Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361825

RESUMEN

Lipid-based nanocarriers (LNs) have made it possible to prolong corneal residence time and improve the ocular bioavailability of ophthalmic drugs. In order to investigate how the LNs interact with the ocular mucosa and reach the posterior eye segment, we have formulated lipid nanocarriers that were designed to bear a traceable fluorescent probe in the present work. The chosen fluorescent probe was obtained by a conjugation reaction between fluoresceinamine and the solid lipid excipient stearic acid, forming a chemically synthesized adduct (ODAF, N-(3',6'-dihydroxy-3-oxospiro [isobenzofuran-1(3H),9'-[9H] xanthen]-5-yl)-octadecanamide). The novel formulation (LN-ODAF) has been formulated and characterized in terms of its technological parameters (polydispersity index, mean particle size and zeta potential), while an in vivo study was carried out to assess the ability of LN-ODAF to diffuse through different ocular compartments. LN-ODAF were in nanometric range (112.7 nm ± 0.4), showing a good homogeneity and long-term stability. A TEM (transmission electron microscopy) study corroborated these results of characterization. In vivo results pointed out that after ocular instillation, LN ODAF were concentrated in the cornea (two hours), while at a longer time (from the second hour to the eighth hour), the fluorescent signals extended gradually towards the back of the eye. From the results obtained, LN-ODAF demonstrated a potential use of lipid-based nanoparticles as efficient carriers of an active pharmaceutical ingredient (API) involved in the management of retinal diseases.


Asunto(s)
Córnea/metabolismo , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Lípidos/química , Nanopartículas/administración & dosificación , Segmento Posterior del Ojo/metabolismo , Compuestos de Espiro/administración & dosificación , Animales , Córnea/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Segmento Posterior del Ojo/efectos de los fármacos , Conejos , Compuestos de Espiro/química
2.
Invest Ophthalmol Vis Sci ; 62(9): 21, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259818

RESUMEN

Purpose: The purpose of this study was to evaluate the role of the canonical Wnt signaling in the development of the myopia. Methods: Plasma from adult patients with myopia, myopic animal models including the adenomatous polyposis coli (APC) gene mutation mouse model, and the form deprivation (FD) induced mouse model of myopia were used. Niclosamide, a canonical Wnt pathway inhibitor, was orally administrated in animal models. Plasma levels of DKK-1 were determined by using enzyme-linked immunosorbent assay. Refraction, vitreous chamber depth (VCD), axial length (AL), and other parameters, were measured at the end of the FD treatment. Canonical Wnt signaling changes were evaluated by Western blot analysis and immunostaining analysis. Results: Plasma level of Wnt inhibitor DKK-1 was markedly decreased in patients with myopia. Meanwhile, the canonical Wnt pathway was progressively activated during myopia development in mice. Moreover, inhibition of canonical Wnt signaling by niclosamide in mouse models markedly reduced lens thickness (LT), VCD, and AL elongation, resulting in myopia inhibition. Conclusions: Dysregulation of canonical Wnt signaling is a characteristic of myopia and targeting Wnt signaling pathways has potential as a therapeutic strategy for myopia.


Asunto(s)
Segmento Anterior del Ojo/metabolismo , Miopía/genética , Segmento Posterior del Ojo/metabolismo , Refracción Ocular/fisiología , Vía de Señalización Wnt/genética , Adolescente , Adulto , Animales , Segmento Anterior del Ojo/diagnóstico por imagen , Segmento Anterior del Ojo/efectos de los fármacos , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Miopía/metabolismo , Miopía/fisiopatología , Segmento Posterior del Ojo/diagnóstico por imagen , Segmento Posterior del Ojo/efectos de los fármacos , Privación Sensorial , Adulto Joven
3.
Carbohydr Polym ; 267: 118217, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119171

RESUMEN

In several ocular diseases, vascular endothelial growth factor (VEGF) level has been found to be unregulated. Bevacizumab, an anti-VEGF drug, is the most commonly used off level drug for diabetic retinopathy (DR). The present study was to evaluate the chitosan-coated poly (lactide-co-glycolic acid) nanoparticles (CS-PLGA NPs) for sustained and effective delivery of bevacizumab to posterior ocular tissues. The penetration of NP through sclera was studied by confocal laser scanning microscopy (CLSM). For pharmacokinetic study, bevacizumab loaded NPs were administered into the rat eye through subconjunctival injection (SCJ) and pharmacokinetic parameters were compared to drug solution. CLSM and pharmacokinetic study showed better penetration of formulation and higher concentration of bevacizumab in posterior ocular tissues. In retinopathy model, CS-PLGA NPs by SCJ route showed more reduction of VEGF level in retina than the topical and intravitreal administration of formulation. Thus, CS-coated PLGA NPs can be potentially useful as carriers to target retina.


