Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885702

RESUMEN

Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure-activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.


Asunto(s)
Conformación de Ácido Nucleico , Selenio/química , Selenocisteína/genética , Selenoproteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Selenocisteína/biosíntesis , Selenocisteína/química , Selenoproteínas/biosíntesis , Selenoproteínas/química , Selenoproteínas/ultraestructura , Relación Estructura-Actividad
2.
Biochim Biophys Acta Mol Cell Res ; 1868(4): 118945, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33417976

RESUMEN

Kti12 and PSTK are closely related and highly similar proteins implicated in different aspects of tRNA metabolism. Kti12 has been identified as an essential regulatory factor of the Elongator complex, involved in the modification of uridine bases in eukaryotic tRNAs. PSTK phosphorylates the tRNASec-bound amino acid serine, which is required to synthesize selenocysteine. Kti12 and PSTK have previously been studied independently in various organisms, but only appear simultaneously in some animalia, including humans. As Kti12- and PSTK-related pathways are clinically relevant, it is of prime importance to understand their biological functions and mutual relationship in humans. Here, we use different tRNA substrates to directly compare the enzymatic activities of purified human KTI12 and human PSTK proteins. Our complementary Co-IP and BioID2 approaches in human cells confirm that Elongator is the main interaction partner of KTI12 but additionally indicate potential links to proteins involved in vesicular transport, RNA metabolism and deubiquitination. Moreover, we identify and validate a yet uncharacterized interaction between PSTK and γ-taxilin. Foremost, we demonstrate that human KTI12 and PSTK do not share interactors or influence their respective biological functions. Our data provide a comprehensive analysis of the regulatory networks controlling the activity of the human Elongator complex and selenocysteine biosynthesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Células HEK293 , Histona Acetiltransferasas/metabolismo , Humanos , Inmunoprecipitación , Modelos Moleculares , Conformación Proteica , ARN de Transferencia/metabolismo , Selenocisteína/biosíntesis , Especificidad por Sustrato , Ubiquitinación
3.
Med Hypotheses ; 147: 110475, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33421689

RESUMEN

Coagulopathy has recently been recognized as a recurring complication of COVID-19, most typically associated with critical illness. There are epidemiological, mechanistic and transcriptomic evidence that link Selenium with SARS-CoV-2's intracellular latency. Taking into consideration the vital role of selenoproteins in maintaining an adequate immune response, endothelial homeostasis and a non-prothrombotic platelet activation status, we propose that impairment in selenocysteine synthesis, via perturbations in the aforementioned physiological functions, potentially constitutes a mechanism of coagulopathy in COVID 19 patients other than those developed in critical illness.


Asunto(s)
Trastornos de la Coagulación Sanguínea/complicaciones , COVID-19/complicaciones , SARS-CoV-2/patogenicidad , Selenocisteína/biosíntesis , Trastornos de la Coagulación Sanguínea/virología , Plaquetas/metabolismo , Enfermedad Crítica , Endotelio Vascular/metabolismo , Homeostasis , Humanos , Sistema Inmunológico , Inflamación , Modelos Teóricos , Estrés Oxidativo , Activación Plaquetaria , Selenio/química , Selenocisteína/química , Transcriptoma
4.
PLoS Negl Trop Dis ; 14(10): e0008091, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33017394

RESUMEN

Eukaryotes from the Excavata superphylum have been used as models to study the evolution of cellular molecular processes. Strikingly, human parasites of the Trypanosomatidae family (T. brucei, T. cruzi and L. major) conserve the complex machinery responsible for selenocysteine biosynthesis and incorporation in selenoproteins (SELENOK/SelK, SELENOT/SelT and SELENOTryp/SelTryp), although these proteins do not seem to be essential for parasite viability under laboratory controlled conditions. Selenophosphate synthetase (SEPHS/SPS) plays an indispensable role in selenium metabolism, being responsible for catalyzing the formation of selenophosphate, the biological selenium donor for selenocysteine synthesis. We solved the crystal structure of the L. major selenophosphate synthetase and confirmed that its dimeric organization is functionally important throughout the domains of life. We also demonstrated its interaction with selenocysteine lyase (SCLY) and showed that it is not present in other stable assemblies involved in the selenocysteine pathway, namely the phosphoseryl-tRNASec kinase (PSTK)-Sec-tRNASec synthase (SEPSECS) complex and the tRNASec-specific elongation factor (eEFSec) complex. Endoplasmic reticulum stress with dithiothreitol (DTT) or tunicamycin upon selenophosphate synthetase ablation in procyclic T. brucei cells led to a growth defect. On the other hand, only DTT presented a negative effect in bloodstream T. brucei expressing selenophosphate synthetase-RNAi. Furthermore, selenoprotein T (SELENOT) was dispensable for both forms of the parasite. Together, our data suggest a role for the T. brucei selenophosphate synthetase in the regulation of the parasite's ER stress response.


Asunto(s)
Liasas/metabolismo , Fosfotransferasas/metabolismo , Selenocisteína/biosíntesis , Selenoproteínas/metabolismo , Trypanosoma brucei brucei/enzimología , Conformación Proteica , Proteínas Protozoarias/metabolismo , Selenio/metabolismo
5.
Int J Biol Macromol ; 156: 18-26, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32275991

RESUMEN

The selenocysteine (Sec) incorporation is a co-translational event taking place at an in-frame UGA-codon and dependent on an organized molecular machinery. Selenium delivery requires mainly two enzymes, the selenocysteine lyase (CsdB) is essential for Sec recycling and conversion to selenide, further used by the selenophosphate synthetase (SelD), responsible for the conversion of selenide in selenophosphate. Therefore, understanding the catalytic mechanism involved in selenium compounds delivery, such as the interaction between SelD and CsdB (EcCsdB.EcSelD), is fundamental for the further comprehension of the selenocysteine synthesis pathway and its control. In Escherichia coli, EcCsdB.EcSelD interaction must occur to prevent cell death from the release of the toxic intermediate selenide. Here, we demonstrate and characterize the in vitro EcSelD.EcCsdB interaction by biophysical methods. The EcSelD.EcCsdB interaction occurs with a stoichiometry of 1:1 in presence of selenocysteine and at a low-nanomolar affinity (~1.8 nM). The data is in agreement with the small angle X-ray scattering model fitted using available structures. Moreover, yeast-2-hybrid assays supported the macromolecular interaction in the cellular environment. This is the first report that demonstrates the interaction between EcCsdB and EcSelD supporting the hypothesis that EcSelD.EcCsdB interaction is necessary to sequester the selenide during the selenocysteine incorporation pathway in Bacteria.


Asunto(s)
Liasas/química , Liasas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/metabolismo , Selenocisteína/biosíntesis , Rastreo Diferencial de Calorimetría , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Estabilidad Proteica , Desplegamiento Proteico , Dispersión del Ángulo Pequeño , Selenio/metabolismo , Espectrometría de Fluorescencia , Termodinámica , Técnicas del Sistema de Dos Híbridos , Ultracentrifugación
6.
CRISPR J ; 2: 230-245, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31436504

RESUMEN

Genome-wide CRISPR-Cas9 essentiality screening represents a powerful approach to identify genetic vulnerabilities in cancer cells. Here, we applied this technology and designed a strategy to identify target genes that are synthetic lethal (SL) with von Hippel-Lindau (VHL) tumor suppressor gene. Inactivation of VHL has been frequently found in clear cell renal cell carcinoma. Its SL partners serve as potential drug targets for the development of targeted cancer therapies. We performed parallel genome-wide CRISPR screens in two pairs of isogenic clear cell renal cell carcinoma cell lines that differ only in the VHL status. Comparative analyses of screening results not only confirmed a well-known role for mTOR signaling in renal carcinoma, but also identified DNA damage response and selenocysteine biosynthesis pathways as novel SL targets in VHL-inactivated cancer cells. Follow-up studies provided cellular and mechanistic insights into SL interactions of these pathway genes with the VHL gene. Our CRISPR and RNA-seq datasets provide a rich resource for future investigation of the function of the VHL tumor suppressor protein. Our work demonstrates the efficiency of CRISPR-based synthetic lethality screening in human isogenic cell pairs. Similar strategies could be employed to unveil SL partners with other oncogenic drivers.


Asunto(s)
Reparación del ADN , Selenocisteína/biosíntesis , Transducción de Señal , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Sistemas CRISPR-Cas , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Daño del ADN , Edición Génica , Humanos , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Análisis de Secuencia de ARN , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/metabolismo
7.
J Dairy Sci ; 102(8): 6781-6789, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31155253

RESUMEN

Selenium is included in selenoprotein sequences, which participate in enzymatic processes necessary to preserve optimal health. Some lactic acid bacteria carry out the biotransformation of inorganic selenium in their metabolism. The complete biochemical mechanism of selenium biotransformation is still unknown; however, it is known that both the selenocysteine synthesis process and its subsequent incorporation into selenoproteins include serine as part of the action of seryl-RNAt synthetase. Therefore, the aim of this work was to determine the effect of serine during the biotransformation of selenium and the subsequence growth of Streptococcus thermophilus in a minimal medium. Two culture media were prepared, one enriched with the minimum inhibitory concentration of selenite (as Na2SeO3) and the other as a mixture of the minimum inhibitory concentration of selenite and serine. The absorbed selenium concentration was measured by inductively coupled plasma, and the selenocysteine identification was performed by reverse-phase HPLC. In the second culture medium, decreases in both times, the adaptation and the logarithmic phase, were observed. According to the results, it was possible to establish that the presence of serine allowed the biotransformation of selenite into selenocysteine by Strep. thermophilus.


Asunto(s)
Medios de Cultivo/química , Selenio/metabolismo , Selenocisteína/biosíntesis , Serina/administración & dosificación , Streptococcus thermophilus/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Selenoproteínas , Serina/análisis
8.
Amino Acids ; 50(9): 1145-1167, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29948343

RESUMEN

Selenium (Se) is an essential trace element for several organisms and is mostly present in proteins as L-selenocysteine (Sec or U). Sec is synthesized on its L-seryl-tRNASec to produce Sec-tRNASec molecules by a dedicated selenocysteine synthesis machinery and incorporated into selenoproteins at specified in-frame UGA codons. UGA-Sec insertion is signaled by an mRNA stem-loop structure called the SElenoCysteine Insertion Sequence (SECIS). tRNASec transcription regulation and folding have been described showing its importance to Sec biosynthesis. Here, we discuss structural aspects of Sec-tRNASec and its role in Sec biosynthesis as well as Sec incorporation into selenoproteins. Defects in the Sec biosynthesis or incorporation pathway have been correlated with pathological conditions.


Asunto(s)
ARN de Transferencia de Cisteína/genética , Selenocisteína/biosíntesis , Animales , Codón de Terminación/química , Codón de Terminación/genética , Codón de Terminación/metabolismo , Humanos , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia de Cisteína/química , ARN de Transferencia de Cisteína/metabolismo , Selenocisteína/genética
9.
Methods ; 95: 55-61, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26555086

RESUMEN

Analytical ultracentrifugation, an early technique developed for characterizing quantitatively the solution properties of macromolecules, remains a powerful aid to structural biologists in their quest to understand the formation of biologically important protein complexes at the molecular level. Treatment of the basic tenets of the sedimentation velocity and sedimentation equilibrium variants of analytical ultracentrifugation is followed by considerations of the roles that it, in conjunction with other physicochemical procedures, has played in resolving problems encountered in the delineation of complex formation for three biological systems - the cytoplasmic dynein complex, mitogen-activated protein kinase (ERK2) self-interaction, and the terminal catalytic complex in selenocysteine synthesis.


Asunto(s)
Aminoacil-ARNt Sintetasas/aislamiento & purificación , Dineínas Citoplasmáticas/aislamiento & purificación , Proteína Quinasa 1 Activada por Mitógenos/aislamiento & purificación , Proteínas Quinasas Activadas por Mitógenos/aislamiento & purificación , Ultracentrifugación/métodos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Humanos , Sustancias Macromoleculares/aislamiento & purificación , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , ARN de Transferencia/química , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo , Selenocisteína/biosíntesis , Soluciones , Ultracentrifugación/instrumentación
10.
Nucleic Acids Res ; 43(21): 10534-45, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26433229

RESUMEN

Selenocysteine (Sec) is found in the catalytic centers of many selenoproteins and plays important roles in living organisms. Malfunctions of selenoproteins lead to various human disorders including cancer. Known as the 21st amino acid, the biosynthesis of Sec involves unusual pathways consisting of several stages. While the later stages of the pathways are well elucidated, the molecular basis of the first stage-the serylation of Sec-specific tRNA (tRNA(Sec)) catalyzed by seryl-tRNA synthetase (SerRS)-is unclear. Here we present two cocrystal structures of human SerRS bound with tRNA(Sec) in different stoichiometry and confirm the formation of both complexes in solution by various characterization techniques. We discovered that the enzyme mainly recognizes the backbone of the long variable arm of tRNA(Sec) with few base-specific contacts. The N-terminal coiled-coil region works like a long-range lever to precisely direct tRNA 3' end to the other protein subunit for aminoacylation in a conformation-dependent manner. Restraints of the flexibility of the coiled-coil greatly reduce serylation efficiencies. Lastly, modeling studies suggest that the local differences present in the D- and T-regions as well as the characteristic U20:G19:C56 base triple in tRNA(Sec) may allow SerRS to distinguish tRNA(Sec) from closely related tRNA(Ser) substrate.


Asunto(s)
ARN de Transferencia Aminoácido-Específico/química , Selenocisteína/biosíntesis , Serina-ARNt Ligasa/química , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia Aminoácido-Específico/metabolismo , Serina-ARNt Ligasa/metabolismo , Especificidad por Sustrato
11.
J Biol Chem ; 290(49): 29178-88, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26378233

RESUMEN

The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNA(Sec)), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNA(Sec) complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNA(Sec)-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNA(Sec)-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Selenocisteína/biosíntesis , Secuencia de Aminoácidos , Anisotropía , Secuencia de Bases , Clonación Molecular , Escherichia coli/enzimología , Prueba de Complementación Genética , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfotransferasas/metabolismo , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectroscopía Infrarroja por Transformada de Fourier , Transferasas/metabolismo
12.
Curr Med Chem ; 21(15): 1772-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24251578

RESUMEN

Selenium (Se) is an essential trace element for several organisms and is present in proteins as selenocysteine (Sec or U), an amino acid that is chemically distinct from serine and cysteine by a single atom (Se instead of O or S, respectively). Sec is incorporated into selenoproteins at an in-frame UGA codon specified by an mRNA stem-loop structure called the selenocysteine incorporating sequence (SECIS) presented in selenoprotein mRNA and specific selenocysteine synthesis and incorporation machinery. Selenoproteins are presented in all domains but are not found in all organisms. Although several functions have been attributed to this class, the majority of the proteins are involved in oxidative stress defense. Here, we discuss the kinetoplastid selenocysteine pathway and how selenium supplementation is able to alter the infection course of trypanosomatids in detail. These organisms possess the canonical elements required for selenoprotein production such as phosphoseryl tRNA kinase (PSTK), selenocysteine synthase (SepSecS), selenophosphase synthase (SelD or SPS), and elongation factor EFSec (SelB), whereas other important factors presented in mammal cells, such as SECIS binding protein 2 (SBP) and SecP 43, are absent. The selenoproteome of trypanosomatids is small, as is the selenoproteome of others parasites, which is in contrast to the large number of selenoproteins found in bacteria, aquatic organisms and higher eukaryotes. Trypanosoma and Leishmania are sensitive to auranofin, a potent selenoprotein inhibitor; however, the probable drug mechanism is not related to selenoproteins in kinetoplastids. Selenium supplementation decreases the parasitemia of various Trypanosome infections and reduces important parameters associated with diseases such as anemia and parasite-induced organ damage. New experiments are necessary to determine how selenium acts, but evidence suggests that immune response modulation and increased host defense against oxidative stress contribute to control of the parasite infection.


Asunto(s)
Selenio/metabolismo , Trypanosoma/efectos de los fármacos , Tripanosomiasis/tratamiento farmacológico , Animales , Humanos , Selenocisteína/biosíntesis , Selenoproteínas/metabolismo , Trypanosoma/metabolismo
13.
J Agric Food Chem ; 61(26): 6216-23, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23763668

RESUMEN

Broccoli (Brassica oleracea L. var. italica) is a rich source of chemopreventive compounds. Here, we evaluated and compared the effect of selenium (Se) treatment on the accumulation of anticancer compounds Se-methylselenocysteine (SeMSCys) and glucosinolates in broccoli sprouts and florets. Total Se and SeMSCys content in sprouts increased concomitantly with increasing Se doses. Selenate was superior to selenite in inducing total Se accumulation, but selenite is equally effective as selenate in promoting SeMSCys synthesis in sprouts. Increasing sulfur doses reduced total Se and SeMSCys content in sprouts treated with selenate, but not in those with selenite. Examination of five broccoli cultivars reveals that sprouts generally have better fractional ability than florets to convert inorganic Se into SeMSCys. Distinctive glucosinolate profiles between sprouts and florets were observed, and sprouts contained approximately 6-fold more glucoraphanin than florets. In contrast to florets, glucosinolate content was not affected by Se treatment in sprouts. Thus, Se-enriched broccoli sprouts are excellent for simultaneous accumulation of chemopreventive compounds SeMSCys and glucoraphanin.


Asunto(s)
Anticarcinógenos/metabolismo , Brassica/metabolismo , Glucosinolatos/biosíntesis , Inflorescencia/metabolismo , Brotes de la Planta/metabolismo , Compuestos de Selenio/metabolismo , Selenocisteína/análogos & derivados , Anticarcinógenos/análisis , Brassica/química , Brassica/crecimiento & desarrollo , Fertilizantes/análisis , Glucosinolatos/análisis , Hidroponía , Inflorescencia/química , Inflorescencia/crecimiento & desarrollo , Brotes de la Planta/química , Brotes de la Planta/crecimiento & desarrollo , Selenocisteína/análisis , Selenocisteína/biosíntesis
14.
Mol Biochem Parasitol ; 188(2): 87-90, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23603359

RESUMEN

Selenium (Se) is an essential trace element primarily found in selenoproteins as the 21st amino acid (selenocysteine, Sec, or U). Selenoproteins play an important role in growth and proliferation and are typically involved in cellular redox balance. Selenocysteine is encoded by an in-frame UGA codon specified by a stem-loop structure, the Sec insertion sequence element (SECIS), which, in eukaryotes, is located in the 3'-untranslated region (UTR). The availability of the Naegleria gruberi (ATCC 30224) genome sequence and the use of this organism as a model system for the pathogenic amoeba N. fowleri allowed us to investigate the Sec incorporation pathway in this primitive eukaryote. Using bioinformatics tools, we identified gene sequences encoding PSTK (O-phosphoseryl-tRNA(Sec) kinase), SepSecS (O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase), SelD/SPS2 (selenophosphate synthetase), EFSec (selenocysteine-specific elongation factor) and SBP (SECIS binding protein). These findings were confirmed by RT-PCR and by sequencing. A potential tRNA(Ser)Sec (SelC) gene and a putative selenoprotein with sequence similarity to a mitochondrial thioredoxin reductase (TR3) were also identified. Our results show that the selenocysteine incorporation machinery is indeed present in N. gruberi. Interestingly, the SelD/SPS2 gene is 2214 bp in length and contains two distinct domains. The N-terminal region shows sequence similarity to predicted methyltransferase proteins, and the C-terminal region is homologous to prokaryotic SelD/SPS2. Our results suggest the possibility of novel selenoproteins.


Asunto(s)
Vías Biosintéticas/genética , Naegleria/genética , Naegleria/metabolismo , Selenocisteína/biosíntesis , Selenoproteínas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Biología Computacional , Perfilación de la Expresión Génica , Genes Protozoarios , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Análisis de Secuencia de ADN
15.
Science ; 340(6128): 75-8, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23559248

RESUMEN

The 21st amino acid, selenocysteine (Sec), is synthesized on its cognate transfer RNA (tRNA(Sec)). In bacteria, SelA synthesizes Sec from Ser-tRNA(Sec), whereas in archaea and eukaryotes SepSecS forms Sec from phosphoserine (Sep) acylated to tRNA(Sec). We determined the crystal structures of Aquifex aeolicus SelA complexes, which revealed a ring-shaped homodecamer that binds 10 tRNA(Sec) molecules, each interacting with four SelA subunits. The SelA N-terminal domain binds the tRNA(Sec)-specific D-arm structure, thereby discriminating Ser-tRNA(Sec) from Ser-tRNA(Ser). A large cleft is created between two subunits and accommodates the 3'-terminal region of Ser-tRNA(Sec). The SelA structures together with in vivo and in vitro enzyme assays show decamerization to be essential for SelA function. SelA catalyzes pyridoxal 5'-phosphate-dependent Sec formation involving Arg residues nonhomologous to those in SepSecS. Different protein architecture and substrate coordination of the bacterial enzyme provide structural evidence for independent evolution of the two Sec synthesis systems present in nature.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Aminoacil-ARN de Transferencia/química , Selenocisteína/biosíntesis , Transferasas/química , Arginina/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Fosfato de Piridoxal/química
16.
J Nutr ; 143(5): 613-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23514769

RESUMEN

Dietary selenium (Se) deficiency causes muscular dystrophy in various species, but the molecular mechanism remains unclear. Our objectives were to investigate: 1) if dietary Se deficiency induced different amounts of oxidative stress, lipid peroxidation, and cell apoptosis in 3 skeletal muscles; and 2) if the distribution and expression of 4 endoplasmic reticulum (ER) resident selenoprotein genes (Sepn1, Selk, Sels, and Selt) were related to oxidative damages in these muscles. Two groups of day-old layer chicks (n = 60/group) were fed a corn-soy basal diet (33 µg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or the diet supplemented with Se (as sodium selenite) at 0.15 mg/kg for 55 d. Dietary Se deficiency resulted in accelerated (P < 0.05) cell apoptosis that was associated with decreased glutathione peroxidase activity and elevated lipid peroxidation in these muscles. All these responses were stronger in the pectoral muscle than in the thigh and wing muscles (P < 0.05). Relative distribution of the 4 ER resident selenoprotein gene mRNA amounts and their responses to dietary Se deficiency were consistent with the resultant oxidative stress and cell apoptosis in the 3 muscles. Expression of Sepn1, Sels, and Selt in these muscles was correlated with (r > 0.72; P < 0.05) that of Sepsecs encoding a key enzyme for biosynthesis of selenocysteine (selenocysteinyl-tRNA synthase). In conclusion, the pectoral muscle demonstrated unique expression patterns of the ER resident selenoprotein genes and GPx activity, along with elevated susceptibility to oxidative cell death, compared with the other skeletal muscles. These features might help explain why it is a primary target of Se deficiency diseases in chicks.


Asunto(s)
Apoptosis , Enfermedades Carenciales/metabolismo , Expresión Génica , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Selenio/deficiencia , Selenoproteínas/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Pollos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Proteínas Musculares/genética , ARN Mensajero/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Selenio/metabolismo , Selenio/farmacología , Selenocisteína/biosíntesis , Selenoproteínas/genética , Oligoelementos/deficiencia , Oligoelementos/metabolismo , Oligoelementos/farmacología
17.
Protein Expr Purif ; 88(1): 80-4, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23266652

RESUMEN

Selenocysteine Synthase (SELA, E.C. 2.9.1.1) from Escherichia coli is a homodecamer pyridoxal-5'-phosphate containing enzyme responsible for the conversion of seryl-tRNA(sec) into selenocysteyl-tRNA(sec) in the biosynthesis of the 21th amino acid, selenocysteine (Sec or U). This paper describes the cloning of the E. coli selA gene into a modified pET29a(+) vector and its expression in E. coli strain WL81460, a crucial modification allowing SELA expression without bound endogenous tRNA(sec). This expression strategy enabled the purification and additional biochemical and biophysical characterization of the SELA decamer. The homogeneous SELA protein was obtained using three chromatographic steps. Size Exclusion Chromatography and Native Gel Electrophoresis showed that SELA maintains a decameric state with molecular mass of approximately 500 kDa with an isoelectric point of 6,03. A predominance of α-helix structures was detected by circular dichroism with thermal stability up to 45 °C. The oligomeric assemblage of SELA was investigated by glutaraldehyde crosslinking experiments indicate that SELA homodecameric structure is the result of a stepwise addition of intermediate oligomeric states and not a direct monomer to homodecamer transition. Our results have contributed to the establishment of a robust expression model for the enzyme free of bound RNA and are of general interest to be taken into consideration in all cases of heterologous/homologous expressions of RNA-binding proteins avoiding the carryover of endogenous RNAs, which may interfere with further biochemical characterizations.


Asunto(s)
Escherichia coli/enzimología , Proteínas Recombinantes/aislamiento & purificación , Transferasas/química , Transferasas/aislamiento & purificación , Biofisica , Peso Molecular , Estructura Secundaria de Proteína , Fosfato de Piridoxal/química , ARN de Transferencia Aminoácido-Específico/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Selenocisteína/biosíntesis , Selenocisteína/química
18.
J Bacteriol ; 194(2): 499-508, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22081394

RESUMEN

Selenophosphate synthetase (SPS) catalyzes the synthesis of selenophosphate, the selenium donor for the biosynthesis of selenocysteine and 2-selenouridine residues in seleno-tRNA. Selenocysteine, known as the 21st amino acid, is then incorporated into proteins during translation to form selenoproteins which serve a variety of cellular processes. SPS activity is dependent on both Mg(2+) and K(+) and uses ATP, selenide, and water to catalyze the formation of AMP, orthophosphate, and selenophosphate. In this reaction, the gamma phosphate of ATP is transferred to the selenide to form selenophosphate, while ADP is hydrolyzed to form orthophosphate and AMP. Most of what is known about the function of SPS has derived from studies investigating Escherichia coli SPS (EcSPS) as a model system. Here we report the crystal structure of the C17S mutant of SPS from E. coli (EcSPS(C17S)) in apo form (without ATP bound). EcSPS(C17S) crystallizes as a homodimer, which was further characterized by analytical ultracentrifugation experiments. The glycine-rich N-terminal region (residues 1 through 47) was found in the open conformation and was mostly ordered in both structures, with a magnesium cofactor bound at the active site of each monomer involving conserved aspartate residues. Mutating these conserved residues (D51, D68, D91, and D227) along with N87, also found at the active site, to alanine completely abolished AMP production in our activity assays, highlighting their essential role for catalysis in EcSPS. Based on the structural and biochemical analysis of EcSPS reported here and using information obtained from similar studies done with SPS orthologs from Aquifex aeolicus and humans, we propose a catalytic mechanism for EcSPS-mediated selenophosphate synthesis.


Asunto(s)
Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/fisiología , Fosfotransferasas/metabolismo , Catálisis , Clonación Molecular , Cristalización , Regulación Enzimológica de la Expresión Génica/fisiología , Modelos Moleculares , Mutagénesis , Compuestos de Organoselenio , Fosfotransferasas/genética , Conformación Proteica , ARN de Transferencia/biosíntesis , Selenocisteína/biosíntesis , Uridina/análogos & derivados , Uridina/biosíntesis
19.
Croat Med J ; 53(6): 535-50, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23275319

RESUMEN

Selenocysteine, the 21st amino acid, has been found in 25 human selenoproteins and selenoenzymes important for fundamental cellular processes ranging from selenium homeostasis maintenance to the regulation of the overall metabolic rate. In all organisms that contain selenocysteine, both the synthesis of selenocysteine and its incorporation into a selenoprotein requires an elaborate synthetic and translational apparatus, which does not resemble the canonical enzymatic system employed for the 20 standard amino acids. In humans, three synthetic enzymes, a specialized elongation factor, an accessory protein factor, two catabolic enzymes, a tRNA, and a stem-loop structure in the selenoprotein mRNA are critical for ensuring that only selenocysteine is attached to selenocysteine tRNA and that only selenocysteine is inserted into the nascent polypeptide in response to a context-dependent UGA codon. The abnormal selenium homeostasis and mutations in selenoprotein genes have been causatively linked to a variety of human diseases, which, in turn, sparked a renewed interest in utilizing selenium as the dietary supplement to either prevent or remedy pathologic conditions. In contrast, the importance of the components of the selenocysteine-synthetic machinery for human health is less clear. Emerging evidence suggests that enzymes responsible for selenocysteine formation and decoding the selenocysteine UGA codon, which by extension are critical for synthesis of the entire selenoproteome, are essential for the development and health of the human organism.


Asunto(s)
Selenocisteína/biosíntesis , Selenoproteínas/metabolismo , Salud , Humanos , Selenio/metabolismo , Selenocisteína/fisiología
20.
Mol Microbiol ; 82(3): 734-47, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21992107

RESUMEN

Proteins containing selenocysteine are found in members of all three domains of life, Bacteria, Eukarya and Archaea. A dedicated tRNA (tRNA(sec)) serves as a scaffold for selenocysteine synthesis. However, sequence and secondary structures differ in tRNA(sec) from the different domains. An Escherichia coli strain lacking the gene for tRNA(sec) could only be complemented with the homologue from Methanococcus maripaludis when a single base in the anticodon loop was exchanged demonstrating that this base is a crucial determinant for archaeal tRNA(sec) to function in E. coli. Complementation in trans of M. maripaludis JJ mutants lacking tRNA(sec) , O-phosphoseryl-tRNA(sec) kinase or O-phosphoseryl-tRNA(sec) :selenocysteine synthase with the corresponding genes from M. maripaludis S2 restored the mutant's ability to synthesize selenoproteins. However, only partial restoration of the wild-type selenoproteome was observed as only selenocysteine-containing formate dehydrogenase was synthesized. Quantification of transcripts showed that disrupting the pathway of selenocysteine synthesis leads to downregulation of selenoprotein gene expression, concomitant with upregulation of a selenium-independent backup system, which is not re-adjusted upon complementation. This transcriptional arrest was independent of selenophosphate but depended on the 'history' of the mutants and was inheritable, which suggests that a stable genetic switch may cause the resulting hierarchy of selenoproteins synthesized.


Asunto(s)
Vías Biosintéticas/genética , Eliminación de Gen , Regulación de la Expresión Génica Arqueal , Prueba de Complementación Genética , Methanococcus/genética , Selenocisteína/biosíntesis , Selenoproteínas/biosíntesis , Escherichia coli/genética , Perfilación de la Expresión Génica , Methanococcus/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA