Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.091
Filtrar
1.
Neuromolecular Med ; 26(1): 37, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266914

RESUMEN

As the primary connection between the eye and brain, the optic nerve plays a pivotal role in visual information transmission. Injuries to the optic nerve can occur for various reasons, including trauma, glaucoma, and neurodegenerative diseases. Retinal ganglion cells (RGCs), a type of neurons that extend axons through the optic nerve, can rapidly respond to injury and initiate cell death. Additionally, following optic nerve injury microglia, which serve as markers of neuroinflammation, transition from a resting state to an activated state. The phosphorylation of collapsin response mediator protein2 (CRMP2) in the semaphorin 3A (Sema3A) signalling pathway affects several processes, including axon guidance and neuron regeneration. In this study, we used an optic nerve crush (ONC) mouse model to investigate the effects of suppressing CRMP2 phosphorylation on microglia activation. We found that CRMP2 phosphorylation inhibitor suppressed RGCs loss and promoted neuronal regeneration following ONC. In addition, CRMP2 S522A mutant (CRMP2 KI) mice exhibited decreased microglial activation in both the retina and optic nerve following ONC. These results suggest that inhibiting the phosphorylation of CRMP2 can alleviate the loss of RGCs and microglial activation after optic nerve injury, providing insight into the development of treatments for optical neuropathies and neurodegenerative diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Microglía , Regeneración Nerviosa , Proteínas del Tejido Nervioso , Traumatismos del Nervio Óptico , Nervio Óptico , Retina , Células Ganglionares de la Retina , Semaforina-3A , Animales , Traumatismos del Nervio Óptico/fisiopatología , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/tratamiento farmacológico , Microglía/metabolismo , Microglía/efectos de los fármacos , Fosforilación , Ratones , Regeneración Nerviosa/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas del Tejido Nervioso/genética , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Nervio Óptico/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Compresión Nerviosa , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Ratones Transgénicos
2.
Kaohsiung J Med Sci ; 40(10): 877-889, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39177014

RESUMEN

Previous studies have supported a tumor-suppressive role of semaphorin 3A (SEMA3A) in several tumors including oral squamous cell carcinoma (OSCC). However, in-depth characterization of the role of SEMA3A in OSCC and the underlying molecular mechanisms is lacking. Gene and protein expressions were detected using quantitative real-time PCR, western blot assay, and immunohistochemistry. OSCC cell metastasis was evaluated using Transwell and angiogenesis of human umbilical vein endothelial cells (HUVECs) was determined using tube formation assay. The interactions among molecules were predicted using bioinformatics analysis and validated using luciferase activity experiment and RNA immunoprecipitation assay. Pulmonary metastasis was evaluated using hematoxylin and eosin staining after constructing a lung metastasis tumor model in mice. SEMA3A expression was decreased in OSCC cells and its overexpression led to suppression of epithelial-mesenchymal transition (EMT), migration, and invasion of OSCC cells and angiogenesis of HUVECs. miR-32-5p was identified as an upstream molecule of SEMA3A and long non-coding RNA NR2F2 antisense RNA 1 (NR2F2-AS1) was validated as an upstream gene of miR-32-5p. Further experiments revealed that the inhibitory effects of NR2F2-AS1 overexpression on EMT, migration, invasion of OSCC cells, and angiogenesis of HUVECs as well as tumor growth and metastasis in mice were mediated via the miR-32-5p/SEMA3A axis. To conclude, NR2F2-AS1 may attenuate OSCC cell metastasis and angiogenesis of HUVECs and suppress tumor growth and metastasis in mice via the miR-32-5p/SEMA3A axis.


Asunto(s)
Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Neoplasias de la Boca , ARN Largo no Codificante , Semaforina-3A , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Movimiento Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Ratones Desnudos
3.
Nat Cardiovasc Res ; 3(6): 734-753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39196233

RESUMEN

Prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease, increases worldwide and associates with type 2 diabetes and other cardiometabolic diseases. Here we demonstrate that Sema3a is elevated in liver sinusoidal endothelial cells of animal models for obesity, type 2 diabetes and MASLD. In primary human liver sinusoidal endothelial cells, saturated fatty acids induce expression of SEMA3A, and loss of a single allele is sufficient to reduce hepatic fat content in diet-induced obese mice. We show that semaphorin-3A regulates the number of fenestrae through a signaling cascade that involves neuropilin-1 and phosphorylation of cofilin-1 by LIM domain kinase 1. Finally, inducible vascular deletion of Sema3a in adult diet-induced obese mice reduces hepatic fat content and elevates very low-density lipoprotein secretion. Thus, we identified a molecular pathway linking hyperlipidemia to microvascular defenestration and early development of MASLD.


Asunto(s)
Células Endoteliales , Hígado , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Semaforina-3A , Transducción de Señal , Animales , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Semaforina-3A/metabolismo , Semaforina-3A/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Obesidad/metabolismo , Obesidad/patología , Obesidad/genética , Cofilina 1/metabolismo , Cofilina 1/genética , Modelos Animales de Enfermedad , Masculino , Fosforilación , Células Cultivadas , Ratones , Ratones Noqueados , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos
4.
Int Immunopharmacol ; 138: 112559, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955028

RESUMEN

BACKGROUND: Semaphorin 3A (Sema3A) is a member of neural guidance factor family well-known for inducing the collapse of nerve cell growth cone and regulating nerve redistribution. It also has been characterized as an immunoregulatory and tumor promoting factor. Our previous study showed that Sema3A was involved in the regulation of sympathetic innervation and neuropathic pain of endometriosis. Nevertheless, the role of Sema3A in the development of endometriosis and its potential upstreaming factor are still not clear. METHODS: Histology experiments were carried to detect the expression of Sema3A, hypoxia -inducible factor 1α (HIF-1α) and the distribution of macrophages. Cell experiments were used to explore the effect of Sema3A on the proliferation and migration of endometrial stromal cells (ESCs) and to confirm the regulatory action of HIF-1α on Sema3A. In vivo experiments were carried out to explore the role of Sema3A on the development of endometriosis. RESULTS: Sema3A was highly expressed in endometriotic lesions and could enhanced the proliferation and migration abilities of ESCs. Aberrant macrophage distribution was found in endometriotic lesions. Sema3A also promoted the differentiation of monocytes into anti-inflammatory macrophages, so indirectly mediating the proliferation and migration of ESCs. Hypoxic microenvironment induced Sema3A mRNA and protein expression in ESCs via HIF-1α. Administration of Sema3A promoted the development of endometriosis in a mouse model. CONCLUSIONS: Sema3A, which is regulated by HIF-1α, is a promoting factor for the development of endometriosis. Targeting Sema3A may be a potential treatment strategy to control endometriotic lesions.


Asunto(s)
Proliferación Celular , Endometriosis , Subunidad alfa del Factor 1 Inducible por Hipoxia , Macrófagos , Semaforina-3A , Endometriosis/patología , Endometriosis/inmunología , Endometriosis/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Femenino , Animales , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Movimiento Celular , Endometrio/patología , Endometrio/metabolismo , Células del Estroma/metabolismo , Células Cultivadas , Hipoxia/metabolismo , Adulto , Modelos Animales de Enfermedad , Diferenciación Celular
5.
J Neurochem ; 168(9): 2974-2988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38946488

RESUMEN

A growth cone is a highly motile tip of an extending axon that is crucial for neural network formation. Three-dimensional-structured illumination microscopy, a type of super-resolution light microscopy with a resolution that overcomes the optical diffraction limitation (ca. 200 nm) of conventional light microscopy, is well suited for studying the molecular dynamics of intracellular events. Using this technique, we discovered a novel type of filopodia distributed along the z-axis ("z-filopodia") within the growth cone. Z-filopodia were typically oriented in the direction of axon growth, not attached to the substratum, protruded spontaneously without microtubule invasion, and had a lifetime that was considerably shorter than that of conventional filopodia. Z-filopodia formation and dynamics were regulated by actin-regulatory proteins, such as vasodilator-stimulated phosphoprotein, fascin, and cofilin. Chromophore-assisted laser inactivation of cofilin induced the rapid turnover of z-filopodia. An axon guidance receptor, neuropilin-1, was concentrated in z-filopodia and was transported together with them, whereas its ligand, semaphorin-3A, was selectively bound to them. Membrane domains associated with z-filopodia were also specialized and resembled those of lipid rafts, and their behaviors were closely related to those of neuropilin-1. The results suggest that z-filopodia have unique turnover properties, and unlike xy-filopodia, do not function as force-generating structures for axon extension.


Asunto(s)
Conos de Crecimiento , Seudópodos , Conos de Crecimiento/metabolismo , Seudópodos/metabolismo , Animales , Proteínas de Microfilamentos/metabolismo , Neuropilina-1/metabolismo , Células Cultivadas , Factores Despolimerizantes de la Actina/metabolismo , Semaforina-3A/metabolismo , Proteínas Portadoras/metabolismo , Microscopía/métodos , Embrión de Pollo , Fosfoproteínas/metabolismo , Moléculas de Adhesión Celular
6.
Biochem Pharmacol ; 226: 116358, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38857830

RESUMEN

With societal development and an ageing population, psychiatric disorders have become a common cause of severe and long-term disability and socioeconomic burdens worldwide. Semaphorin 3A (Sema-3A) is a secreted glycoprotein belonging to the semaphorin family. Sema-3A is well known as an axon guidance factor in the neuronal system and a potent immunoregulator at all stages of the immune response. It is reported to have various biological functions and is involved in many human diseases, including autoimmune diseases, angiocardiopathy, osteoporosis, and tumorigenesis. The signals of sema-3A involved in the pathogenesis of these conditions, are transduced through its cognate receptors and diverse downstream signalling pathways. An increasing number of studies show that sema-3A plays important roles in synaptic and dendritic development, which are closely associated with the pathophysiological mechanisms of psychiatric disorders, including schizophrenia, depression, and autism, suggesting the involvement of sema-3A in the pathogenesis of mental diseases. This indicates that mutations in sema-3A and alterations in its receptors and signalling may compromise neurodevelopment and predispose patients to these disorders. However, the role of sema-3A in psychiatric disorders, particularly in regulating neurodevelopment, remains elusive. In this review, we summarise the recent progress in understanding sema-3A in the pathogenesis of mental diseases and highlight sema-3A as a potential target for the prevention and treatment of these diseases.


Asunto(s)
Esquizofrenia , Semaforina-3A , Animales , Humanos , Ansiedad/metabolismo , Depresión/metabolismo , Trastornos Mentales/metabolismo , Trastornos Mentales/genética , Esquizofrenia/metabolismo , Esquizofrenia/genética , Semaforina-3A/metabolismo , Semaforina-3A/genética , Semaforina-3A/fisiología , Transducción de Señal/fisiología
7.
J Dent Res ; 103(9): 889-898, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38910430

RESUMEN

Located at the interface of the dentin-pulp complex, the odontoblasts are specialized cells responsible for dentin synthesis and nociceptive signal detection in response to external stimuli. Recent studies have shown that the mechanosensitive ion channel PIEZO1 is involved in bone formation and remodeling through the influx of calcium ions, and it is abundantly expressed in odontoblasts. However, the specific role of PIEZO1 in reactionary dentinogenesis and the underlying mechanisms remain elusive. In this study, we found intense PIEZO1 expression in the plasma membrane and cytoplasm of odontoblasts in healthy human third molars, mouse mandibular molars, and human odontoblast-like cells (hOBLCs). In hOBLCs, PIEZO1 positively regulated DSPP, DMP1, and COL1A1 expression through the Ca2+/PI3K-Akt/SEMA3A signaling pathway. In addition, exogenous SEMA3A supplementation effectively reversed reduced mineralization capacity in PIEZO1-knockdown hOBLCs. In vivo, Piezo1 expression peaked at day 7 and returned to baseline at day 21 in a wild-type mice dentin injury model, with Sema3a presenting a similar expression pattern. To investigate the specific role of PIEZO1 in odontoblast-mediated reactionary dentinogenesis, mice with a conditional knockout of Piezo1 in odontoblasts were generated, and no significant differences in teeth phenotypes were observed between the control and conditional knockout (cKO) mice. Nevertheless, cKO mice exhibited reduced reactionary dentin formation and decreased Sema3a and Dsp positive staining after dentin injury, indicating impaired dental pulp repair by odontoblasts. In summary, these findings suggest that PIEZO1 enhances the mineralization capacity of hOBLCs in vitro via the Ca2+/PI3K-Akt/SEMA3A signaling pathway and contributes to reactionary dentinogenesis in vivo.


Asunto(s)
Dentinogénesis , Canales Iónicos , Odontoblastos , Semaforina-3A , Odontoblastos/metabolismo , Animales , Ratones , Canales Iónicos/metabolismo , Humanos , Dentinogénesis/fisiología , Semaforina-3A/metabolismo , Transducción de Señal/fisiología , Tercer Molar
8.
In Vitro Cell Dev Biol Anim ; 60(6): 609-615, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38727898

RESUMEN

Osteoblast-derived semaphorin3A (Sema3A) has been reported to be involved in bone protection, and Sema3A knockout mice have been reported to exhibit chondrodysplasia. From these reports, Sema3A is considered to be involved in chondrogenic differentiation and skeletal formation, but there are many unclear points about its function and mechanism in chondrogenic differentiation. This study investigated the pharmacological effects of Sema3A in chondrogenic differentiation. The amount of Sema3A secreted into the culture supernatant was measured using an enzyme-linked immunosorbent assay. The expression of chondrogenic differentiation-related factors, such as Type II collagen (COL2A1), Aggrecan (ACAN), hyaluronan synthase 2 (HAS2), SRY-box transcription factor 9 (Sox9), Runt-related transcription factor 2 (Runx2), and Type X collagen (COL10A1) in ATDC5 cells treated with Sema3A (1,10 and 100 ng/mL) was examined using real-time reverse transcription polymerase chain reaction. Further, to assess the deposition of total glycosaminoglycans during chondrogenic differentiation, ATDC5 cells were stained with Alcian Blue. Moreover, the amount of hyaluronan in the culture supernatant was measured by enzyme-linked immunosorbent assay. The addition of Sema3A to cultured ATDC5 cells increased the expression of Sox9, Runx2, COL2A1, ACAN, HAS2, and COL10A1 during chondrogenic differentiation. Moreover, it enhanced total proteoglycan and hyaluronan synthesis. Further, Sema3A was upregulated in the early stages of chondrogenic differentiation, and its secretion decreased later. Sema3A increases extracellular matrix production and promotes chondrogenic differentiation. To the best of our knowledge, this is the first study to demonstrate the role of Sema3A on chondrogenic differentiation.


Asunto(s)
Diferenciación Celular , Condrogénesis , Semaforina-3A , Animales , Ratones , Agrecanos/metabolismo , Agrecanos/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Condrocitos/metabolismo , Condrocitos/citología , Condrogénesis/efectos de los fármacos , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo X/metabolismo , Colágeno Tipo X/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Glicosaminoglicanos/metabolismo , Hialuronano Sintasas/metabolismo , Hialuronano Sintasas/genética , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Semaforina-3A/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética
9.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584583

RESUMEN

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Asunto(s)
Huesos , Semaforina-3A , Animales , Ratones , Huesos/metabolismo , Diferenciación Celular , Línea Celular , Dolor , Semaforina-3A/genética , Semaforina-3A/metabolismo
10.
Nat Commun ; 15(1): 3173, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609390

RESUMEN

Semaphorin-3A (SEMA3A) functions as a chemorepulsive signal during development and can affect T cells by altering their filamentous actin (F-actin) cytoskeleton. The exact extent of these effects on tumour-specific T cells are not completely understood. Here we demonstrate that Neuropilin-1 (NRP1) and Plexin-A1 and Plexin-A4 are upregulated on stimulated CD8+ T cells, allowing tumour-derived SEMA3A to inhibit T cell migration and assembly of the immunological synapse. Deletion of NRP1 in both CD4+ and CD8+ T cells enhance CD8+ T-cell infiltration into tumours and restricted tumour growth in animal models. Conversely, over-expression of SEMA3A inhibit CD8+ T-cell infiltration. We further show that SEMA3A affects CD8+ T cell F-actin, leading to inhibition of immune synapse formation and motility. Examining a clear cell renal cell carcinoma patient cohort, we find that SEMA3A expression is associated with reduced survival, and that T-cells appear trapped in SEMA3A rich regions. Our study establishes SEMA3A as an inhibitor of effector CD8+ T cell tumour infiltration, suggesting that blocking NRP1 could improve T cell function in tumours.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Humanos , Actinas , Linfocitos T CD8-positivos , Citoesqueleto , Semaforina-3A/genética
11.
J Cell Mol Med ; 28(8): e18201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568078

RESUMEN

Sensory nerves play a crucial role in maintaining bone homeostasis by releasing Semaphorin 3A (Sema3A). However, the specific mechanism of Sema3A in regulation of bone marrow mesenchymal stem cells (BMMSCs) during bone remodelling remains unclear. The tibial denervation model was used and the denervated tibia exhibited significantly lower mass as compared to sham operated bones. In vitro, BMMSCs cocultured with dorsal root ganglion cells (DRGs) or stimulated by Sema3A could promote osteogenic differentiation through the Wnt/ß-catenin/Nrp1 positive feedback loop, and the enhancement of osteogenic activity could be inhibited by SM345431 (Sema3A-specific inhibitor). In addition, Sema3A-stimulated BMMSCs or intravenous injection of Sema3A could promote new bone formation in vivo. To sum up, the coregulation of bone remodelling is due to the ageing of BMMSCs and increased osteoclast activity. Furthermore, the sensory neurotransmitter Sema3A promotes osteogenic differentiation of BMMSCs via Wnt/ß-catenin/Nrp1 positive feedback loop, thus promoting osteogenesis in vivo and in vitro.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Osteogénesis/genética , Semaforina-3A/genética , Retroalimentación , beta Catenina , Ganglios Espinales , Neuropilina-1/genética
12.
Neuromolecular Med ; 26(1): 13, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619671

RESUMEN

Normal tension glaucoma (NTG) is a progressive neurodegenerative disease in glaucoma families. Typical glaucoma develops because of increased intraocular pressure (IOP), whereas NTG develops despite normal IOP. As a subtype of open-angle glaucoma, NTG is characterized by retinal ganglion cell (RGC) degeneration, gradual loss of axons, and injury to the optic nerve. The relationship between glutamate excitotoxicity and oxidative stress has elicited great interest in NTG studies. We recently reported that suppressing collapsin response mediator protein 2 (CRMP2) phosphorylation in S522A CRMP2 mutant (CRMP2 KIKI) mice inhibited RGC death in NTG mouse models. This study evaluated the impact of the natural compounds huperzine A (HupA) and naringenin (NAR), which have therapeutic effects against glutamate excitotoxicity and oxidative stress, on inhibiting CMRP2 phosphorylation in mice intravitreally injected with N-methyl-D-aspartate (NMDA) and GLAST mutant mice. Results of the study demonstrated that HupA and NAR significantly reduced RGC degeneration and thinning of the inner retinal layer, and inhibited the elevated CRMP2 phosphorylation. These treatments protected against glutamate excitotoxicity and suppressed oxidative stress, which could provide insight into developing new effective therapeutic strategies for NTG.


Asunto(s)
Alcaloides , Glaucoma de Ángulo Abierto , Glaucoma , Glaucoma de Baja Tensión , Enfermedades Neurodegenerativas , Sesquiterpenos , Animales , Ratones , Modelos Animales de Enfermedad , Glaucoma/tratamiento farmacológico , Ácido Glutámico/toxicidad , Fosforilación , Células Ganglionares de la Retina , Semaforina-3A
13.
Gut ; 73(8): 1321-1335, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38670629

RESUMEN

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fenotipo , Semaforina-3A , Animales , Humanos , Ratones , Orientación del Axón/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Transducción de Señal
14.
Neurobiol Dis ; 194: 106466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471625

RESUMEN

In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.


Asunto(s)
Neuralgia , Receptores de N-Metil-D-Aspartato , Semaforina-3A , Animales , Ratas , Hiperalgesia , Corteza Insular , Neuralgia/terapia , Neuralgia/metabolismo , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Semaforina-3A/metabolismo
15.
Nat Commun ; 15(1): 1962, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438384

RESUMEN

Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.


Asunto(s)
Conectoma , Adulto , Humanos , Estudio de Asociación del Genoma Completo , Semaforina-3A , Genes Reguladores , Encéfalo/diagnóstico por imagen , Proteínas Quinasas , Proteínas Represoras , Proteínas de Microfilamentos , Péptidos y Proteínas de Señalización Intracelular
16.
J Cell Physiol ; 239(5): e31248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38501506

RESUMEN

The loss of semaphorin 3A (Sema3A), which is related to endothelial-to-mesenchymal transition (EndMT) in atrial fibrosis, is implicated in the pathogenesis of atrial fibrillation (AF). To explore the mechanisms by which EndMT affects atrial fibrosis and assess the potential of a Sema3A activator (naringin) to prevent atrial fibrosis by targeting transforming growth factor-beta (TGF-ß)-induced EndMT, we used human atria, isolated human atrial endocardial endothelial cells (AEECs), and used transgenic mice expressing TGF-ß specifically in cardiac tissues (TGF-ß transgenic mice). We evaluated an EndMT marker (Twist), a proliferation marker (proliferating cell nuclear antigen; PCNA), and an endothelial cell (EC) marker (CD31) through triple immunohistochemistry and confirmed that both EndMT and EC proliferation contribute to atrial endocardial fibrosis during AF in TGF-ß transgenic mice and AF patient tissue sections. Additionally, we investigated the impact of naringin on EndMT and EC proliferation in AEECs and atrial fibroblasts. Naringin exhibited an antiproliferative effect, to which AEECs were more responsive. Subsequently, we downregulated Sema3A in AEECs using small interfering RNA to clarify a correlation between the reduction in Sema3A and the elevation of EndMT markers. Naringin treatment induced the expression of Sema3A and a concurrent decrease in EndMT markers. Furthermore, naringin administration ameliorated AF and endocardial fibrosis in TGF-ß transgenic mice by stimulating Sema3A expression, inhibiting EndMT markers, reducing atrial fibrosis, and lowering AF vulnerability. This suggests therapeutic potential for naringin in AF treatment.


Asunto(s)
Fibrilación Atrial , Proliferación Celular , Células Endoteliales , Transición Epitelial-Mesenquimal , Flavanonas , Atrios Cardíacos , Semaforina-3A , Factor de Crecimiento Transformador beta , Animales , Humanos , Masculino , Ratones , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/genética , Fibrilación Atrial/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Flavanonas/farmacología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Ratones Transgénicos , Semaforina-3A/metabolismo , Semaforina-3A/genética , Factor de Crecimiento Transformador beta/metabolismo
17.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 244-249, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38430015

RESUMEN

Osteoarthritis (OA) is a major disease that causes disability in middle-aged and elderly people. A comprehensive understanding of its pathogenesis is of great significance in finding new clinical diagnosis and treatment schemes. The role of Semaphorin 3A (Sema3A) in OS has attracted attention recently, and the purpose of this study is to analyze the mechanisms underlying its impact on OS. First, a rat model of OS was established. Hematoxylin-eosin (HE) and TUNEL staining showed that the modeled rats presented typical pathological manifestations of OS, confirming the success of the modeling. Sema3A was significantly underexpressed in OS rats. Subsequently, Sema3A abnormal expression vectors were constructed to intervene in chondrocytes isolated from OS rats. It was found that the proliferation of chondrocytes was decreased, the apoptosis was increased, and the mitochondrial damage and autophagy were intensified after silencing Sema3A expression, while the above pathological processes were reversed when Sema3A expression was increased. In conclusion, Sema3A has an important influence on the pathological progression of OS, and molecular therapies targeting to increase Sema3A expression may become a new treatment for OS in the future.


Asunto(s)
Osteoartritis , Semaforina-3A , Animales , Ratas , Apoptosis/genética , Condrocitos/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo
18.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38373630

RESUMEN

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Asunto(s)
Electroacupuntura , MicroARNs , Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Ratas Sprague-Dawley , Semaforina-3A/farmacología , Axones , Regeneración Nerviosa/fisiología , Nervio Ciático/lesiones , Neuropatía Ciática/terapia , Traumatismos de los Nervios Periféricos/terapia , MicroARNs/genética , MicroARNs/farmacología
19.
Int J Oral Sci ; 16(1): 5, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238300

RESUMEN

Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.


Asunto(s)
Osteogénesis , Semaforina-3A , Humanos , Remodelación Ósea , Diferenciación Celular , Semaforina-3A/metabolismo , Semaforina-3A/farmacología , Ganglio del Trigémino/metabolismo
20.
J Hypertens ; 42(5): 816-827, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165021

RESUMEN

Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening disease and currently there is no pharmacological therapy. Sympathetic nerve overactivity plays an important role in the development of TAAD. Sympathetic innervation is mainly controlled by nerve growth factor (NGF, a key neural chemoattractant) and semaphoring 3A (Sema3A, a key neural chemorepellent), while the roles of these two factors in aortic sympathetic innervation and especially TAAD are unknown. We hypothesized that genetically manipulating the NGF/Sema3A ratio by the Ngf -driven Sema3a expression approach may reduce aortic sympathetic nerve innervation and mitigate TAAD progression. A mouse strain of Ngf gene-driven Sema3a expression (namely NgfSema3a/Sema3a mouse) was established by inserting the 2A-Sema3A expression frame to the Ngf terminating codon using CRISPR/Cas9 technology. TAAD was induced by ß-aminopropionitrile monofumarate (BAPN) both in NgfSema3a/Sema3a mice and wild type (WT) littermates. Contrary to our expectation, the BAPN-induced TAAD was severer in NgfSema3a/Sema3a mice than in wild-type (WT) mice. In addition, NgfSema3a/Sema3a mice showed higher aortic sympathetic innervation, inflammation and extracellular matrix degradation than the WT mice after BAPN treatment. The aortic vascular smooth muscle cells isolated from NgfSema3a/Sema3a mice and pretreated with BAPN in vivo for two weeks showed stronger capabilities of proliferation and migration than that from the WT mice. We conclude that the strategy of Ngf -driven Sema3a expression cannot suppress but worsens the BAPN-induced TAAD. By investigating the aortic phenotype of NgfSema3a/Sema3a mouse strain, we unexpectedly find a path to exacerbate BAPN-induced TAAD which might be useful in future TAAD studies.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Azidas , Desoxiglucosa , Animales , Ratones , Aminopropionitrilo/efectos adversos , Aneurisma de la Aorta Torácica/genética , Aneurisma de la Aorta Torácica/inducido químicamente , Aneurisma de la Aorta Torácica/metabolismo , Desoxiglucosa/análogos & derivados , Modelos Animales de Enfermedad , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/efectos adversos , Semaforina-3A/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...