Asunto(s)
Bevacizumab/uso terapéutico , Quitosano/química , Retinopatía Diabética/tratamiento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Animales , Bevacizumab/administración & dosificación , Bevacizumab/farmacocinética , Quitosano/administración & dosificación , Quitosano/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Retinopatía Diabética/inducido químicamente , Retinopatía Diabética/patología , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Femenino , Glicolatos/administración & dosificación , Glicolatos/química , Glicolatos/farmacocinética , Nanopartículas/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Segmento Posterior del Ojo/efectos de los fármacos , Ratas , Retina/efectos de los fármacos , Retina/patología , Estreptozocina
5.
J Ocul Pharmacol Ther ; 36(6): 323-341, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32310723

RESUMEN

Micelles have been studied in the targeting of drug substances to different tissues as a nano-sized delivery system for many years. Sustained drug release, ease of production, increased solubility, and bioavailability of drugs with low water solubility are the most important superiorites of micellar carriers. These advantages paved the way for the use of micelles as a drug delivery system in the ocular tissues. The unique anatomical structure of the eye as well as its natural barriers and physiology affect ocular bioavailability of the drugs negatively. Conventional dosage forms can only reach the anterior segment of the eye and are used for the treatment of diseases of this segment. In the treatment of posterior segment diseases, conventional dosage forms are administered sclerally, via an intravitreal injection, or systemically. However, ocular irritation, low patient compliance, and high side effects are also observed. Micellar ocular drug delivery systems have significant promise for the treatment of ocular diseases. The potential of micellar systems ocular drug delivery has been demonstrated by in vivo animal experiments and clinical studies, and they are continuing extensively. In this review, the recent research studies, in which the positive outcomes of micelles for ocular targeting of drugs for both anterior and posterior segment diseases as well as glaucoma has been demonstrated by in vitro, ex vivo, or in vivo studies, are highlighted.


Asunto(s)
Preparaciones de Acción Retardada/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Oftalmopatías/tratamiento farmacológico , Soluciones Oftálmicas/farmacocinética , Administración Oftálmica , Segmento Anterior del Ojo/efectos de los fármacos , Segmento Anterior del Ojo/patología , Disponibilidad Biológica , Preparaciones de Acción Retardada/administración & dosificación , Portadores de Fármacos/química , Humanos , Inyecciones Intravítreas , Micelas , Soluciones Oftálmicas/administración & dosificación , Soluciones Oftálmicas/efectos adversos , Segmento Posterior del Ojo/efectos de los fármacos , Segmento Posterior del Ojo/patología , Solubilidad/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos
6.
Exp Eye Res ; 189: 107824, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31585119

RESUMEN

Injection into the suprachoroidal space (SCS) allows drug delivery targeted to sclera, choroid, and retina. Here, we studied SCS injection formulated with collagenase to expand drug delivery coverage and increase posterior drug targeting within SCS by breaking down collagen fibrils that link sclera and choroid in the SCS. When 1 µm latex microparticles were injected with a collagenase formulation using microneedles into the SCS of rabbit eyes ex vivo and incubated at 37 °C for 4 h, microparticle delivery coverage increased from 20% to 45% and enhanced posterior drug targeting. Collagenase concentration was optimized to 0.5 mg/mL to maximize expanded posterior delivery and minimize tissue damage. Effects of collagenase injection within SCS increased and then plateaued 4 h after injection. Simultaneous injection of collagenase and microparticles had a greater effect on expanded delivery in the SCS compared to sequential injection. Collagenase injection into the SCS of rabbit eyes in vivo was also effective to expand delivery and was generally well-tolerated, showing transiently lowered IOP, but no apparent lasting adverse effects on ocular tissues such as sclera, choroid, and retina, as determined by analyzing histology, sclera tensile strength, and fundus imaging. We conclude that addition of collagenase during SCS injection can expand drug delivery coverage and increase posterior drug targeting.


Asunto(s)
Colágeno/metabolismo , Colagenasas/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Retina/metabolismo , Enfermedades de la Retina/tratamiento farmacológico , Animales , Coroides , Colagenasas/farmacocinética , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Inyecciones Intraoculares , Presión Intraocular/fisiología , Segmento Posterior del Ojo/diagnóstico por imagen , Conejos , Retina/patología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
7.
Biomaterials ; 217: 119285, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299627

RESUMEN

Intravitreal injections and implants are used to deliver drugs to the retina because therapeutic levels of these medications cannot be provided by topical administration (i.e. eye drops). In order to reach the retina, a topically applied drug encounters tear dilution, reflex blinking, and rapid fluid drainage that collectively reduce the drug's residence time on the ocular surface. Residing under the tears, the cornea is the primary gateway into the eye for many topical ophthalmic drugs. We hypothesized that a drug-eluting contact lens that rests on the cornea would therefore be well-suited for delivering drugs to the eye including the retina. We developed a contact lens based dexamethasone delivery system (Dex-DS) that achieved sustained drug delivery to the retina at therapeutic levels. Dex-DS consists of a dexamethasone-polymer film encapsulated inside a contact lens. Rabbits wearing Dex-DS achieved retinal drug concentrations that were 200 times greater than those from intensive (hourly) dexamethasone drops. Conversely, Dex-DS demonstrated lower systemic (blood serum) dexamethasone concentrations. In an efficacy study in rabbits, Dex-DS successfully inhibited retinal vascular leakage induced by intravitreal injection of vascular endothelial growth factor (VEGF). Dex-DS was found to be safe in a four-week repeated dose biocompatibility study in healthy rabbits.


Asunto(s)
Lentes de Contacto , Dexametasona/administración & dosificación , Dexametasona/farmacología , Sistemas de Liberación de Medicamentos , Administración Tópica , Animales , Córnea/efectos de los fármacos , Preparaciones de Acción Retardada/farmacología , Dexametasona/sangre , Dexametasona/farmacocinética , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Angiografía con Fluoresceína , Humanos , Segmento Posterior del Ojo/efectos de los fármacos , Conejos , Retina/diagnóstico por imagen , Retina/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular
8.
Mol Pharm ; 16(7): 2845-2857, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31244219

RESUMEN

To achieve efficient drug delivery to the posterior segment of the eye via topical instillation, novel multifunctional nanocomposites were prepared by hybridizing dexamethasone disodium phosphate (DEXP)-loaded liposome (LP) glycylsarcosine (GS)-anchored layered double hydroxides (named DEXP-HSPC@LDH-GS) and then fully characterized. The nanocomposites exhibited sustained-release performance as well as prolonged precorneal retention ability. MTT assays showed that the nanocomposites were not cytotoxic to both human corneal epithelial cells (HCEpiC) and human conjunctival epithelial cells (HConEpiC) at an LDH concentration of 100 µg/mL. The DEXP-HSPC@LDH-GS nanocomposites showed superior in vitro permeability on the HConEpiC-cell-based model. In the case of HConEpiC cells, both clathrin-mediated endocytosis and active transport by the peptide transporter-1 (PepT-1) were involved in the internalization of the nanocomposites. Fluorescent images of frozen sections of ocular tissues suggested that the possible route for the delivery of doxorubicin hydrochloride (DOX)-labeled nanocomposites from the ocular surface to the back of the eye was a non-corneal pathway. Furthermore, in rabbit eyes, the hybrid nanocomposites displayed markedly higher drug concentration in choroid-retina tissue than other single nanocarriers, such as LPs and LDH. Besides, the results of the eye irritancy test showed that nanocomposite eye drops can be classified as nonirritant, which are suitable to be used as eye drops. In a word, multifunctional nanocomposites based on LPs and LDH could be used as promising vehicles for efficient noninvasive drug delivery to the posterior segment of the eye.


Asunto(s)
Dipéptidos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Hidróxidos/administración & dosificación , Nanocompuestos/química , Soluciones Oftálmicas/farmacocinética , Segmento Posterior del Ojo/efectos de los fármacos , Administración Tópica , Animales , Conjuntiva/citología , Dipéptidos/farmacocinética , Liberación de Fármacos , Células Epiteliales/efectos de los fármacos , Epitelio Corneal/citología , Humanos , Hidróxidos/farmacocinética , Liposomas , Masculino , Soluciones Oftálmicas/química , Permeabilidad/efectos de los fármacos , Conejos , Distribución Tisular
9.
Drug Discov Today ; 24(8): 1679-1684, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31175955

RESUMEN

Drug delivery to the posterior segment of the eye remains challenging even though the eye is readily accessible. Its unique and complex anatomy and physiology contribute to the limited options for drug delivery via non-invasive topical treatment, which is the prevalent ophthalmic treatment. To treat the most common retinal diseases, intravitreal (IVT) injection has been a common and effective therapy. With the advancement of nanotechnologies, novel formulations and drug delivery systems are being developed to treat posterior segment diseases. Here, we discuss the recent advancement in ocular delivery systems, including-sustained release formulations, IVT implants, and preclinical topical formulations, and the challenges faced in their clinical translation.


Asunto(s)
Soluciones Oftálmicas/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Enfermedades de la Retina/tratamiento farmacológico , Administración Tópica , Animales , Preparaciones de Acción Retardada/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Humanos
10.
Small ; 15(15): e1805199, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30977598

RESUMEN

The previously published report suggests that liposomes, functionalized with annexin-5, can deliver bevacizumab to the retina after topical administration as eyedrops. Topical delivery of bevacizumab would be an attractive alternative to the current treatment that involves monthly intravitreal injections to the eye. In this Comment, the retinal concentrations of topically applied liposomal bevacizumab are compared to the levels reached after intravitreal injections. The comparison reveals that the topical liposomal delivery results in retinal bevacizumab concentrations that are about 3-5 orders of magnitude below the lowest bevacizumab concentrations during clinical treatment with intravitreal injections. Major improvement is needed before topical bevacizumab delivery can be considered clinically feasible.


Asunto(s)
Anexina A5/metabolismo , Bevacizumab/administración & dosificación , Bevacizumab/farmacología , Segmento Posterior del Ojo/efectos de los fármacos , Retina/metabolismo , Administración Tópica , Animales , Sistemas de Liberación de Medicamentos , Inyecciones Intravítreas , Liposomas , Soluciones Oftálmicas , Conejos , Ratas , Retina/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo
11.
Drug Discov Today ; 24(8): 1458-1469, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30930148

RESUMEN

The periocular space is a promising alternative route for the delivery of drugs to the posterior eye segment, especially when treating conditions in the outer ocular layers. In this review, we discuss the different periocular routes as well as the physiological barriers and elimination mechanisms limiting drug bioavailability at the back of the eye. We then highlight various types of depot formulations, including particulate delivery systems, semisolid formulations, and implants, used to increase the contact time with the ocular tissues. With the additional advantage of sustaining drug release, such depot formulations could enhance periocular drug delivery to the posterior eye segment.


Asunto(s)
Preparaciones de Acción Retardada/farmacología , Preparaciones de Acción Retardada/uso terapéutico , Oftalmopatías/tratamiento farmacológico , Segmento Posterior del Ojo/efectos de los fármacos , Animales , Química Farmacéutica/métodos , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Humanos
12.
Drug Discov Today ; 24(8): 1644-1653, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30928691

RESUMEN

Neurodegenerative diseases affecting the posterior segment of the eye are one of the major causes of irreversible blindness worldwide. The pathogenesis of these retinal pathologies is characterized by a multifactorial etiology, involving the complex interaction of different apoptotic mechanisms, suggesting that effective treatments will require a multimodal approach. Thus, combination therapy based on the potential synergistic activities of drugs with different mechanisms of action is currently receiving considerable attention. Here, we summarize several kinds of strategy for the co-administration of different drugs to the posterior segment of the eye, highlighting those that involve co-delivery from multiloaded drug delivery systems.


Asunto(s)
Oftalmopatías/tratamiento farmacológico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Animales , Terapia Combinada/métodos , Sistemas de Liberación de Medicamentos/métodos , Humanos
13.
Pharm Res ; 35(9): 173, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29987391

RESUMEN

PURPOSE: Evaluate 21 formulation vehicles administered to rabbits after intravitreal injection for tolerability and safety. METHODS: Forty-two Dutch Belted rabbits were anesthetized, and the eyes received a single intravitreal injection of the excipient formulation. Clinical signs and ocular irritation responses were recorded twice daily for 7 days and microscopic evaluation of the eyes, optic nerve, and eyelids was completed at 1-week post treatment. RESULTS: Saline (≥ 300 mOsm and ≤ 592 mOsm at pH 7.0 or 300 mOsm at pH 8.0) and 10 formulation excipients; (10% w/v PEG 3350 at pH 7.4, 1% polysorbate 21 at pH 7.4, PVA at pH 7.0, 0.2% polysorbate 80 at pH 7.2, 0.2% Pluronic F108® at pH 7.3, 2%, 100 mM sodium sulfate at pH 3.2, 2 mM sodium glycocholate at pH 7.4, and 275 mM D-mannitol pH 7.0 in sterile water, and 100 mM sodium phosphate in combination with 0.9% NaCl 300 mOsm and 0.01% or 0.05% polysorbate 80 at pH 7.4) considered as formulation vehicles for intravitreal injectables, were well-tolerated in rabbits. Clinical signs were transient and microscopic changes were not observed. CONCLUSIONS: Of the 21 formulation vehicles evaluated, 10 formulation vehicles were well-tolerated in rabbits and feasible candidates for future investigations.


Asunto(s)
Excipientes/administración & dosificación , Excipientes/efectos adversos , Segmento Posterior del Ojo/efectos de los fármacos , Animales , Composición de Medicamentos , Inyecciones Intravítreas , Segmento Posterior del Ojo/patología , Segmento Posterior del Ojo/ultraestructura , Conejos , Solución Salina/administración & dosificación , Solución Salina/efectos adversos
14.
Exp Eye Res ; 164: 95-108, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28822760

RESUMEN

Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3-4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 µL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 µM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15-30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15-30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 µM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15-30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.


Asunto(s)
Cámara Anterior/fisiología , Humor Acuoso/fisiología , Presión Intraocular/fisiología , Segmento Posterior del Ojo/fisiología , Animales , Cámara Anterior/efectos de los fármacos , Cámara Anterior/metabolismo , Humor Acuoso/metabolismo , Modelos Animales de Enfermedad , Femenino , Presión Intraocular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/farmacología , Segmento Posterior del Ojo/efectos de los fármacos , Segmento Posterior del Ojo/metabolismo , Malla Trabecular/metabolismo , Tropicamida/farmacología
16.
Exp Eye Res ; 145: 58-67, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26474497

RESUMEN

Nepafenac ophthalmic suspensions, 0.1% (NEVANAC(®)) and 0.3% (ILEVRO™), are topical nonsteroidal anti-inflammatory drug (NSAID) products approved in the United States, Europe and various other countries to treat pain and inflammation associated with cataract surgery. NEVANAC is also approved in Europe for the reduction in the risk of postoperative macular edema (ME) associated with cataract surgery in diabetic patients. The efficacy against ME suggests that topical administration leads to distribution of nepafenac or its active metabolite amfenac to the posterior segment of the eye. This article evaluates the ocular distribution of nepafenac and amfenac and the extent of local delivery to the posterior segment of the eye, following topical ocular instillation in animal models. Nepafenac ophthalmic suspension was instilled unilaterally in New Zealand White rabbits as either a single dose (0.1%; one drop) or as multiple doses (0.3%, one drop, once-daily for 4 days, or 0.1% one drop, three-times daily for 3 days and one morning dose on day 4). Nepafenac (0.3%) was also instilled unilaterally in cynomolgus monkeys as multiple doses (one drop, three-times daily for 7 days). Nepafenac and amfenac concentrations in harvested ocular tissues were measured using high-performance liquid chromatography/mass spectrometry. Locally-distributed compound concentrations were determined as the difference in levels between dosed and undosed eyes. In single-dosed rabbit eyes, peak concentrations of locally-distributed nepafenac and amfenac showed a trend of sclera > choroid > retina. Nepafenac peak levels in sub-samples posterior to the eye equator and inclusive of the posterior pole (E-PP) were 55.1, 4.03 and 2.72 nM, respectively, at 0.25 or 0.50 h, with corresponding amfenac peak levels of 41.9, 3.10 and 0.705 nM at 1 or 4 h. By comparison, peak levels in sclera, choroid and retina sub-samples in a band between the ora serrata and the equator (OS-E) were 13- to 40-fold (nepafenac) or 11- to 23-fold (amfenac) higher, indicating an anterior-to-posterior directional concentration gradient. In multiple-dosed rabbit eyes, with 0.3% nepafenac instilled once-daily or 0.1% nepafenac instilled three-times daily, cumulative 24-h locally-distributed levels of nepafenac in E-PP retina were similar between these groups, whereas exposure to amfenac once-daily dosing nepafenac 0.3% was 51% of that achieved with three-times daily dosing of 0.1%. In single-dosed monkey eyes, concentration gradients showed similar directionality as observed in rabbit eyes. Peak concentrations of locally-distributed nepafenac were 1580, 386, 292 and 13.8 nM in E-PP sclera, choroid and retina, vitreous humor, respectively, at 1 or 2 h after drug instillation. Corresponding amfenac concentrations were 21.3, 11.8, 2.58 and 2.82 nM, observed 1 or 2 h post-instillation. The data indicate that topically administered nepafenac and its metabolite amfenac reach pharmacologically relevant concentrations in the posterior eye segment (choroid and retina) via local distribution, following an anterior-to-posterior concentration gradient. The proposed pathway involves a choroidal/suprachoroidal or periocular route, along with an inward movement of drug through the sclera, choroid and retina, with negligible vitreal compartment involvement. Sustained high nepafenac concentrations in posterior segment tissues may be a reservoir for hydrolysis to amfenac.


Asunto(s)
Bencenoacetamidas/farmacocinética , Fenilacetatos/farmacocinética , Segmento Posterior del Ojo/metabolismo , Uveítis Posterior/tratamiento farmacológico , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacocinética , Bencenoacetamidas/administración & dosificación , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Instilación de Medicamentos , Macaca fascicularis , Masculino , Soluciones Oftálmicas , Fenilacetatos/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Conejos , Distribución Tisular , Uveítis Posterior/metabolismo
17.
PLoS One ; 10(6): e0130986, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107400

RESUMEN

We developed an inhibitory peptide that specifically acts against mitochondrial µ-calpain (Tat-µCL, 23 amino acid, 2857.37 Da) and protects photoreceptors in retinal dystrophic rats. In the present study, we topically administered Tat-µCL to the eyes of Sprague-Dawley rats for 7 days to determine both the delivery route of the peptide to the posterior segment of the eye and the kinetics after topical application in adult rats. Distribution of the peptide was determined by immunohistochemical analysis, and enzyme-linked immune-absorbent assay was used to quantify the accumulation in the retina. Peptides were prominently detected in both the anterior and posterior segments of the eye at 1 h after the final eye drop application. Immunohistochemically positive reactions were observed in the retina, optic nerve, choroid, sclera and the retrobulbar tissues, even in the posterior portion of the eye. Immunoactivities gradually diminished at 3 and 6 h after the final eye drop. Quantitative estimations of the amount of peptide in the retina were 15.3, 5.8 and 1.0 pg/µg protein at 1, 3 and 6 h after the final instillation, respectively. Current results suggest that while the topically applied Tat-µCL peptide reaches the posterior segment of the retina and the optic nerve, the sufficient concentration (> IC50) is maintained for at least 6 h in the rat retina. Our findings suggest that delivery of topically applied peptide to the posterior segment and optic nerve occurs through the conjunctiva, periocular connective tissue, sclera and optic nerve sheath.


Asunto(s)
Calpaína/antagonistas & inhibidores , Soluciones Oftálmicas/farmacocinética , Péptidos/farmacocinética , Segmento Posterior del Ojo/efectos de los fármacos , Retina/efectos de los fármacos , Administración Tópica , Secuencia de Aminoácidos , Animales , Transporte Biológico , Calpaína/genética , Calpaína/metabolismo , Coroides/efectos de los fármacos , Coroides/metabolismo , Conjuntiva/efectos de los fármacos , Conjuntiva/metabolismo , Femenino , Expresión Génica , Datos de Secuencia Molecular , Soluciones Oftálmicas/síntesis química , Soluciones Oftálmicas/farmacología , Nervio Óptico/efectos de los fármacos , Nervio Óptico/metabolismo , Péptidos/síntesis química , Péptidos/farmacología , Segmento Posterior del Ojo/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Esclerótica/efectos de los fármacos , Esclerótica/metabolismo , Distribución Tisular
18.
Drug Discov Today ; 20(4): 491-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25448755

RESUMEN

The development of safe and convenient drug delivery strategies for treatment of posterior segment eye diseases is challenging. Although intravitreal injection has wide acceptance amongst clinicians, its use is associated with serious side-effects. Recently, the suprachoroidal space (SCS) has attracted the attention of ophthalmologists and pharmaceutical formulators as a potential site for drug administration and delivery to the posterior segment of the eye. This review highlights the major constraints of drug delivery to the posterior eye segment, key anatomical and physiological features of the SCS and drug delivery applications of this route with emphasis on microneedles along with future perspectives.


Asunto(s)
Coroides/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Administración Oftálmica , Animales , Química Farmacéutica , Coroides/anatomía & histología , Coroides/metabolismo , Portadores de Fármacos , Diseño de Equipo , Humanos , Inyecciones Intraoculares , Miniaturización , Agujas , Absorción Ocular , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/metabolismo , Segmento Posterior del Ojo/anatomía & histología , Segmento Posterior del Ojo/metabolismo
19.
Expert Opin Drug Deliv ; 11(10): 1647-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24975820

RESUMEN

INTRODUCTION: Recent advances in pharmacological therapies to treat ocular diseases such as glaucoma, age-related macular degeneration, diabetic macular edema and retinal vascular occlusions have greatly improved the prognosis for these diseases. Due to these advances in pharmacological therapy, there is a great deal of interest in minimally invasive delivery methods, which has generated rapid developments in the field of ocular drug delivery. AREAS COVERED: This review will summarize currently available and recent developments for ocular drug delivery to both the anterior and posterior segments. Modes of delivery, including topical, systemic, transcleral/periocular and intravitreal, will be discussed and corresponding examples will be given. This review will highlight the advantages and disadvantages of each mode of delivery and discuss strategies to address these issues. EXPERT OPINION: An ideal therapy should maintain effective levels of drug for the intended duration of treatment following a single application, yet a significant number of months of therapy may be required. There are numerous approaches under investigation to improve treatment options. From the use of novel biomaterial implants and depots for sustained release, to prodrug formations, to iontophoresis to improve drug delivery, the main emphasis will continue to be placed on less invasive, longer acting, sustained release formulations in the treatment of numerous ocular disorders.


Asunto(s)
Sistemas de Liberación de Medicamentos , Soluciones Oftálmicas/administración & dosificación , Preparaciones Farmacéuticas/administración & dosificación , Segmento Posterior del Ojo/efectos de los fármacos , Animales , Humanos
20.
Math Biosci ; 255: 11-20, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24946303

RESUMEN

A computational model was developed to simulate drug distribution in the posterior segment of the eye after intravitreal injection and ocular implantation. The effects of important factors in intravitreal injection such as injection time, needle gauge and needle angle on the ocular drug distribution were studied. Also, the influences of the position and the type of implant on the concentration profile in the posterior segment were investigated. Computational Fluid Dynamics (CFD) calculations were conducted to describe the 3D convective-diffusive transport. The geometrical model was constructed based on the human eye dimensions. To simulate intravitreal injection, unlike previous studies which considered the initial shape of the injected drug solution as a sphere or cylinder, the more accurate shape was obtained by level-set method in COMSOL. The results showed that in intravitreal injection the drug concentration profile and its maximum value depended on the injection time, needle gauge and penetration angle of the needle. Considering the actual shape of the injected solution was found necessary to obtain the real concentration profile. In implant insertion, the vitreous cavity received more drugs after intraocular implantation, but this method was more invasive compared to the periocular delivery. Locating the implant in posterior or anterior regions had a significant effect on local drug concentrations. Also, the shape of implant influenced on concentration profile inside the eye. The presented model is useful for optimizing the administration variables to ensure optimum therapeutic benefits. Predicting and quantifying different factors help to reduce the possibility of tissue toxicity and to improve the treatment efficiency.


Asunto(s)
Sistemas de Liberación de Medicamentos , Modelos Biológicos , Segmento Posterior del Ojo/metabolismo , Simulación por Computador , Implantes de Medicamentos , Análisis de Elementos Finitos , Fluoresceína/administración & dosificación , Fluoresceína/farmacocinética , Humanos , Hidrodinámica , Inyecciones Intravítreas , Conceptos Matemáticos , Absorción Ocular , Segmento Posterior del Ojo/anatomía & histología , Segmento Posterior del Ojo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...