Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2407394121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159375

RESUMEN

Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.


Asunto(s)
Aedes , Conducta Alimentaria , Humedad , Mosquitos Vectores , Oviposición , Animales , Aedes/fisiología , Oviposición/fisiología , Femenino , Conducta Alimentaria/fisiología , Mosquitos Vectores/fisiología , Sensilos/fisiología , Receptores Ionotrópicos de Glutamato/metabolismo , Antenas de Artrópodos/fisiología
2.
Curr Biol ; 34(16): 3644-3653.e3, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053466

RESUMEN

Members of the order Diptera, the true flies, are among the most maneuverable flying animals. These aerial capabilities are partially attributed to flies' possession of halteres, tiny club-shaped structures that evolved from the hindwings and play a crucial role in flight control. Halteres are renowned for acting as biological gyroscopes that rapidly detect rotational perturbations and help flies maintain a stable flight posture. Additionally, halteres provide rhythmic input to the wing steering system that can be indirectly modulated by the visual system. The multifunctional capacity of the haltere is thought to depend on arrays of embedded mechanosensors called campaniform sensilla that are arranged in distinct groups on the haltere's dorsal and ventral surfaces. Although longstanding hypotheses suggest that each array provides different information relevant to the flight control circuitry, we know little about how the haltere campaniforms are functionally organized. Here, we use in vivo calcium imaging during tethered flight to obtain population-level recordings of the haltere sensory afferents in specific fields of sensilla. We find that haltere feedback from both dorsal fields is continuously active, modulated under closed-loop flight conditions, and recruited during saccades to help flies actively maneuver. We also find that the haltere's multifaceted role may arise from the steering muscles of the haltere itself, regulating haltere stroke amplitude to modulate campaniform activity. Taken together, our results underscore the crucial role of efferent control in regulating sensor activity and provide insight into how the sensory and motor systems of flies coevolved.


Asunto(s)
Vuelo Animal , Sensilos , Animales , Vuelo Animal/fisiología , Sensilos/fisiología , Dípteros/fisiología , Mecanorreceptores/fisiología , Alas de Animales/fisiología
3.
Elife ; 132024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073076

RESUMEN

Establishing transepithelial ion disparities is crucial for sensory functions in animals. In insect sensory organs called sensilla, a transepithelial potential, known as the sensillum potential (SP), arises through active ion transport across accessory cells, sensitizing receptor neurons such as mechanoreceptors and chemoreceptors. Because multiple receptor neurons are often co-housed in a sensillum and share SP, niche-prevalent overstimulation of single sensory neurons can compromise neighboring receptors by depleting SP. However, how such potential depletion is prevented to maintain sensory homeostasis remains unknown. Here, we find that the Ih-encoded hyperpolarization-activated cyclic nucleotide-gated (HCN) channel bolsters the activity of bitter-sensing gustatory receptor neurons (bGRNs), albeit acting in sweet-sensing GRNs (sGRNs). For this task, HCN maintains SP despite prolonged sGRN stimulation induced by the diet mimicking their sweet feeding niche, such as overripe fruit. We present evidence that Ih-dependent demarcation of sGRN excitability is implemented to throttle SP consumption, which may have facilitated adaptation to a sweetness-dominated environment. Thus, HCN expressed in sGRNs serves as a key component of a simple yet versatile peripheral coding that regulates bitterness for optimal food intake in two contrasting ways: sweet-resilient preservation of bitter aversion and the previously reported sweet-dependent suppression of bitter taste.


Asunto(s)
Homeostasis , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Sensilos , Gusto , Animales , Sensilos/fisiología , Sensilos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Gusto/fisiología , Drosophila melanogaster/fisiología , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
4.
Proc Biol Sci ; 291(2024): 20240311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864337

RESUMEN

Halteres are multifunctional mechanosensory organs unique to the true flies (Diptera). A set of reduced hindwings, the halteres beat at the same frequency as the lift-generating forewings and sense inertial forces via mechanosensory campaniform sensilla. Though haltere ablation makes stable flight impossible, the specific role of wing-synchronous input has not been established. Using small iron filings attached to the halteres of tethered flies and an alternating electromagnetic field, we experimentally decoupled the wings and halteres of flying Drosophila and observed the resulting changes in wingbeat amplitude and head orientation. We find that asynchronous haltere input results in fast amplitude changes in the wing (hitches), but does not appreciably move the head. In multi-modal experiments, we find that wing and gaze optomotor responses are disrupted differently by asynchronous input. These effects of wing-asynchronous haltere input suggest that specific sensory information is necessary for maintaining wing amplitude stability and adaptive gaze control.


Asunto(s)
Drosophila melanogaster , Vuelo Animal , Alas de Animales , Animales , Alas de Animales/fisiología , Alas de Animales/anatomía & histología , Drosophila melanogaster/fisiología , Cabeza/fisiología , Cabeza/anatomía & histología , Mecanorreceptores/fisiología , Movimientos de la Cabeza/fisiología , Sensilos/fisiología , Fenómenos Biomecánicos
5.
Sci Adv ; 10(24): eadp3623, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875342

RESUMEN

Advanced social behavior, or eusociality, has been evolutionarily profound, allowing colonies of ants, termites, social wasps, and bees to dominate competitively over solitary species throughout the Cenozoic. Advanced sociality requires not just nestmate cooperation and specialization but refined coordination and communication. Here, we provide independent evidence that 100-million-year-old Cretaceous ants in amber were social, based on chemosensory adaptations. Previous studies inferred fossil ant sociality from individual ants preserved adjacent to others. We analyzed several fossil ants for their antennal sensilla, using original rotation imaging of amber microinclusions, and found an array of antennal sensilla, specifically for alarm pheromone detection and nestmate recognition, sharing distinctive features with extant ants. Although Cretaceous ants were stem groups, the fossilized sensilla confirm hypotheses of their complex sociality.


Asunto(s)
Comunicación Animal , Hormigas , Conducta Social , Animales , Hormigas/fisiología , Feromonas/metabolismo , Fósiles , Conducta Animal/fisiología , Evolución Biológica , Sensilos/fisiología
6.
Elife ; 122024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814697

RESUMEN

Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.


Asunto(s)
Larva , Mariposas Nocturnas , Sensilos , Sacarosa , Animales , Sacarosa/metabolismo , Sacarosa/farmacología , Larva/fisiología , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/efectos de los fármacos , Sensilos/fisiología , Sensilos/metabolismo , Gusto/fisiología , Percepción del Gusto/fisiología , Helicoverpa armigera
7.
Arthropod Struct Dev ; 79: 101345, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493543

RESUMEN

Aquatic insects represent a great portion of Arthropod diversity and the major fauna in inland waters. The sensory biology and neuroanatomy of these insects are, however, poorly investigated. This research aims to describe the antennal sensilla of nymphs of the stonefly Dinocras cephalotes using scanning electron microscopy and comparing them with the adult sensilla. Besides, central antennal pathways in nymphs and adults are investigated by neuron mass-tracing with tetramethylrhodamine, and their brain structures are visualized with an anti-synapsin antibody. No dramatic changes occur in the antennal sensilla during nymphal development, while antennal sensilla profoundly change from nymphs to adults when switching from an aquatic to an aerial lifestyle. However, similar brain structures are used in nymphs and adults to process diverging sensory information, perceived through different sensilla in water and air. These data provide valuable insights into the evolution of aquatic heterometabolous insects, maintaining a functional sensory system throughout development, including a distinct adaptation of the peripheral olfactory systems during the transition from detection of water-soluble chemicals to volatile compounds in the air. From a conservation biology perspective, the present data contribute to a better knowledge of the biology of stoneflies, which are very important bioindicators in rivers.


Asunto(s)
Insectos , Sensilos , Animales , Sensilos/fisiología , Microscopía Electrónica de Rastreo , Neoptera , Ninfa/anatomía & histología , Agua , Encéfalo , Antenas de Artrópodos/fisiología
8.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228178

RESUMEN

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Asunto(s)
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neuronas Receptoras Olfatorias , Ácidos Pentanoicos , Receptores Odorantes , Animales , Femenino , Bombyx/metabolismo , Sensilos/fisiología , Olfato , Neuronas Receptoras Olfatorias/metabolismo , Receptores Odorantes/metabolismo , Feromonas/metabolismo
9.
Bioinspir Biomim ; 19(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38211340

RESUMEN

During walking, sensory information is measured and monitored by sensory organs that can be found on and within various limb segments. Strain can be monitored by insect load sensors, campaniform sensilla (CS), which have components embedded within the exoskeleton. CS vary in eccentricity, size, and orientation, which can affect their sensitivity to specific strains. Directly investigating the mechanical interfaces that these sensors utilize to encode changes in load bears various obstacles, such as modeling of viscoelastic properties. To circumvent the difficulties of modeling and performing biological experiments in small insects, we developed 3-dimensional printed resin models based on high-resolution imaging of CS. Through the utilization of strain gauges and a motorized tensile tester, physiologically plausible strain can be mimicked while investigating the compression and tension forces that CS experience; here, this was performed for a field of femoral CS inDrosophila melanogaster. Different loading scenarios differentially affected CS compression and the likely neuronal activity of these sensors and elucidate population coding of stresses acting on the cuticle.


Asunto(s)
Dípteros , Insectos , Animales , Insectos/fisiología , Caminata , Sensilos/fisiología , Extremidades/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...