNA levels within both proximal and distal ATAC-seq peaks, enabling the identification of transcriptional regulatory sequences. This feature is particularly adept at defining Single-Stranded Transcribing Enhancers (SSTEs). SSTEs are highly enriched with nascent RNAs and specific transcription factors (TFs) binding sites that define cellular identity. Moreover, KAS-ATAC-seq provides a detailed characterization and functional implications of various SSTE subtypes. Our analysis of CREs during mouse neural differentiation demonstrates that KAS-ATAC-seq can effectively identify immediate-early activated CREs in response to retinoic acid (RA) treatment. Our findings indicate that KAS-ATAC-seq provides more precise annotation of functional CREs in transcription. Future applications of KAS-ATAC-seq would help elucidate the intricate dynamics of gene regulation in diverse biological processes.


Asunto(s)
Factores de Transcripción , Animales , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Elementos de Facilitación Genéticos/genética , Cromatina/metabolismo , Cromatina/genética , Sitios de Unión , Humanos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Transposasas/metabolismo , Transposasas/genética , Elementos Reguladores de la Transcripción , Tretinoina/farmacología , Tretinoina/metabolismo , Regulación de la Expresión Génica , Diferenciación Celular/genética , Análisis de Secuencia de ADN/métodos , Secuencias Reguladoras de Ácidos Nucleicos/genética
6.
Nat Plants ; 10(9): 1317-1329, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39179701

RESUMEN

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is crucial for profiling histone modifications and transcription factor binding throughout the genome. However, its application in economically important plant organs (EIPOs) such as seeds, fruits and flowers is challenging due to their sturdy cell walls and complex constituents. Here we present advanced ChIP (aChIP), an optimized method that efficiently isolates chromatin from plant tissues while simultaneously removing cell walls and cellular constituents. aChIP precisely profiles histone modifications in all 14 tested EIPOs and identifies transcription factor and chromatin-modifying enzyme binding sites. In addition, aChIP enhances ChIP efficiency, revealing numerous novel modified sites compared with previous methods in vegetative tissues. aChIP reveals the histone modification landscape for rapeseed dry seeds, highlighting the intricate roles of chromatin dynamics during seed dormancy and germination. Altogether, aChIP is a powerful, efficient and sensitive approach for comprehensive chromatin profiling in virtually all plant tissues, especially in EIPOs.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Semillas/genética , Cromatina/metabolismo , Cromatina/genética , Frutas/genética , Inmunoprecipitación de Cromatina/métodos , Flores/genética , Código de Histonas
7.
PLoS Comput Biol ; 20(8): e1011854, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093856

RESUMEN

Single-cell ATAC-seq sequencing data (scATAC-seq) has been widely used to investigate chromatin accessibility on the single-cell level. One important application of scATAC-seq data analysis is differential chromatin accessibility (DA) analysis. However, the data characteristics of scATAC-seq such as excessive zeros and large variability of chromatin accessibility across cells impose a unique challenge for DA analysis. Existing statistical methods focus on detecting the mean difference of the chromatin accessible regions while overlooking the distribution difference. Motivated by real data exploration that distribution difference exists among cell types, we introduce a novel composite statistical test named "scaDA", which is based on zero-inflated negative binomial model (ZINB), for performing differential distribution analysis of chromatin accessibility by jointly testing the abundance, prevalence and dispersion simultaneously. Benefiting from both dispersion shrinkage and iterative refinement of mean and prevalence parameter estimates, scaDA demonstrates its superiority to both ZINB-based likelihood ratio tests and published methods by achieving the highest power and best FDR control in a comprehensive simulation study. In addition to demonstrating the highest power in three real sc-multiome data analyses, scaDA successfully identifies differentially accessible regions in microglia from sc-multiome data for an Alzheimer's disease (AD) study that are most enriched in GO terms related to neurogenesis and the clinical phenotype of AD, and AD-associated GWAS SNPs.


Asunto(s)
Cromatina , Análisis de la Célula Individual , Cromatina/genética , Cromatina/metabolismo , Cromatina/química , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/estadística & datos numéricos , Humanos , Biología Computacional/métodos , Enfermedad de Alzheimer/genética , Modelos Estadísticos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Simulación por Computador , Animales , Análisis de Secuencia de ADN/métodos , Algoritmos
8.
Methods Mol Biol ; 2818: 65-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126467

RESUMEN

Chromatin undergoes extensive remodeling during meiosis, leading to specific patterns of gene expression and chromosome organization, which ultimately controls fundamental meiotic processes such as recombination and homologous chromosome associations. Recent game-changing advances have been made by analysis of chromatin binding sites of meiotic specific proteins genome-wide in mouse spermatocytes. However, further progress is still highly dependent on the reliable isolation of sufficient quantities of spermatocytes at specific stages of prophase I. Here, we describe a combination of methodologies we adapted for rapid and reliable isolation of synchronized fixed mouse spermatocytes. We show that chromatin isolated from these cells can be used to study chromatin-binding sites by ChIP-seq. High-quality data we obtained from INO80 ChIP-seq in zygotene cells was used for functional analysis of chromatin-binding sites.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Espermatocitos , Animales , Espermatocitos/metabolismo , Espermatocitos/citología , Ratones , Masculino , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Cromatina/genética , Cromatina/metabolismo , Meiosis/genética , Inmunoprecipitación de Cromatina/métodos , Sitios de Unión
9.
Nat Commun ; 15(1): 6828, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122670

RESUMEN

Single-cell assay for transposase-accessible chromatin using sequencing (scATAC-seq) is being increasingly used to study gene regulation. However, major analytical gaps limit its utility in studying gene regulatory programs in complex diseases. In response, MOCHA (Model-based single cell Open CHromatin Analysis) presents major advances over existing analysis tools, including: 1) improving identification of sample-specific open chromatin, 2) statistical modeling of technical drop-out with zero-inflated methods, 3) mitigation of false positives in single cell analysis, 4) identification of alternative transcription-starting-site regulation, and 5) modules for inferring temporal gene regulatory networks from longitudinal data. These advances, in addition to open chromatin analyses, provide a robust framework after quality control and cell labeling to study gene regulatory programs in human disease. We benchmark MOCHA with four state-of-the-art tools to demonstrate its advances. We also construct cross-sectional and longitudinal gene regulatory networks, identifying potential mechanisms of COVID-19 response. MOCHA provides researchers with a robust analytical tool for functional genomic inference from scATAC-seq data.


Asunto(s)
COVID-19 , Cromatina , Redes Reguladoras de Genes , Genómica , Modelos Estadísticos , Análisis de la Célula Individual , Humanos , COVID-19/genética , COVID-19/virología , Análisis de la Célula Individual/métodos , Genómica/métodos , Cromatina/genética , Cromatina/metabolismo , SARS-CoV-2/genética , Transposasas/metabolismo , Transposasas/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Estudios de Cohortes , Regulación de la Expresión Génica
10.
Methods Mol Biol ; 2846: 1-16, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141226

RESUMEN

For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.


Asunto(s)
Inmunoprecipitación de Cromatina , Histonas , Inmunoprecipitación de Cromatina/métodos , Histonas/metabolismo , Histonas/genética , Humanos , Código de Histonas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Procesamiento Proteico-Postraduccional , Animales , Cromatina/metabolismo , Cromatina/genética , ADN/genética , ADN/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos
11.
Methods Mol Biol ; 2846: 47-62, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141229

RESUMEN

Chromatin immunoprecipitation (ChIP) followed by next-generation sequencing (-seq) has been the most common genomics method for studying DNA-protein interactions in the last decade. ChIP-seq technology became standard both experimentally and computationally. This chapter presents a core workflow that covers data processing and initial analytical steps of ChIP-seq data. We provide a step-by-step protocol of the commands as well as a fully assembled Snakemake workflow. Along the protocol, we discuss key tool parameters, quality control, output reports, and preliminary results.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Biología Computacional , Programas Informáticos , Flujo de Trabajo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Datos , Inmunoprecipitación de Cromatina/métodos , Humanos
12.
Methods Mol Biol ; 2846: 63-89, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141230

RESUMEN

Chromatin immunoprecipitation in combination with next-generation sequencing (ChIP-Seq) allows probing of protein-DNA binding in a rapid and genome-wide fashion. Herein we describe the required steps to preprocess ChIP-Seq data and to analyze the differential binding of proteins to DNA for perturbation experiments. In these experiments, different conditions are compared to find the underlying biological mechanisms caused by the stimulus or treatment. In addition, we provide a sample analysis using the steps outlined in the chapter.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Unión Proteica , Secuenciación de Inmunoprecipitación de Cromatina/métodos , ADN/metabolismo , ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Sitios de Unión , Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos
13.
Methods Mol Biol ; 2846: 109-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141232

RESUMEN

ChIP-Seq has been used extensively to profile genome-wide transcription factor binding and post-translational histone modifications. A sequential ChIP assay determines the in vivo co-localization of two proteins to the same genomic locus. In this chapter, we combine the two protocols in Sequential ChIP-Seq, a method for identifying genome-wide sites of in vivo protein co-occupancy.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Humanos , Histonas/metabolismo , Histonas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Sitios de Unión , Unión Proteica , Inmunoprecipitación de Cromatina/métodos , Animales , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
14.
Methods Mol Biol ; 2846: 133-150, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141234

RESUMEN

Gonadal steroid hormones, namely, testosterone, progesterone, and estrogens, influence the physiological state of an organism through the regulation of gene transcription. Steroid hormones activate nuclear hormone receptor (HR), transcription factors (TFs), which bind DNA in a tissue- and cell type-specific manner to influence cellular function. Identifying the genomic binding sites of HRs is essential to understanding mechanisms of hormone signaling across tissues and disease contexts. Traditionally, chromatin immunoprecipitation followed by sequencing (ChIP-seq) has been used to map the genomic binding of HRs in cancer cell lines and large tissues. However, ChIP-seq lacks the sensitivity to detect TF binding in small numbers of cells, such as genetically defined neuronal subtypes in the brain. Cleavage Under Targets & Release Under Nuclease (CUT&RUN) resolves most of the technical limitations of ChIP-seq, enabling the detection of protein-DNA interactions with as few as 100-1000 cells. In this chapter, we provide a stepwise CUT&RUN protocol for detecting and analyzing the genome-wide binding of estrogen receptor α (ERα) in mouse brain tissue. The steps described here can be used to identify the genomic binding sites of most TFs in the brain.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Cromatina/metabolismo , Cromatina/genética , Ratones , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Sitios de Unión , Inmunoprecipitación de Cromatina/métodos , Encéfalo/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor alfa de Estrógeno/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Unión Proteica , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
15.
Methods Mol Biol ; 2846: 169-179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141236

RESUMEN

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) allows for the identification of genomic targeting of DNA-binding proteins. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) modifies this process by including a nuclease to digest DNA around a protein of interest. The result is a higher signal-to-noise ratio and decreased required starting material. This allows for high-fidelity sequence identification from as few as 500 cells, enabling chromatin profiling of precious tissue samples or primary cell types, as well as less abundant chromatin-binding proteins: all at significantly increased throughput.


Asunto(s)
Epigénesis Genética , Humanos , Inmunoprecipitación de Cromatina/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , ADN/metabolismo , ADN/genética , Cromatina/metabolismo , Cromatina/genética , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética
16.
Methods Mol Biol ; 2846: 191-213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39141238

RESUMEN

Cleavage Under Targets and Tagmentation (CUT&Tag) is a recent methodology used for robust epigenomic profiling that, unlike conventional chromatin immunoprecipitation (ChIP-Seq), requires only a limited amount of cells as starting material. RNA sequencing (RNA-Seq) reveals the presence and quantity of RNA in a biological sample, describing the continuously changing cellular transcriptome. The integrated analysis of transcriptional activity, histone modifications, and chromatin accessibility via CUT&Tag is still in its infancy compared to the well-established ChIP-Seq. This chapter describes a robust bioinformatics methodology and workflow to perform an integrative CUT&Tag/RNA-Seq analysis.


Asunto(s)
Biología Computacional , Flujo de Trabajo , Biología Computacional/métodos , Humanos , Epigenómica/métodos , RNA-Seq/métodos , Programas Informáticos , Cromatina/genética , Cromatina/metabolismo , Análisis de Secuencia de ARN/métodos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma
17.
Methods Mol Biol ; 2818: 23-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39126465

RESUMEN

Meiotic recombination is a key process facilitating the formation of crossovers and the exchange of genetic material between homologous chromosomes in early meiosis. This involves controlled double-strand breaks (DSBs) formation catalyzed by Spo11. DSBs exhibit a preferential location in specific genomic regions referred to as hotspots, and their variability is tied to varying Spo11 activity levels. We have refined a ChIP-Seq technique, called SPO-Seq, to map Spo11-specific DSB formation in Saccharomyces cerevisiae. The chapter describes our streamlined approach and the developed bioinformatic tools for processing data and comparing with existing DSB hotspot maps. Through this combined experimental and computational approach, we aim to enhance our understanding of meiotic recombination and genetic exchange processes in budding yeast, with the potential to expand this methodology to other organisms by applying a few modifications.


Asunto(s)
Roturas del ADN de Doble Cadena , Endodesoxirribonucleasas , Meiosis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Meiosis/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Biología Computacional/métodos
18.
Artículo en Inglés | MEDLINE | ID: mdl-39049508

RESUMEN

Gene set scoring (GSS) has been routinely conducted for gene expression analysis of bulk or single-cell RNA sequencing (RNA-seq) data, which helps to decipher single-cell heterogeneity and cell type-specific variability by incorporating prior knowledge from functional gene sets. Single-cell assay for transposase accessible chromatin using sequencing (scATAC-seq) is a powerful technique for interrogating single-cell chromatin-based gene regulation, and genes or gene sets with dynamic regulatory potentials can be regarded as cell type-specific markers as if in single-cell RNA-seq (scRNA-seq). However, there are few GSS tools specifically designed for scATAC-seq, and the applicability and performance of RNA-seq GSS tools on scATAC-seq data remain to be investigated. Here, we systematically benchmarked ten GSS tools, including four bulk RNA-seq tools, five scRNA-seq tools, and one scATAC-seq method. First, using matched scATAC-seq and scRNA-seq datasets, we found that the performance of GSS tools on scATAC-seq data was comparable to that on scRNA-seq, suggesting their applicability to scATAC-seq. Then, the performance of different GSS tools was extensively evaluated using up to ten scATAC-seq datasets. Moreover, we evaluated the impact of gene activity conversion, dropout imputation, and gene set collections on the results of GSS. Results show that dropout imputation can significantly promote the performance of almost all GSS tools, while the impact of gene activity conversion methods or gene set collections on GSS performance is more dependent on GSS tools or datasets. Finally, we provided practical guidelines for choosing appropriate preprocessing methods and GSS tools in different application scenarios.


Asunto(s)
Algoritmos , Benchmarking , Secuenciación de Inmunoprecipitación de Cromatina , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normas , Humanos , Secuenciación de Inmunoprecipitación de Cromatina/métodos , RNA-Seq/métodos , RNA-Seq/normas , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Cromatina/genética , Cromatina/metabolismo
19.
Methods Mol Biol ; 2826: 55-63, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017885

RESUMEN

The Assay for Transposase Accessible Chromatin (ATAC)-seq protocol is optimized to generate global maps of accessible chromatin using limited cell inputs. The Tn5 transposase tagmentation reaction simultaneously fragments and tags the accessible DNA with Illumina Nextera sequencing adapters. Fragmented and adapter tagged DNA is then purified and PCR amplified with dual indexing primers to generate a size-specific sequencing library. The One-Step workflow below outlines the Tn5 nuclei transposition from a range of cell inputs followed by PCR amplification to generate a sequencing library.


Asunto(s)
Linfocitos B , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Transposasas , Cromatina/genética , Cromatina/metabolismo , Transposasas/metabolismo , Transposasas/genética , Linfocitos B/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Biblioteca de Genes , Análisis de Secuencia de ADN/métodos , Reacción en Cadena de la Polimerasa/métodos , Animales , ADN/genética , Secuenciación de Inmunoprecipitación de Cromatina/métodos
20.
Methods Mol Biol ; 2819: 39-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028501

RESUMEN

Nucleotide sequences recognized and bound by DNA-binding proteins (DBPs) are critical to controlling and maintaining gene expression, replication, chromosome segregation, cell division, and nucleoid structure in bacterial cells. Therefore, determination of the binding sequences of DBPs is important not only to study DBP recognition mechanisms but also to understand the fundamentals of cell homeostasis. While ChIP-seq analysis appears to be an effective way to determine DBP binding sites on the genome, the resolution is sometimes not sufficient to identify the sites precisely. Here we introduce a simple and effective method named Genome Footprinting with high-throughput sequencing (GeF-seq) to determine binding sites of DBPs with single base-pair resolution. GeF-seq detects binding sites of DBPs as sharp peaks and thus makes it possible to identify the recognition sequence in each "binding peak" more easily and accurately compared to the common ChIP-seq.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Inmunoprecipitación de Cromatina/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Emparejamiento Base , Unión Proteica , Huella de ADN/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...