Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
J Clin Virol ; 173: 105695, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823290

RESUMEN

Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.


Asunto(s)
Benchmarking , Metagenómica , Sensibilidad y Especificidad , Virus , Metagenómica/métodos , Metagenómica/normas , Humanos , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Virosis/diagnóstico , Virosis/virología , Biología Computacional/métodos
2.
Clin Genitourin Cancer ; 22(4): 102091, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735133

RESUMEN

BACKGROUND: The application of precision medicine in clinical practice implies a thorough evaluation of actionable genomic alterations to streamline therapeutic decision making. Comprehensive genomic profiling of tumor via next-generation sequencing (NGS) represents a great opportunity but also several challenges. During the 2023 San Raffaele Retreat, we aimed to provide expert recommendations for the optimal use of NGS in urothelial carcinoma (UC). MATERIALS AND METHODS: A modified Delphi method was utilized, involving a panel of 12 experts in UC from European and United States centers, including oncologists, urologists, pathologists, and translational scientists. An initial survey, conducted before the meeting, delivered 15 statements to the panel. A consensus was defined when ≥70% agreement was reached for each statement. Statements not meeting the consensus threshold were discussed during the meeting. RESULTS: Nine of the 15 statements covering patient selection, cancer characteristics, and type of NGS assay, achieved a consensus during the survey. The remaining six statements addressing the optimal timing of NGS use, the ideal source of tumor biospecimen for NGS testing, and the subsequent need to evaluate the germline nature of certain genomic findings were discussed during the meeting, leading to unanimous agreement at the end of the conference. CONCLUSION: This consensus-building effort addressed multiple unanswered questions regarding the use of NGS in UC. The opinion of experts was in favor of broader use of NGS. In a setting where recommendations/guidelines may be limited, these insights may aid clinicians to provide informed counselling and raise the bar of precision and personalized therapy.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Técnica Delphi , Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/terapia , Medicina de Precisión/métodos , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Neoplasias Urológicas/genética , Neoplasias Urológicas/terapia , Consenso
3.
Nucleic Acids Res ; 52(1): 114-124, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38015437

RESUMEN

Next-generation DNA sequencing (NGS) in short-read mode has recently been used for genetic testing in various clinical settings. NGS data accuracy is crucial in clinical settings, and several reports regarding quality control of NGS data, primarily focusing on establishing NGS sequence read accuracy, have been published thus far. Variant calling is another critical source of NGS errors that remains unexplored at the single-nucleotide level despite its established significance. In this study, we used a machine-learning-based method to establish an exome-wide benchmark of difficult-to-sequence regions at the nucleotide-residue resolution using 10 genome sequence features based on real-world NGS data accumulated in The Genome Aggregation Database (gnomAD) of the human reference genome sequence (GRCh38/hg38). The newly acquired metric, designated the 'UNMET score,' along with additional lines of structural information from the human genome, allowed us to assess the sequencing challenges within the exonic region of interest using conventional short-read NGS. Thus, the UNMET score could provide a basis for addressing potential sequential errors in protein-coding exons of the human reference genome sequence GRCh38/hg38 in clinical sequencing.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Humanos , ADN , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
4.
BMC Genomics ; 24(1): 117, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927511

RESUMEN

BACKGROUND: Generating the most contiguous, accurate genome assemblies given available sequencing technologies is a long-standing challenge in genome science. With the rise of long-read sequencing, assembly challenges have shifted from merely increasing contiguity to correctly assembling complex, repetitive regions of interest, ideally in a phased manner. At present, researchers largely choose between two types of long read data: longer, but less accurate sequences, or highly accurate, but shorter reads (i.e., >Q20 or 99% accurate). To better understand how these types of long-read data as well as scale of data (i.e., mean length and sequencing depth) influence genome assembly outcomes, we compared genome assemblies for a caddisfly, Hesperophylax magnus, generated with longer, but less accurate, Oxford Nanopore (ONT) R9.4.1 and highly accurate PacBio HiFi (HiFi) data. Next, we expanded this comparison to consider the influence of highly accurate long-read sequence data on genome assemblies across 6750 plant and animal genomes. For this broader comparison, we used HiFi data as a surrogate for highly accurate long-reads broadly as we could identify when they were used from GenBank metadata. RESULTS: HiFi reads outperformed ONT reads in all assembly metrics tested for the caddisfly data set and allowed for accurate assembly of the repetitive ~ 20 Kb H-fibroin gene. Across plants and animals, genome assemblies that incorporated HiFi reads were also more contiguous. For plants, the average HiFi assembly was 501% more contiguous (mean contig N50 = 20.5 Mb) than those generated with any other long-read data (mean contig N50 = 4.1 Mb). For animals, HiFi assemblies were 226% more contiguous (mean contig N50 = 20.9 Mb) versus other long-read assemblies (mean contig N50 = 9.3 Mb). In plants, we also found limited evidence that HiFi may offer a unique solution for overcoming genomic complexity that scales with assembly size. CONCLUSIONS: Highly accurate long-reads generated with HiFi or analogous technologies represent a key tool for maximizing genome assembly quality for a wide swath of plants and animals. This finding is particularly important when resources only allow for one type of sequencing data to be generated. Ultimately, to realize the promise of biodiversity genomics, we call for greater uptake of highly accurate long-reads in future studies.


Asunto(s)
Biodiversidad , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Genómica/métodos , Genómica/normas , Genómica/tendencias , Insectos/clasificación , Insectos/genética , Fibroínas/genética , Mapeo Contig , Genoma de los Insectos/genética , Animales , Bases de Datos de Ácidos Nucleicos , Reproducibilidad de los Resultados , Metaanálisis como Asunto , Conjuntos de Datos como Asunto , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Plantas/genética , Genoma de Planta/genética
5.
Eur J Med Genet ; 66(12): 104871, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38832911

RESUMEN

Rare diseases encompass a diverse group of genetic disorders that affect a small proportion of the population. Identifying the underlying genetic causes of these conditions presents significant challenges due to their genetic heterogeneity and complexity. Conventional short-read sequencing (SRS) techniques have been widely used in diagnosing and investigating of rare diseases, with limitations due to the nature of short-read lengths. In recent years, long read sequencing (LRS) technologies have emerged as a valuable tool in overcoming these limitations. This minireview provides a concise overview of the applications of LRS in rare disease research and diagnosis, including the identification of disease-causing tandem repeat expansions, structural variations, and comprehensive analysis of pathogenic variants with LRS.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
6.
Nature ; 611(7936): 519-531, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36261518

RESUMEN

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Asunto(s)
Mapeo Cromosómico , Diploidia , Genoma Humano , Genómica , Humanos , Mapeo Cromosómico/normas , Genoma Humano/genética , Haplotipos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas , Estándares de Referencia , Genómica/métodos , Genómica/normas , Cromosomas Humanos/genética , Variación Genética/genética
7.
Gene ; 814: 146161, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-34995736

RESUMEN

The patients with hepatic alveolar echinococcosis is poorly detected due to invasive and slow growth. Thus, early diagnosis of hepatic alveolar echinococcosis is so important for patients. Circular RNAs are crucial types of the non-coding RNA. Recent studies have provided serum-derived exosomal circRNAs as potential biomarkers for detection of various diseases. The clinical importance of exosomal circRNAs in hepatic alveolar echinococcosis have never been explored before. Here, we investigated the serum-derived exosomal circRNAs in the diagnosis of hepatic alveolar echinococcosis. Firstly, High-throughput Sequencing was performed using 9 hepatic alveolar echinococcosis and 9 control samples to detect hepatic alveolar echinococcosis related circRNAs. Afterwards, bioinformatic analyzes were performed to identify differentially expressed circRNAs and pathway analyzes were performed. Finally, validation of the determined circRNAs was performed using RT-PCR. The sequencing data indicated that 59 differentially expressed circRNAs; 31 up-regulated and 28 down-regulated circRNA in hepatic alveolar echinococcosis patients. The top 5 up-regulated and down-regulated circRNAs were selected for validation by RT-qPCR assay. As a result of the verification, circRNAs that were significantly up- and down-regulated showed an expression profile consistent with the results obtained. Importantly, our findings suggested that identified exosomal circRNAs could be a potential biomarker for the detection of hepatic alveolar echinococcosis serum and may help to understand the pathogenesis of hepatic alveolar echinococcosis.


Asunto(s)
Equinococosis Hepática/genética , Exosomas/genética , ARN Circular/sangre , Biomarcadores/sangre , Equinococosis Hepática/sangre , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Control de Calidad , RNA-Seq/normas , Transcriptoma
8.
Br J Cancer ; 126(3): 514-520, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34480094

RESUMEN

BACKGROUND: Activating fusions of the NTRK1, NTRK2 and NTRK3 genes are drivers of carcinogenesis and proliferation across a broad range of tumour types in both adult and paediatric patients. Recently, the FDA granted tumour-agnostic approvals of TRK inhibitors, larotrectinib and entrectinib, based on significant and durable responses in multiple primary tumour types. Unfortunately, testing rates in clinical practice remain quite low. Adding plasma next-generation sequencing of circulating tumour DNA (ctDNA) to tissue-based testing increases the detection rate of oncogenic drivers and demonstrates high concordance with tissue genotyping. However, the clinical potential of ctDNA analysis to identify NTRK fusion-positive tumours has been largely unexplored. METHODS: We retrospectively reviewed a ctDNA database in advanced stage solid tumours for NTRK1 fusions. RESULTS: NTRK1 fusion events, with nine unique fusion partners, were identified in 37 patients. Of the cases for which clinical data were available, 44% had tissue testing for NTRK1 fusions; the NTRK1 fusion detected by ctDNA was confirmed in tissue in 88% of cases. Here, we report for the first time that minimally-invasive plasma NGS can detect NTRK fusions with a high positive predictive value. CONCLUSION: Plasma ctDNA represents a rapid, non-invasive screening method for this rare genomic target that may improve identification of patients who can benefit from TRK-targeted therapy and potentially identify subsequent on- and off-target resistance mechanisms.


Asunto(s)
Biomarcadores de Tumor/sangre , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/patología , Proteínas de Fusión Oncogénica , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Receptor trkA/genética , Benzamidas/uso terapéutico , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/sangre , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Indazoles/uso terapéutico , Estadificación de Neoplasias , Neoplasias/sangre , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
9.
Int J Lab Hematol ; 44(1): 118-126, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34585519

RESUMEN

INTRODUCTION: Monitoring patients with acute myeloid leukemia can be implemented through various techniques such as multiparameter flow cytometry, real-time quantitative polymerase chain reaction, and next-generation sequencing. However, there is scarce studies when comparing the data of next-generation sequencing and flow cytometry for monitoring disease progression, particularly how they might supplement one another when used in tandem. METHODS: We investigated 107 patients via retrospective analysis using follow-up MFC and NGS data with a total of 717 MFC and 247 NGS studies to compare these methods in monitoring minimal/measurable residual disease. RESULTS: 197 instances were MFC+ /NGS+ , 3 were MFC- /NGS- , 44 were MFC- /NGS+ , and 3 are MFC+ /NGS- . The majority of the MFC- /NGS+ cases occurred within 6 months during the post-treatment phase (64%). Among 44 MFC- /NGS+ instances, 13 had similar NGS profiles to their original day 0 diagnosis. The remaining cases showed preleukemic clonal hematopoiesis mutations, "likely pathogenic mutations," or "variants of uncertain significance." CONCLUSION: Our findings show that flow cytometry has its advantages with comparable sensitivity in detecting minimal/measurable residual disease. Next-generation sequencing could be used in an increased and more regular capacity in conjunction with flow cytometry to achieve a more comprehensive surveillance of these patients, resulting in improved outcomes.


Asunto(s)
Citometría de Flujo/métodos , Citometría de Flujo/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Biomarcadores de Tumor , Manejo de la Enfermedad , Humanos , Inmunofenotipificación , Leucemia Mieloide Aguda/etiología , Leucemia Mieloide Aguda/metabolismo , Mutación , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y Especificidad
10.
Mol Biol Rep ; 49(1): 385-392, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34716505

RESUMEN

BACKGROUND: High-throughput sequencing involves library preparation and amplification steps, which may induce contamination across samples or between samples and the environment. METHODS: We tested the effect of applying an inline-index strategy, in which DNA indices of 6 bp were added to both ends of the inserts at the ligation step of library prep for resolving the data contamination problem. RESULTS: Our results showed that the contamination ranged from 0.29 to 1.25% in one experiment and from 0.83 to 27.01% in the other. We also found that contamination could be environmental or from reagents besides cross-contamination between samples. CONCLUSIONS: Inline-index method is a useful experimental design to clean up the data and address the contamination problem which has been plaguing high-throughput sequencing data in many applications.


Asunto(s)
ADN/análisis , Indicadores y Reactivos/química , Análisis de Secuencia de ADN/normas , ADN/química , Contaminación de ADN , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/normas
11.
Br J Haematol ; 196(1): 19-30, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34124782

RESUMEN

With the focus of leukaemia management shifting to the implications of low-level disease burden, increasing attention is being paid on the development of highly sensitive methodologies required for detection. There are various techniques capable of identification of measurable residual disease (MRD) either evidencing as relevant mutation detection [e.g. nucleophosmin 1 (NPM1) mutation] or trace levels of leukaemic clonal populations. The vast majority of these methods only permit detection of a single clone or mutation. However, mass spectrometry and next-generation sequencing enable the interrogation of multiple genes simultaneously, facilitating a more complete genomic profile. In the present review, we explore the methodologies of both techniques in conjunction with the important advantages and limitations associated with each assay. We also highlight the evidence and the various instances where either technique has been used and propose future strategies for MRD detection.


Asunto(s)
Biomarcadores de Tumor , Análisis Mutacional de ADN/métodos , Leucemia/diagnóstico , Leucemia/etiología , Mutación , Neoplasia Residual/diagnóstico , Análisis Costo-Beneficio , Análisis Mutacional de ADN/economía , Análisis Mutacional de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Espectrometría de Masas/métodos , Espectrometría de Masas/normas , Tasa de Mutación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
J Clin Lab Anal ; 36(1): e24139, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34811797

RESUMEN

BACKGROUND: Quality control materials are necessary for assay development, test validation, and proficiency testing in cancer mutation analysis. Most of the existing controls for somatic mutations only harbor a single variant and are derived from unstable cell lines. This study aimed to establish a method to create stable multianalyte controls in a defined background by genome editing in GM12878 cells, which also can be applied for the reference of next-generation sequencing. METHODS: GM12878 cells were electroporated with a donor plasmid containing a mutant DNA sequence and a Cas9/sgRNA expressing vector. The genome-edited GM12878 cell was validated with Sanger sequencing, amplification refractory mutation system (ARMS), and next-generation sequencing (NGS). RESULTS: We have successfully generated a mutant GM12878 cell line harboring the defined variants including single-nucleotide variants (SNVs), small insertions and deletions (indels), and structural variants (SVs). The introduction of intended mutations in GM12878 cell line was confirmed by both ARMS and sequencing methods. CONCLUSIONS: We developed a method for the preparation of the multiplexed controls for reference mutations in cancer gene by genome editing in GM12878 cells. This methodology can be used to generate other stable cancer reference materials with an unlimited supply.


Asunto(s)
Análisis Mutacional de ADN , Edición Génica/métodos , Neoplasias/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Análisis Mutacional de ADN/métodos , Análisis Mutacional de ADN/normas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Mutación/genética , Control de Calidad , Estándares de Referencia
13.
Cancer Res Treat ; 54(1): 1-9, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34902959

RESUMEN

Next-generation sequencing (NGS) is becoming essential in the fields of precision oncology. With implementation of NGS in daily clinic, the needs for continued education, facilitated interpretation of NGS results and optimal treatment delivery based on NGS results have been addressed. Molecular tumor board (MTB) is multidisciplinary approach to keep pace with the growing knowledge of complex molecular alterations in patients with advanced solid cancer. Although guidelines for NGS use and MTB have been developed in western countries, there is limitation for reflection of Korea's public health environment and daily clinical practice. These recommendations provide a critical guidance from NGS panel testing to final treatment decision based on MTB discussion.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Oncología Médica/normas , Neoplasias/terapia , Medicina de Precisión/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Guías de Práctica Clínica como Asunto , República de Corea , Sociedades Médicas
15.
BMC Microbiol ; 21(1): 349, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922460

RESUMEN

BACKGROUND: One limiting factor of short amplicon 16S rRNA gene sequencing approaches is the use of low DNA amounts in the amplicon generation step. Especially for low-biomass samples, insufficient or even commonly undetectable DNA amounts can limit or prohibit further analysis in standard protocols. RESULTS: Using a newly established protocol, very low DNA input amounts were found sufficient for reliable detection of bacteria using 16S rRNA gene sequencing compared to standard protocols. The improved protocol includes an optimized amplification strategy by using a digital droplet PCR. We demonstrate how PCR products are generated even when using very low concentrated DNA, unable to be detected by using a Qubit. Importantly, the use of different 16S rRNA gene primers had a greater effect on the resulting taxonomical profiles compared to using high or very low initial DNA amounts. CONCLUSION: Our improved protocol takes advantage of ddPCR and allows faithful amplification of very low amounts of template. With this, samples of low bacterial biomass become comparable to those with high amounts of bacteria, since the first and most biasing steps are the same. Besides, it is imperative to state DNA concentrations and volumes used and to include negative controls indicating possible shifts in taxonomical profiles. Despite this, results produced by using different primer pairs cannot be easily compared.


Asunto(s)
Biomasa , Reacción en Cadena de la Polimerasa/métodos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Sesgo , ADN Bacteriano/análisis , ADN Bacteriano/genética , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Límite de Detección , Microbiota/genética , Reacción en Cadena de la Polimerasa/normas , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/normas , Microbiología del Agua
16.
Eur Rev Med Pharmacol Sci ; 25(1 Suppl): 1-6, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34890028

RESUMEN

OBJECTIVE: While the bioinformatic workflow, from quality control to annotation, is quite standardized, the interpretation of variants is still a challenge. The decreasing cost of massively parallel NGS has produced hundreds of variants per patient to analyze and interpret. The ACMG "Standards and guidelines for the interpretation of sequence variants", widely adopted in clinical settings, assume that the clinician has a comprehensive knowledge of the literature and the disease. MATERIALS AND METHODS: To semi-automatize the application of the guidelines, we decided to develop an algorithm that exploits VarSome, a widely used platform that interprets variants on the basis of information from more than 70 genome databases. RESULTS: Here we explain how we integrated VarSome API into our existing clinical diagnostic pipeline for NGS data to obtain validated reproducible results as indicated by accuracy, sensitivity and specificity. CONCLUSIONS: We validated the automated pipeline to be sure that it was doing what we expected. We obtained 100% sensitivity, specificity and accuracy, confirming that it was suitable for use in a diagnostic setting.


Asunto(s)
Algoritmos , Variación Genética/genética , Genómica/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Guías de Práctica Clínica como Asunto/normas , Motor de Búsqueda/normas , Biología Computacional/métodos , Biología Computacional/normas , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Motor de Búsqueda/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ADN/normas
17.
Am J Trop Med Hyg ; 106(2): 671-677, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34749306

RESUMEN

For complex clinical cases where a parasitic infection is suspected, it can be difficult for clinicians to recommend an appropriate laboratory test. These tests are usually pathogen-specific and require a certain degree of suspicion for the precise etiology. A recently described assay, the universal parasite diagnostic (UPDx) can potentially provide a diagnosis of any parasite present in a specimen. Using primers that amplify DNA from all eukaryotes, UPDx differentiates several parasitic infections in blood by amplicon-based next-generation sequencing (NGS) of the 18S rDNA locus. As the state's public health reference laboratory, the Parasitology Laboratory at the Wadsworth Center (Albany, NY) receives specimens from patients who have potentially encountered a wide variety of parasites. As such, the ability to differentiate several blood parasites using a single assay is of interest. We assessed UPDx for its ability to confirm parasitic infections for 20 specimens that were previously identified by real-time PCR (RT-PCR). This included specimens positive for Babesia microti, Trypanosoma cruzi, Leishmania tropica, various Plasmodium species, and specimens comprising mixed Plasmodium sp. infections. Results obtained using UPDx were largely concordant with the RT-PCR assays. A T. cruzi positive specimen was negative by UPDx and for two mixed Plasmodium sp. infections only one species was detected. The results obtained for other specimens were concordant. We conclude that UPDx shows promise for the detection of blood parasites in diagnostic laboratories. As NGS becomes cheaper, assays like UPDx will become increasingly amenable to use in clinical settings.


Asunto(s)
Infecciones de Transmisión Sanguínea/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Laboratorios , Técnicas de Diagnóstico Molecular/normas , Enfermedades Parasitarias/sangre , Enfermedades Parasitarias/diagnóstico , Salud Pública , Infecciones de Transmisión Sanguínea/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Técnicas de Diagnóstico Molecular/métodos , Enfermedades Parasitarias/clasificación , Enfermedades Parasitarias/parasitología , ARN Ribosómico 18S/genética , Estados Unidos
19.
Nat Commun ; 12(1): 6123, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34675197

RESUMEN

Quantitation of rare somatic mutations is essential for basic research and translational clinical applications including minimal residual disease (MRD) detection. Though unique molecular identifier (UMI) has suppressed errors for rare mutation detection, the sequencing depth requirement is high. Here, we present Quantitative Blocker Displacement Amplification (QBDA) which integrates sequence-selective variant enrichment into UMI quantitation for accurate quantitation of mutations below 0.01% VAF at only 23,000X depth. Using a panel of 20 genes recurrently altered in acute myeloid leukemia, we demonstrate quantitation of various mutations including single base substitutions and indels down to 0.001% VAF at a single locus with less than 4 million sequencing reads, allowing sensitive MRD detection in patients during complete remission. In a pan-cancer panel and a melanoma hotspot panel, we detect mutations down to 0.1% VAF using only 1 million reads. QBDA provides a convenient and versatile method for sensitive mutation quantitation using low-depth sequencing.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/normas , Leucemia Mieloide Aguda/genética , Melanoma/genética , Mutación , Neoplasia Residual/genética , Calibración , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
20.
JCO Precis Oncol ; 52021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34632252

RESUMEN

We conducted this systematic review to evaluate the clinical outcomes associated with molecular tumor board (MTB) review in patients with cancer. METHODS: A systematic search of PubMed was performed to identify studies reporting clinical outcomes in patients with cancer who were reviewed by an MTB. To be included, studies had to report clinical outcomes, including clinical benefit, response, progression-free survival, or overall survival. Two reviewers independently selected studies and assessed quality with the Quality Assessment Tool for Before-After (Pre-Post) Studies with No Control Group or the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies depending on the type of study being reviewed. RESULTS: Fourteen studies were included with a total of 3,328 patients with cancer. All studies included patients without standard-of-care treatment options and usually with multiple prior lines of therapy. In studies reporting response rates, patients receiving MTB-recommended therapy had overall response rates ranging from 0% to 67%. In the only trial powered on clinical outcome and including a control group, the group receiving MTB-recommended therapy had significantly improved rate of progression-free survival compared with those receiving conventional therapy. CONCLUSION: Although data quality is limited by a lack of prospective randomized controlled trials, MTBs appear to improve clinical outcomes for patients with cancer. Future research should concentrate on prospective trials and standardization of approach and outcomes.


Asunto(s)
Biomarcadores de Tumor/genética , Oncología Médica/métodos , Neoplasias/tratamiento farmacológico , Grupo de Atención al Paciente/organización & administración , Medicina de Precisión/métodos , Antineoplásicos/farmacología , Toma de Decisiones Clínicas , Análisis Mutacional de ADN/normas , Pruebas Genéticas/normas , Pruebas Genéticas/tendencias , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Humanos , Oncología Médica/organización & administración , Terapia Molecular Dirigida , Mutación , Neoplasias/diagnóstico , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA