Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Toxins (Basel) ; 16(5)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38787076

RESUMEN

Kunitz-type peptide expression has been described in the venom of snakes of the Viperidae, Elapidae and Colubridae families. This work aimed to identify these peptides in the venom gland transcriptome of the coral snake Micrurus mipartitus. Transcriptomic analysis revealed a high diversity of venom-associated Kunitz serine protease inhibitor proteins (KSPIs). A total of eight copies of KSPIs were predicted and grouped into four distinctive types, including short KSPI, long KSPI, Kunitz-Waprin (Ku-WAP) proteins, and a multi-domain Kunitz-type protein. From these, one short KSPI showed high identity with Micrurus tener and Austrelaps superbus. The long KSPI group exhibited similarity within the Micrurus genus and showed homology with various elapid snakes and even with the colubrid Pantherophis guttatus. A third group suggested the presence of Kunitz domains in addition to a whey-acidic-protein-type four-disulfide core domain. Finally, the fourth group corresponded to a transcript copy with a putative 511 amino acid protein, formerly annotated as KSPI, which UniProt classified as SPINT1. In conclusion, this study showed the diversity of Kunitz-type proteins expressed in the venom gland transcriptome of M. mipartitus.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos , Perfilación de la Expresión Génica , Transcriptoma , Animales , Serpientes de Coral/genética , Venenos Elapídicos/genética , Venenos Elapídicos/química , Secuencia de Aminoácidos , Simulación por Computador , Serpientes Venenosas
2.
Nat Commun ; 15(1): 4310, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773068

RESUMEN

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Asunto(s)
Anticuerpos Neutralizantes , Serpientes de Coral , Anticuerpos de Dominio Único , Animales , Anticuerpos de Dominio Único/inmunología , Ratones , Anticuerpos Neutralizantes/inmunología , Serpientes de Coral/inmunología , Modelos Animales de Enfermedad , Antivenenos/inmunología , Venenos Elapídicos/inmunología , Femenino , Mordeduras de Serpientes/inmunología , Mordeduras de Serpientes/terapia , Epítopos/inmunología , Ratones Endogámicos BALB C , Técnicas de Visualización de Superficie Celular
3.
Toxins (Basel) ; 16(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38668589

RESUMEN

Coralsnakes (Micrurus spp.) are the only elapids found throughout the Americas. They are recognized for their highly neurotoxic venom, which is comprised of a wide variety of toxins, including the stable, low-mass toxins known as three-finger toxins (3FTx). Due to difficulties in venom extraction and availability, research on coralsnake venoms is still very limited when compared to that of other Elapidae snakes like cobras, kraits, and mambas. In this study, two previously described 3FTx from the venom of M. corallinus, NXH1 (3SOC1_MICCO), and NXH8 (3NO48_MICCO) were characterized. Using in silico, in vitro, and ex vivo experiments, the biological activities of these toxins were predicted and evaluated. The results showed that only NXH8 was capable of binding to skeletal muscle cells and modulating the activity of nAChRs in nerve-diaphragm preparations. These effects were antagonized by anti-rNXH8 or antielapidic sera. Sequence analysis revealed that the NXH1 toxin possesses eight cysteine residues and four disulfide bonds, while the NXH8 toxin has a primary structure similar to that of non-conventional 3FTx, with an additional disulfide bond on the first loop. These findings add more information related to the structural diversity present within the 3FTx class, while expanding our understanding of the mechanisms of the toxicity of this coralsnake venom and opening new perspectives for developing more effective therapeutic interventions.


Asunto(s)
Clonación Molecular , Serpientes de Coral , Venenos Elapídicos , Músculo Esquelético , Receptores Nicotínicos , Animales , Venenos Elapídicos/química , Venenos Elapídicos/toxicidad , Venenos Elapídicos/genética , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Secuencia de Aminoácidos , Masculino
4.
Toxins (Basel) ; 16(4)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668608

RESUMEN

In Colombia, Micrurus snakebites are classified as severe according to the national clinical care guidelines and must be treated with specific antivenoms. Unfortunately, these types of antivenoms are scarce in certain areas of the country and are currently reported as an unavailable vital medicine. To address this issue, La Universidad de Antioquia, through its spin-off Tech Life Saving, is leading a project to develop third-generation polyvalent freeze-dried antivenom. The goal is to ensure access to this therapy, especially in rural and dispersed areas. This project aims to evaluate the physicochemical and preclinical parameters (standard quality characteristics) of a lab-scale anti-elapid antivenom batch. The antivenom is challenged against the venoms of several Micrurus species, including M. mipartitus, M. dumerilii, M. ancoralis, M. dissoleucus, M. lemniscatus, M. medemi, M. spixii, M. surinamensis, and M. isozonus, following the standard quality characteristics set by the World Health Organization (WHO). The antivenom demonstrates an appearance consistent with standards, 100% solubility within 4 min and 25 s, an extractable volume of 10.39 mL, a pH of 6.04, an albumin concentration of 0.377 mg/mL (equivalent to 1.22% of total protein), and a protein concentration of 30.97 mg/mL. Importantly, it maintains full integrity of its F(ab')2 fragments and exhibits purity over 98.5%. Furthermore, in mice toxicity evaluations, doses up to 15 mg/mouse show no toxic effects. The antivenom also demonstrates a significant recognition pattern against Micrurus venoms rich in phospholipase A2 (PLA2) content, as observed in M. dumerilii, M. dissoleucus, and M. isozonus. The effective dose 50 (ED50) indicates that a single vial (10 mL) can neutralize 2.33 mg of M. mipartitus venom and 3.99 mg of M. dumerilii venom. This new anti-elapid third-generation polyvalent and freeze-dried antivenom meets the physicochemical parameters set by the WHO and the regulators in Colombia. It demonstrates significant efficacy in neutralizing the venom of the most epidemiologically important Micrurus species in Colombia. Additionally, it recognizes seven other species of Micrurus venom with a higher affinity for venoms exhibiting PLA2 toxins. Fulfilling these parameters represents the first step toward proposing a new pharmacological alternative for treating snakebites in Colombia, particularly in dispersed rural areas, given that this antivenom is formulated as a freeze-dried product.


Asunto(s)
Antivenenos , Venenos Elapídicos , Animales , Antivenenos/farmacología , Colombia , Venenos Elapídicos/toxicidad , Venenos Elapídicos/inmunología , Ratones , Mordeduras de Serpientes/tratamiento farmacológico , Serpientes de Coral , Masculino
5.
Toxicon ; 240: 107658, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395261

RESUMEN

Our study quantifies venom production in nine Mexican coral snake species (Micrurus), encompassing 76 specimens and 253 extractions. Noteworthy variations were observed, with M. diastema and M. laticollaris displaying diverse yields, ranging from 0.3 mg to 59 mg. For animals for which we have length data, there is a relationship between size and venom quantity. Twenty-eight percent of the observed variability in venom production can be explained by snake size, suggesting that other factors influence the amount of obtained venom. These findings are pivotal for predicting venom effects and guiding antivenom interventions. Our data offer insights into Micrurus venom yields, laying the groundwork for future research and aiding in medical response strategies. This study advances understanding coral snake venom production, facilitating informed medical responses to coral snake bites.


Asunto(s)
Antozoos , Serpientes de Coral , Mordeduras de Serpientes , Animales , México , Venenos Elapídicos , Antivenenos , Elapidae
6.
Toxins (Basel) ; 16(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38393182

RESUMEN

Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.


Asunto(s)
Antivenenos , Serpientes de Coral , Animales , Serpientes de Coral/metabolismo , Colombia , Venenos Elapídicos/química , Venenos de Serpiente/química
7.
Biochimie ; 216: 120-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37844754

RESUMEN

In Colombia, the Micrurus genus comprises 30 species, including M. mipartitus and M. dumerilii, which are of major clinical relevance due to their wide geographical distribution and the number of snakebites inflicted by them. These neurotoxic envenomations are characterized by neuromuscular paralysis attributed to venom components such as three-finger toxins (3FTx) and phospholipases (PLA2). Additionally, there is limited information available on the neutralizing coverage of commercially available antivenoms, underscoring the need to perform studies to assess the cross-neutralizing ability of these life-saving products. Therefore, we present an in-depth immunorecognition analysis by the anticoral-INS antivenom from Colombia on the M. mipartitus and M. dumerilii venoms. The antivenom cross-recognized the whole venoms and their components with different intensities. For instance, the antivenom showed better recognition on PLA2s than on 3FTxs in both venoms. Moreover, at doses tested, the antivenom totally neutralized the lethal effect of M. dumerilii venom; however, it did not neutralize this effect induced by M. mipartitus venom and its main toxic components from the southwestern region of the department of Antioquia. Furthermore, the anticoral-INS antivenom displayed better cross-immunorecognition of PLA2-predominant Micrurus venoms than of 3FTx-predominant Micrurus venoms. This highlights the need to include venoms from both types of venom patterns in the immunization mixture to produce antivenoms against coral snakes. Finally, our results suggest the need for further research to optimize the composition of immunizing mixtures for antivenom production and improve their efficacy against coral snake envenomation in Colombia and the Americas.


Asunto(s)
Antivenenos , Serpientes de Coral , Animales , Antivenenos/farmacología , Venenos Elapídicos/toxicidad , Fosfolipasas A2 , Elapidae
8.
Toxicon ; 237: 107537, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043715

RESUMEN

Shield-nose and Coral snakes (Aspidelaps spp.) are medium sized venomous snakes found throughout southern Africa. Little is known about the venom of these snakes and its clinical relevance, as human bites are uncommon. Neurological signs and symptoms usually develop following bites by this genus but evaluations of the severity are inconclusive. We report on the first confirmed human fatality by the Kunene Shield-nose Snake (Aspidelaps lubricus cowlesi) in a child. Envenomation by Aspidelaps and other snakes considered lesser-venomous - especially those possessing neurotoxic venom - should be treated with caution as they may result in life-threatening envenomation without established clinical management protocols.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Niño , Animales , Humanos , Mordeduras de Serpientes/diagnóstico , Antivenenos , Namibia , Elapidae , Venenos Elapídicos/toxicidad
9.
An Acad Bras Cienc ; 95(suppl 2): e20230565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38088733

RESUMEN

Identifying risk areas for envenomation by animals is relevant for public health, such as strategic distribution of antivenoms. Coral snakes are highly diverse in the Amazon, inhabit natural and human-modified environments, and the outcome of the cases tends to be serious and potentially lethal due to their neurotoxic venom. By integrating species' geographical records and environmental variables, we used species distribution modeling to predict the distribution of coral snake species in the Brazilian Amazonia. We analyzed the relationship between the predicted distribution of coral snake species, along with envenomation data in the region, to propose actions to reduce the number of cases and to provide tools for a better policy of public health. We conclude that the entire Amazon shows high environmental suitability for coral snakes, and such suitability explains little about the incidence of cases. This is probably due to the low human density in the Amazon and to coral snake traits such as secretive habits and non-agressive behavior. Differently from other venomous snakes, the scenario regarding coral snakebites precludes the detection of prominent geographical areas of concern and demands a broad and equitable availability of health centers throughout Amazonia and along other areas of occurrence of the genus Micrurus.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/epidemiología , Mordeduras de Serpientes/veterinaria , Antivenenos , Brasil/epidemiología , Geografía , Serpientes
10.
Toxins (Basel) ; 15(11)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999485

RESUMEN

Little is known of the biochemical composition and functional features of the venoms of poorly known Colombian coral snakes. Here, we provide a preliminary characterization of the venom of two Colombian endemic coral snake species, Micrurus medemi and M. sangilensis, as well as Colombian populations of M. helleri. Electrophoresis and RP-HPLC techniques were used to identify venom components, and assays were conducted to detect enzyme activities, including phospholipase A2, hyaluronidase, and protease activities. The median lethal dose was determined using murine models. Cytotoxic activities in primary cultures from hippocampal neurons and cancer cell lines were evaluated. The venom profiles revealed similarities in electrophoretic separation among proteins under 20 kDa. The differences in chromatographic profiles were significant, mainly between the fractions containing medium-/large-sized and hydrophobic proteins; this was corroborated by a proteomic analysis which showed the expected composition of neurotoxins from the PLA2 (~38%) and 3FTx (~17%) families; however, a considerable quantity of metalloproteinases (~12%) was detected. PLA2 activity and protease activity were higher in M. helleri venom according to qualitative and quantitative assays. M. medemi venom had the highest lethality. All venoms decreased cell viability when tested on tumoral cell cultures, and M. helleri venom had the highest activity in neuronal primary culture. These preliminary studies shed light on the venoms of understudied coral snakes and broaden the range of sources that could be used for subsequent investigations of components with applications to specific diseases. Our findings also have implications for the clinical manifestations of snake envenoming and improvements in its medical management.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Humanos , Animales , Ratones , Serpientes de Coral/metabolismo , Venenos Elapídicos/química , Antivenenos/metabolismo , Colombia , Proteómica , Venenos de Serpiente/metabolismo , Fosfolipasas A2/química , Péptido Hidrolasas/metabolismo , Elapidae/metabolismo
11.
Toxins (Basel) ; 15(11)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37999521

RESUMEN

Colombia encompasses three mountain ranges that divide the country into five natural regions: Andes, Pacific, Caribbean, Amazon, and Orinoquia. These regions offer an impressive range of climates, altitudes, and landscapes, which lead to a high snake biodiversity. Of the almost 300 snake species reported in Colombia, nearly 50 are categorized as venomous. This high diversity of species contrasts with the small number of studies to characterize their venom compositions and natural history in the different ecoregions. This work reviews the available information about the venom composition, isolated toxins, and potential applications of snake species found in Colombia. Data compilation was conducted according to the PRISMA guidelines, and the systematic literature search was carried out in Pubmed/MEDLINE. Venom proteomes from nine Viperidae and three Elapidae species have been described using quantitative analytical strategies. In addition, venoms of three Colubridae species have been studied. Bioactivities reported for some of the venoms or isolated components-such as antibacterial, cytotoxicity on tumoral cell lines, and antiplasmodial properties-may be of interest to develop potential applications. Overall, this review indicates that, despite recent progress in the characterization of venoms from several Colombian snakes, it is necessary to perform further studies on the many species whose venoms remain essentially unexplored, especially those of the poorly known genus Micrurus.


Asunto(s)
Serpientes de Coral , Toxinas Biológicas , Animales , Colombia , Venenos de Serpiente/toxicidad , Venenos de Serpiente/metabolismo , Elapidae/metabolismo , Toxinas Biológicas/metabolismo , Serpientes de Coral/metabolismo , Venenos Elapídicos/toxicidad , Venenos Elapídicos/metabolismo
12.
Cardiovasc Toxicol ; 23(3-4): 132-146, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813862

RESUMEN

In this work, we examined the action of two South American coralsnake (Micrurus corallinus and Micrurus dumerilii carinicauda) venoms on rat heart function in the absence and presence of treatment with Brazilian coralsnake antivenom (CAV) and varespladib (VPL), a potent phospholipase A2 inhibitor. Anesthetized male Wistar rats were injected with saline (control) or a single dose of venom (1.5 mg/kg, i.m.) and monitored for alterations in echocardiographic parameters, serum CK-MB levels and cardiac histomorphology, the latter using a combination of fractal dimension and histopathological methods. Neither of the venoms caused cardiac functional alterations 2 h after venom injection; however, M. corallinus venom caused tachycardia 2 h after venom injection, with CAV (given i.p. at an antivenom:venom ratio of 1:1.5, v/w), VPL (0.5 mg/kg, i.p.) and CAV + VPL preventing this increase. Both venoms increased the cardiac lesional score and serum CK-MB levels compared to saline-treated rats, but only the combination of CAV + VPL prevented these alterations, although VPL alone was able to attenuate the increase in CK-MB caused by M. corallinus venom. Micrurus corallinus venom increased the heart fractal dimension measurement, but none of the treatments prevented this alteration. In conclusion, M. corallinus and M. d. carinicauda venoms caused no major cardiac functional alterations at the dose tested, although M. corallinus venom caused transient tachycardia. Both venoms caused some cardiac morphological damage, as indicated by histomorphological analyses and the increase in circulating CK-MB levels. These alterations were consistently attenuated by a combination of CAV and VPL.


Asunto(s)
Serpientes de Coral , Elapidae , Masculino , Ratas , Animales , Antivenenos/farmacología , Venenos Elapídicos/toxicidad , Brasil , Ratas Wistar , Taquicardia
13.
Toxicon ; 225: 107056, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36804442

RESUMEN

Micrurus surinamensis is a semi-aquatic coral snake found in primary forest region and can cause relevant human accidents. In this work we investigated the toxic and antigenic activities of the Peruvian Micrurus surinamensis venom (MsV). We found that MsV show hyaluronidase activity but lack LAAO and PLA2 enzymatic activities. Interestingly, MsV induce edematogenic responses but cannot cause nociceptive effects. Furthermore, MsV can reduce in vitro cell viability in MGSO-3 cell line derived from human breast cancer tissue. To evaluate its antigenic potential, rabbits were immunized with MsV, which proved to be immunogenic. ELISA, immunobloting and in vivo neutralization assays demonstrated that the specific rabbit anti-MsV antivenom is more efficient than the therapeutic Brazilian antivenom in recognizing and neutralizing the lethal activity of MsV. MsV differs in protein profile and biological activities from M. frontalis venom (MfV), used as control, which impairs its recognition and neutralization by Brazilian therapeutic anti-elapidic antivenom. We performed a SPOT immunoassay for the identification of B-cell linear epitopes in the main toxins described for MsV targeted by the elicited neutralizing antibodies previously produced. A membrane containing 15-mer peptides representing the sequences of five 3TFxs and five PLA2s was produced and probed with anti- MsV antibodies. Results revealed important regions in 3FTx toxins for venom neutralization. Identifying the main MsV components and its biological activities can be helpful in guiding the production of antivenoms and in the optimization of treatment for coral snake envenomation in Brazil.


Asunto(s)
Serpientes de Coral , Toxinas Biológicas , Animales , Conejos , Humanos , Antivenenos/farmacología , Perú , Venenos Elapídicos/química , Toxinas Biológicas/química , Elapidae
14.
Toxicon ; 224: 107048, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36709049

RESUMEN

Herein, we report three new separate cases of human envenomations by Micrurus hemprichii for the Amazon, which is a biome where envenomations by Micrurus are seldom reported. Two women were bitten after stepping on the snakes and one man was bitten while handling the animal. All cases occurred in the peridomicile, in rural areas. The first case evolved mainly to local symptoms, but the patient was discharged before the identification of the snake and had to be called back for observation before being eventually discharged. In the second case, the patient presented transitory dyspnea and she was discharged after four days in hospital. In the third case, the patient showed only local symptoms, but he was about to receive unnecessary antivenom against coral snakes. Cases like these show the importance of educational problems regarding local venomous snakes in order to avoid bites and to provide the correct hospital treatment. For this, trained professionals in cases involving venomous animals are needed.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Masculino , Animales , Humanos , Femenino , Mordeduras de Serpientes/terapia , Brasil , Antivenenos , Venenos Elapídicos , Serpientes
15.
Toxicol Lett ; 374: 77-84, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528173

RESUMEN

The coralsnake Micrurus dumerilii (Elapidae) is reported to cause envenomings of medical importance. Previous studies characterized the protein composition of its venom, with phospholipase A2 (PLA2) proteins the most abundant. However, it is unknown which venom components are responsible for its lethal toxicity. Fractionation of M. dumerilii venom from Colombia was carried out using RP-HPLC and each fraction was screened for lethal effect in mice at a dose of 20 µg by intraperitoneal route. Results showed that only one fraction, F9, was lethal. This fraction displayed PLA2 activity, induced indirect hemolysis in vitro, as well as edema and myotoxicity in vivo. SDS-PAGE of unreduced F9 evidenced two bands of 8 and 15 kDa, respectively, consistent with the detection of proteins with masses of 13,217.77 Da, 7144.06 Da, and 7665.55 Da. Tryptic digestion of F9 followed by nESI-MS/MS revealed peptide sequences matching proteins of the three-finger toxin (3FTx) and PLA2 families. Immunization of a rabbit with F9 proteins elicited antibody titers up to 1:10,000 by ELISA. After serum fractionation with caprylic acid, the obtained IgG was able to neutralize the lethal effect of the complete venom of M. dumerilii using a challenge of 2 ×LD50 at the IgG/venom ratio of 50:1 (w/w). In conclusion, present results show that the lethal effect of M. dumerilii venom in mice is mainly driven by one fraction which contains 3FTx and PLA2 proteins. The antibodies produced against this fraction cross-recognized other PLA2s and neutralized the lethal effect of whole M. dumerilii venom, pointing out to the potential usefulness of F9 as a relevant antigen for improving current coral snake antivenoms.


Asunto(s)
Serpientes de Coral , Animales , Ratones , Conejos , Espectrometría de Masas en Tándem , Venenos Elapídicos/toxicidad , Elapidae/metabolismo , Antivenenos/farmacología , Fosfolipasas A2/metabolismo , Inmunoglobulina G/metabolismo , Dosificación Letal Mediana
18.
Toxins (Basel) ; 14(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36548722

RESUMEN

Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.


Asunto(s)
Antivenenos , Serpientes de Coral , Venenos Elapídicos , Fosfolipasas A2 , Animales , Ratones , Conejos , Antivenenos/biosíntesis , Antivenenos/genética , Antivenenos/inmunología , Venenos Elapídicos/enzimología , Fosfolipasas A2/biosíntesis , Fosfolipasas A2/genética , Fosfolipasas A2/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
19.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36499012

RESUMEN

Micrurus is a medically relevant genus of venomous snakes composed of 85 species. Bites caused by coral snakes are rare, but they are usually associated with very severe and life-threatening clinical manifestations. Ecuador is a highly biodiverse country with a complex natural environment, which is home to approximately 20% of identified Micrurus species. Additionally, it is on the list of Latin American countries with the highest number of snakebites. However, there is no local antivenom available against the Ecuadorian snake venoms, and the biochemistry of these venoms has been poorly explored. Only a limited number of samples collected in the country from the Viperidae family were recently characterised. Therefore, this study addressed the compositional patterns of two coral snake venoms from Ecuador, M. helleri and M. mipartitus, using venomics strategies, integrating sample fractionation, gel electrophoresis, and mass spectrometry. Chromatographic and electrophoretic profiles of these snake venoms revealed interspecific variability, which was ascertained by mass spectrometry. The two venoms followed the recently recognised dichotomic toxin expression trends displayed by Micrurus species: M. helleri venom contains a high proportion (72%) of phospholipase A2, whereas M. mipartitus venom is dominated by three-finger toxins (63%). A few additional protein families were also detected in these venoms. Overall, these results provide the first comprehensive views on the composition of two Ecuadorian coral snake venoms and expand the knowledge of Micrurus venom phenotypes. These findings open novel perspectives to further research the functional aspects of these biological cocktails of PLA2s and 3FTxs and stress the need for the preclinical evaluation of the currently used antivenoms for therapeutic purposes in Ecuador.


Asunto(s)
Serpientes de Coral , Mordeduras de Serpientes , Animales , Serpientes de Coral/metabolismo , Venenos Elapídicos/química , Antivenenos , Fosfolipasas A2/metabolismo , Venenos de Serpiente/metabolismo , Elapidae/metabolismo
20.
An Acad Bras Cienc ; 94(suppl 3): e20210991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36074426

RESUMEN

Batesian mimicry may result in remarkable cases of phenotypic convergence that represent classic examples of evolution through natural selection. The existence of mimicry systems among coral snakes, however, remains controversial because of contradictions between the predictions of mimetic theory and the empirical patterns of co-occurrence and species abundance. Here, we analyze the geographic distribution of coral snake species of the genus Micrurus and populations of the false coral snake Atractus latifrons in Amazonia, and perform ecological niche modeling (ENM) analyzes to generate potential geographic distributions of species of Micrurus and A. latifrons, identify patterns of co-occurrence and assess whether the distribution of A. latifrons coincides with the distribution of Micrurus species, which could suggest the existence of a possible mimetic relationship between the species. We identified six Micrurus species that may represent mimetic models for A. latifrons. The results of the co-occurrence analysis corroborates the results from ENM, indicating that chromatic patterns of A. latifrons and their respective model species are aggregated. Our study suggests that all color patterns of A. latifrons - including the tricolor monads, and the more common tricolor dyads and tricolor tetrads - may benefit from the resemblance with other Micrurus species as perfect and imperfect mimics.


Asunto(s)
Antozoos , Serpientes de Coral , Animales , Brasil , Selección Genética , Serpientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA