Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
J Periodontal Res ; 59(1): 63-73, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069670

RESUMEN

BACKGROUND/OBJECTIVES: It has been repeatedly demonstrated that cementum formation is a crucial step in periodontal regeneration. Hyaluronic acid (HA) is an important component of the extracellular matrix which regulates cells functions and cell-cell communication. Hyaluronic acid/derivatives have been used in regenerative periodontal therapy, but the cellular effects of HA are still unknown. To investigate the effects of HA on cementoblast functions, cell viability, migration, mineralization, differentiation, and mineralized tissue-associated genes and cementoblast-specific markers of the cementoblasts were tested. MATERIALS AND METHODS: Cementoblasts (OCCM-30) were treated with various dilutions (0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128) of HA and examined for cell viability, migration, mineralization, and gene expressions. The mRNA expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), collagen type I (COL-I), alkaline phosphatase (ALP), cementum protein-1 (CEMP-1), cementum attachment protein (CAP), and small mothers against decapentaplegic (Smad) -1, 2, 3, 6, 7, ß-catenin (Ctnnb1) were performed with real-time polymerase chain reaction (RT-PCR). Total RNA was isolated on days 3 and 8, and cell viability was determined using MTT assay on days 1 and 3. The cell mineralization was evaluated by von Kossa staining on day 8. Cell migration was assessed 2, 4, 6, and 24 hours following exposure to HA dilutions using an in vitro wound healing assay (0, 1:2, 1:4, 1:8). RESULTS: At dilution of 1:2 to 1:128, HA importantly increased cell viability (p < .01). HA at a dilution of 1/2 increased wound healing rates after 4 h compared to the other dilutions and the untreated control group. Increased numbers of mineralized nodules were determined at dilutions of 1:2, 1:4, and 1:8 compared with control group. mRNA expressions of mineralized tissue marker including COL-I, BSP, RunX2, ALP, and OCN significantly improved by HA treatments compared with control group both on 3 days and on 8 days (p < .01). Smad 2, Smad 3, Smad 7, and ß-catenin (Ctnnb1) mRNAs were up-regulated, while Smad1 and Smad 6 were not affected by HA administration. Additionally, HA at dilutions of 1:2, 1:4, and 1:8 remarkably enhanced CEMP-1 and CAP expressions in a dilution- and time-dependent manner (p < .01). CONCLUSIONS: The present results have demonstrated that HA affected the expression of both mineralized tissue markers and cementoblast-specific genes. Positive effects of HA on the cementoblast functions demonstrated that HA application may play a key role in cementum regeneration.


Asunto(s)
Cemento Dental , beta Catenina , beta Catenina/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ácido Hialurónico/farmacología , Línea Celular , Osteocalcina/metabolismo , Sialoproteína de Unión a Integrina/metabolismo , Diferenciación Celular , Movimiento Celular , ARN Mensajero/metabolismo
2.
Bone ; 179: 116961, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37951522

RESUMEN

Bone sialoprotein (BSP) is a multifunctional extracellular matrix (ECM) protein present in bone and cementum. Global in vivo ablation of BSP leads to bone mineralization defects, lack of acellular cementum, and periodontal breakdown. BSP harbors three main functional domains: N-terminal collagen-binding domain, hydroxyapatite-nucleating domain, and C-terminal RGD integrin-binding signaling domain. How each of these domains contributes to BSP function(s) is not understood. We hypothesized that collagen-binding and RGD domains play distinct roles in cementoblast functions. Three CRISPR/Cas9 gene-edited cell lines were derived from control wild-type (WT) OCCM.30 murine immortalized cementoblasts: 1) deletion of the N-terminus of BSP after signal peptide, including entire collagen binding domain (Ibsp∆N-Term); 2) deletion of exon 4 (majority of collagen-binding domain; Ibsp∆Ex4); and 3) deletion of C-terminus of BSP including the integrin binding RGD domain (Ibsp∆C-Term). Compared to WT, Ibsp∆Ex4 and Ibsp∆C-Term cell lines showed reduced BSP secretion, in vitro. Abnormal cell morphology was observed in all mutant cell lines, with Ibsp∆C-Term showing highly disorganized cytoskeleton. All mutant cell lines showed significantly lower cell proliferation compared to WT at all timepoints. Ibsp∆N-Term cells showed reduced cell migration by 24 h. All mutants exhibited over 50 % significant reduced mineralization at days 6 and 10. While WT cells were largely unaffected by seeding density, mutant cells failed to mineralize at lower cell density. Mutant cell lines diverged from WT and from each other by dysregulated expression in 23 genes involved in mineralization, ECM, and cell signaling. In summary, disabling BSP functional domains led to profound and distinct changes in cementoblast cell functions, especially dysregulated gene expression and reduced mineralization, in a way did not align with a straightforward narrative where each functional domain caused specific, expected differences. Instead, the study uncovered a significant level of complexity in how different mutant forms of BSP affected cell functions, in vitro.


Asunto(s)
Cemento Dental , Proteínas de la Matriz Extracelular , Ratones , Animales , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Cemento Dental/metabolismo , Colágeno , Integrinas , Oligopéptidos
3.
J Periodontol ; 95(3): 256-267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37492992

RESUMEN

BACKGROUND: New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS: To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS: Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION: Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.


Asunto(s)
Cemento Dental , Ligamento Periodontal , Ratones , Humanos , Animales , Cementogénesis , Periodoncio , Transducción de Señal , Diferenciación Celular , Sialoproteína de Unión a Integrina/metabolismo , Sialoproteína de Unión a Integrina/farmacología
4.
J Trace Elem Med Biol ; 81: 127337, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000168

RESUMEN

BACKGROUND: The growing use of zirconia as a ceramic material in dentistry is attributed to its biocompatibility, mechanical properties, esthetic appearance, and reduced bacterial adhesion. These favorable properties make ceramic materials a viable alternative to commonly used titanium alloys. Mimicking the physiological properties of blood flow, particularly the mechanosignaling in endothelial cells (ECs), is crucial for enhancing our understanding of their role in the response to zirconia exposure. METHODS: In this study, EC cultures were subjected to shear stress while being exposed to zirconia for up to 3 days. The conditioned medium obtained from these cultures was then used to expose osteoblasts for a duration of 7 days. To investigate the effects of zirconia on osteoblasts, we examined the expression of genes associated with osteoblast differentiation, including Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Additionally, we assessed the impact of mechanosignaling-related angiocrine factors on extracellular matrix (ECM) remodeling by measuring the activities of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) during the acquisition of the osteogenic phenotype, which precedes mineralization. RESULTS: Our data revealed that mechanosignaling-related angiocrine factors play a crucial role in promoting an osteoblastic phenotype in response to zirconia exposure. Specifically, exposed osteoblasts exhibited significantly higher expression levels of genes associated with osteoblast differentiation, such as Runx2, Osterix, bone sialoprotein, and osteocalcin genes. Furthermore, the activities of MMP2 and MMP9, which are involved in ECM remodeling, were modulated by mechanosignaling-related angiocrine factors. This modulation is likely an initial event preceding the mineralization phase. CONCLUSION: Based on our findings, we propose that mechanosignaling drives the release of angiocrine factors capable of modulating the osteogenic phenotype at the biointerface with zirconia. This process creates a microenvironment that promotes wound healing and osseointegration. Moreover, these results highlight the importance of considering the mechanosignaling of endothelial cells in the modulation of bone healing and osseointegration in the context of blood vessel effects. Our data provide new insights and open avenues for further investigation into the influence of mechanosignaling on bone healing and the osseointegration of dental devices.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Células Endoteliales , Osteocalcina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/farmacología , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Sialoproteína de Unión a Integrina/farmacología , Células Endoteliales/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Fenotipo , Diferenciación Celular , Osteoblastos/metabolismo , Titanio/farmacología , Propiedades de Superficie
5.
J Periodontol ; 94(11): 1351-1362, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37322861

RESUMEN

BACKGROUND: Resolvins are endogenous mediators of the resolution of inflammation. They are derived from omega-3 polyunsaturated fatty acid precursors. Resolvin D1 (RvD1) and Resolvin E1 (RvE1) are the best-characterized members for actively promoting periodontal regeneration in experimental animal models. Here, we evaluated the efficacy of RvD1 and RvE1 on cementoblasts, the key cells involved in dental cementum regeneration and the attachment of the tooth to the alveolar bone. METHODS: Immortalized mouse cementoblasts (OCCM-30) were treated with different concentrations (0.1-1000 ng/mL) of RvD1 and RvE1. Cell proliferation was measured using an electrical impedance-based real-time cell analyzer. Mineralization was evaluated with von Kossa staining. The mRNA expression of mineralized tissue-associated markers of bone sialoprotein (BSP), Type I collagen (COL I), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor 2 (RunX2), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of nuclear factor kappa B (NF-κB) (RANK), receptor activator of NF-κB ligand (RANKL), and extracellular matrix-degrading enzymes [matrix metalloproteinase (MMP)-1, MMP-2, MMP-3, MMP-9, and their tissue inhibitors (TIMP-1, TIMP-2)], RvE1 receptor (ChemR23) and RvD1 receptor (ALX/PFR2), cytokines (tumor necrosis factor-alpha {TNF-α}, interleukin {IL}-1ß, IL-6, IL-8, IL-10, IL-17), oxidative stress enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPX), and cyclooxygenase-2 (Cox-2)] were analyzed using quantitative polymerase chain reaction (qPCR). RESULTS: Both RvD1 and RvE1 (10-100 ng/mL) significantly increased the proliferation of cementoblasts and mineralized nodules at all concentrations (p < 0.05). RvE1 increased BSP, RunX2, and ALP compared with the RvD1 dose and time-dependently, while RvD1 and RvE1 differentially regulated COL-I. RvE1 increased OPG mRNA expression, whereas RANK-RANKL mRNA expression decreased by RvE1. MMP-2, MMP-3, MMP-9, TIMP-1, and TIMP-2 expressions were reduced by RvE1 compared with RvD1. Treatment of cementoblasts with RvD1 and RvE1 differentially affected cytokine and oxidative stress enzymes while significantly increasing their receptor expressions (ChemR23 and ALX/PFR2). CONCLUSIONS: RvD1 and RvE1 regulate proliferation, mineralization, and gene expression in cementoblasts using similar pathways while differentially affecting tissue degradation, suggesting a targeted therapeutic approach for cementum turnover during periodontal regeneration.


Asunto(s)
Cemento Dental , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico/análogos & derivados , Inhibidor Tisular de Metaloproteinasa-2 , Ratones , Animales , Cemento Dental/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Metaloproteinasa 3 de la Matriz , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Sialoproteína de Unión a Integrina/metabolismo , ARN Mensajero/metabolismo
6.
Ann Anat ; 249: 152102, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150306

RESUMEN

One of the major components in cementum extracellular matrix is bone sialoprotein (BSP). BSP knockout (Ibsp) mice were reported to have a nonfunctional hypo-mineralized cementum, as well as detachment and disorganization of the periodontal ligament tissue. However, studies investigating the influence of Ibsp in cementoblasts are missing yet. This study investigates the influences of Bsp in three cementoblasts cell lines (OCCM.30-WT,IbspΔNterm, and IbspKAE). The mRNA expression of cementoblast and osteoclast markers (Col1a1, Alpl, Ocn, Runx2, Ctsk, Rankl and Opg) and the cell morphology were compared. Additionally, a functional monocyte adhesion assay was performed. To understand the influence of external stimuli, the effect of Ibsp was investigated under static compressive force, mimicking the compression side of orthodontic tooth movement. Cementoblasts with genotype IbspΔNterm and IbspKAE showed slight differences in cell morphology compared to OCCM.30-WT, as well as different gene expression. Under compressive force, the Ibsp cell lines presented expression pattern markers similar to the OCCM.30-WT cell line. However, Cathepsin K was strongly upregulated in IbspΔNterm cementoblasts under compressive force. This study provides insight into the role of BSP in cementoblasts and explores the influence of BSP on periodontal ligament tissues. BSP markers in cementoblasts seem to be involved in the regulation of cementum organization as an important factor for a functional periodontium. In summary, our findings provide a basis for investigations regarding molecular biology interactions of BSP in cementoblasts, and a supporting input for understanding the periodontal and cellular cementum remodeling.


Asunto(s)
Cemento Dental , Ratones , Animales , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Cemento Dental/metabolismo , Ratones Noqueados , Línea Celular , Expresión Génica
7.
Biochem Pharmacol ; 211: 115540, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028462

RESUMEN

Bone metastases during lung cancer are common. Bone sialoprotein (BSP), a non-collagenous bone matrix protein, plays important functions in bone mineralization processes and in integrin-mediated cell-matrix interactions. Importantly, BSP induces bone metastasis in lung cancer, but the underlying mechanisms remain unclear. This study therefore sought to determine the intracellular signaling pathways responsible for BSP-induced migration and invasion of lung cancer cells to bone. Analyses of the Kaplan-Meier, TCGA, GEPIA and GENT2 databases revealed that high levels of BSP expression in lung tissue samples were associated with significantly decreased overall survival (hazard ratio = 1.17; p = 0.014) and with a more advanced clinical disease stage (F-value = 2.38, p < 0.05). We also observed that BSP-induced stimulation of matrix metalloproteinase (MMP)-14 promoted lung cancer cell migration and invasion via the PI3K/AKT/AP-1 signaling pathway. Notably, BSP promoted osteoclastogenesis in RAW 264.7 cells exposed to RANKL and BSP neutralizing antibody reduced osteoclast formation in conditioned medium (CM) from lung cancer cell lines. Finally, at 8 weeks after mice were injected with A549 cells or A549 BSP shRNA cells, the findings revealed that the knockdown of BSP expression significantly reduced metastasis to bone. These findings suggest that BSP signaling promotes lung bone metastasis via its direct downstream target gene MMP14, which reveals a novel potential therapeutic target for lung cancer bone metastases.


Asunto(s)
Neoplasias Óseas , Neoplasias Pulmonares , Ratones , Animales , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Metaloproteinasa 14 de la Matriz , Fosfatidilinositol 3-Quinasas , Línea Celular Tumoral , Neoplasias Óseas/metabolismo
8.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 57(12): 1209-1216, 2022 Dec 09.
Artículo en Chino | MEDLINE | ID: mdl-36509520

RESUMEN

Objective: To investigate the effects of long non-coding RNA (lncRNA) LINC01133 on the cementogenic differentiation of human periodontal ligament stem cells (hPDLSC) and the underlying mechanism. Methods: A total of 12 teeth were harvested from 10 patients aged 17-30 years in the Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University for impacted or orthodontic reasons from September 2021 to January 2022. The hPDLSCs were isolated from the teeth and transfected with small interfering RNA-LINC01133 (si-LINC01133) or small interfering RNA-negative control (si-NC). The si-LINC01133 was regarded as the experimental group, and the si-NC was regarded as the control one. The silencing efficiency of LINC01133 in the hPDLSCs was evaluated by real-time quantitative PCR (RT-qPCR). Western blotting was used to detect the protein expression levels of cementogenic differentiation-related factors including bone sialoprotein (BSP), cementum attachment protein (CAP), and cementum protein-1 (CEMP-1). Mitochondrial reactive oxygen species (mtROS) production was assessed using the MitoSox by flow cytometry. Mitochondrial membrane potential (MMP) was detected by JC-1 fluorescence staining. Mitochondrial respiratory chain complexes proteins including NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8 (NDUFB8), succinate dehydrogenase complex flavoprotein subunit A (SDHA), ubiquinol-cytochrome c reductase core protein 1 (UQCR1), cytochrome c oxidase subunit 4 isoform 1 (COXⅣ), and ATP synthase F1 subunit alpha (ATP5A) were evaluated by Western blotting. Results: The expression levels of LINC01133 could be suppressed by more than 60% with si-LINC01133 (control group: 1.000±0.000, experimental group: 0.385±0.128) (t=10.72, P<0.01). Suppression of LINC01133 in hPDLSCs decreased the levels of cementogenic differentiation-related proteins including BSP (control group: 1.000±0.000, experimental group: 0.664±0.179) (t=4.62, P<0.01) and CAP (control group: 1.000±0.000, experimental group: 0.736±0.229) (t=2.83, P<0.05). Suppression of LINC01133 in hPDLSCs increased the production of mtROS (control group: 1.000±0.000, experimental group: 1.458±0.185) (t=4.96, P<0.05) and the expression of NDUFB8 (control group: 1.000±0.000, experimental group: 1.683±0.397) (t=3.45, P<0.05), as well as decreased MMP levels (control group: 1.000±0.000, experimental group: 0.209±0.029) (t=53.99, P<0.01) and the expression of SDHA (control group: 1.000±0.000, experimental group: 0.428±0.228) (t=5.02, P<0.05). No significant changes in the UQCR1, COXⅣ, and ATP5A expression levels were found between the control group and exprimental group (P>0.05). Conclusions: LINC01133 regulates the cementogenic differentiation of hPDLSCs possibly via modulating the mitochondrial functions.


Asunto(s)
Ligamento Periodontal , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/metabolismo , Células Cultivadas , Células Madre , Diferenciación Celular , Sialoproteína de Unión a Integrina/metabolismo , Proteínas Mitocondriales/metabolismo , Mitocondrias/genética , ARN Interferente Pequeño/metabolismo , Osteogénesis
9.
Cell Rep ; 41(3): 111511, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36261010

RESUMEN

Glioblastoma (GBM) is characterized by extensive microvascular hyperproliferation. In addition to supplying blood to the tumor, GBM vessels also provide trophic support to glioma cells and serve as conduits for migration into the surrounding brain, promoting recurrence. Here, we enrich CD31-expressing glioma vascular cells (GVCs) and A2B5-expressing glioma tumor cells (GTCs) from primary GBM and use RNA sequencing to create a comprehensive molecular interaction map of the secreted and extracellular factors elaborated by GVCs that can interact with receptors and membrane molecules on GTCs. To validate our findings, we utilize functional assays, including a hydrogel-based migration assay and in vivo mouse models to demonstrate that one identified factor, the little-studied integrin binding sialoprotein (IBSP), enhances tumor growth and promotes the migration of GTCs along the vasculature. This perivascular niche interactome will serve as a resource to the research community in defining the potential functions of the GBM vasculature.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Ratones , Glioblastoma/patología , Sialoproteína de Unión a Integrina/metabolismo , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/metabolismo , Glioma/patología , Movimiento Celular , Hidrogeles
10.
Sci Rep ; 12(1): 15637, 2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36117187

RESUMEN

Human periodontal ligament stem cells (PDLSCs) have been studied as a promising strategy in regenerative approaches. The protease-activated receptor 1 (PAR1) plays a key role in osteogenesis and has been shown to induce osteogenesis and increase bone formation in PDLSCs. However, little is known about its effects when activated in PDLSCs as a cell sheet construct and how it would impact bone formation as a graft in vivo. Here, PDLSCs were obtained from 3 patients. Groups were divided into control, osteogenic medium and osteogenic medium + PAR1 activation by TFLLR-NH2 peptide. Cell phenotype was determined by flow cytometry and immunofluorescence. Calcium deposition was quantified by Alizarin Red Staining. Cell sheet microstructure was analyzed through light, scanning electron microscopy and histology and transplanted to Balb/c nude mice. Immunohistochemistry for bone sialoprotein (BSP), integrin ß1 and collagen type 1 and histological stains (H&E, Van Giesson, Masson's Trichrome and Von Kossa) were performed on the ex-vivo mineralized tissue after 60 days of implantation in vivo. Ectopic bone formation was evaluated through micro-CT. PAR1 activation increased calcium deposition in vitro as well as BSP, collagen type 1 and integrin ß1 protein expression and higher ectopic bone formation (micro-CT) in vivo.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Receptor PAR-1 , Animales , Calcio/metabolismo , Diferenciación Celular/fisiología , Colágeno/metabolismo , Humanos , Integrina beta1/metabolismo , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Ratones Desnudos , Osteogénesis/genética , Osteogénesis/fisiología , Ligamento Periodontal/patología , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Células Madre
11.
J Periodontal Res ; 57(5): 1014-1023, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35930685

RESUMEN

OBJECTIVE: To define the potential of polycaprolactone (PCL) scaffold for cementoblast delivery. BACKGROUND: Dental cementum is critical for tooth attachment and position, and its regenerative capabilities remain unpredictable. METHODS: PCL scaffolds were manufactured by the electrospinning technique at 10% and 20% (w/v) and seeded with cementoblasts (OCCM-30). Scaffolds were characterized for their morphology and biological performance by scanning electron microscopy (SEM), confocal and conventional histology, cytocompatibility (PrestoBlue assay), gene expression (type I collagen - Col1; bone sialoprotein - Bsp; runt-related transcription factor 2 - Runx-2; alkaline phosphatase - Alpl; osteopontin - Opn; osteocalcin - Ocn, osterix - Osx), and the potential to induce extracellular matrix deposition and mineralization in vitro. RESULTS: Overall, data analysis showed that PCL scaffolds allowed cell adhesion and proliferation, modulated the expression of key markers of cementoblasts, and led to enhanced extracellular matrix deposition and calcium deposition as compared to the control group. CONCLUSION: Altogether, our findings allow concluding that PCL scaffolds are a viable tool to culture OCCM-30 cells, leading to an increased potential to promote mineralization in vitro. Further studies should be designed in order to define the clinical relevance of cementoblast-loaded PCL scaffolds to promote new cementum formation.


Asunto(s)
Materiales Biocompatibles , Cemento Dental , Diferenciación Celular , Sialoproteína de Unión a Integrina/metabolismo , Poliésteres , Andamios del Tejido
12.
J Dent Res ; 101(10): 1238-1247, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35686360

RESUMEN

Bone sialoprotein (gene: Ibsp; protein: BSP) is a multifunctional extracellular matrix protein present in bone, cementum, and dentin. Accumulating evidence supports BSP as a key regulator of mineralized tissue formation via evolutionarily conserved functional domains, including a C-terminal integrin-binding Arg-Gly-Asp (RGD) domain implicated in extracellular matrix-cell signaling. Ablation of Ibsp in mice (Ibsp-/-) results in impaired bone growth and mineralization and defective osteoclastogenesis, with effects in the craniofacial region including reduced acellular cementum formation, detachment of the periodontal ligament (PDL), alveolar bone hypomineralization, and severe periodontal breakdown. We hypothesized that BSP-RGD plays an important role in cementum and alveolar bone formation and mineralization, as well as periodontal function. This hypothesis was tested by replacing the RGD motif with a nonfunctional Lys-Ala-Glu (KAE) sequence in (IbspKAE/KAE) mice and OCCM.30 murine (IbspKAE) cementoblasts. The RGD domain was not critical for acellular or cellular cementum formation in IbspKAE/KAE mice. However, PDL volume and thickness were increased, and significantly more tartrate-resistant acid phosphatase-positive osteoclasts were found on alveolar bone surfaces of IbspKAE/KAE mice versus wild type mice. PDL organization was disrupted as indicated by picrosirius red stain, second harmonic generation imaging, dynamic mechanical analysis, and decreased asporin proteoglycan localization. In vitro studies implicated RGD functions in cell migration, adhesion, and mineralization, and this was confirmed by an ossicle implant model where cells lacking BSP-RGD showed substantial defects as compared with controls. In total, the BSP-RGD domain is implicated in periodontal development, though the scale and scope of changes indicated by in vitro studies indicate that other factors may partially compensate for and reduce the phenotypic severity of mice lacking BSP-RGD in vivo.


Asunto(s)
Cemento Dental , Sialoproteína de Unión a Integrina , Oligopéptidos , Animales , Cemento Dental/metabolismo , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Oligopéptidos/metabolismo , Ligamento Periodontal/fisiología
13.
Biofactors ; 48(5): 1089-1110, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35661288

RESUMEN

Bone homeostasis is the equilibrium between organic and inorganic components of the extracellular matrix (ECM) and cells. Alteration of this balance has consequences on bone mass and architecture, resulting in conditions such as osteoporosis (OP). Given ECM protein mutual regulation and their effects on bone structure and mineralization, further insight into their expression is crucial to understanding bone biology under normal and pathological conditions. This study focused on Type I Collagen, which is mainly responsible for structural properties and mineralization of bone, and selected proteins implicated in matrix composition, mineral deposition, and cell-matrix interaction such as Decorin, Osteocalcin, Osteopontin, Bone Sialoprotein 2, Osteonectin and Transforming Growth Factor beta. We developed a novel multidisciplinary approach in order to assess bone matrix in healthy and OP conditions more comprehensively by exploiting the Fourier Transform Infrared Imaging (FTIRI) technique combined with histomorphometry, Sirius Red staining, immunohistochemistry, and Western Blotting. This innovatory procedure allowed for the analysis of superimposed tissue sections and revealed that the alterations in OP bone tissue architecture were associated with warped Type I Collagen structure and deposition but not with changes in the total protein amount. The detected changes in the expression and/or cooperative or antagonist role of Decorin, Osteocalcin, Osteopontin, and Bone Sialoprotein-2 indicate the deep impact of these NCPs on collagen features of OP bone. Overall, our strategy may represent a starting point for designing targeted clinical strategies aimed at bone mass preservation and sustain the FTIRI translational capability as upcoming support for traditional diagnostic methods.


Asunto(s)
Osteopontina , Osteoporosis , Colágeno , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Cabeza Femoral/química , Cabeza Femoral/metabolismo , Cabeza Femoral/patología , Análisis de Fourier , Humanos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Osteocalcina/análisis , Osteocalcina/genética , Osteocalcina/metabolismo , Osteonectina , Osteopontina/genética , Osteopontina/metabolismo , Osteoporosis/diagnóstico por imagen , Osteoporosis/patología , Factor de Crecimiento Transformador beta/metabolismo
14.
Biochem Biophys Res Commun ; 587: 9-15, 2022 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-34861472

RESUMEN

OBJECTIVE: The role of circadian clock in cementogenesis is unclear. This study examines the role of REV-ERBs, one of circadian clock proteins, in proliferation, migration and mineralization of cementoblasts to fill the gap in knowledge. METHODS: Expression pattern of REV-ERBα in cementoblasts was investigated in vivo and in vitro. CCK-8 assay, scratch wound healing assay, alkaline phosphatase (ALP) and alizarin red S (ARS) staining were performed to evaluate the effects of REV-ERBs activation by SR9009 on proliferation, migration and mineralization of OCCM-30, an immortalized cementoblast cell line. Furthermore, mineralization related markers including osterix (OSX), ALP, bone sialoprotein (BSP) and osteocalcin (OCN) were evaluated. RESULTS: Strong expression of REV-ERBα was found in cellular cementum around tooth apex. Rev-erbα mRNA oscillated periodically in OCCM-30 and declined after mineralization induction. REV-ERBs activation by SR9009 inhibited proliferation but promoted migration of OCCM-30 in vitro. Results of ALP and ARS staining suggested that REV-ERBs activation negatively regulated mineralization of OCCM-30. Mechanically, REV-ERBs activation attenuated the expression of OSX and its downstream targets including ALP, BSP and OCN. CONCLUSIONS: REV-ERBs are involved in cementogenesis and negatively regulate mineralization of cementoblasts via inhibiting OSX expression. Our study provides a potential target regarding periodontal and cementum regeneration.


Asunto(s)
Relojes Biológicos/genética , Calcificación Fisiológica/genética , Cemento Dental/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Transformada , Proliferación Celular/efectos de los fármacos , Cementogénesis/efectos de los fármacos , Cementogénesis/genética , Cemento Dental/citología , Cemento Dental/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Humanos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Pirrolidinas/farmacología , Transducción de Señal , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo , Tiofenos/farmacología
15.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830274

RESUMEN

The imbalance between bone resorption and bone formation in favor of resorption results in bone loss and deterioration of bone architecture. Osteoblast differentiation is a sequential event accompanying biogenesis of matrix vesicles and mineralization of collagen matrix with hydroxyapatite crystals. Considerable efforts have been made in developing naturally-occurring plant compounds, preventing bone pathologies, or enhancing bone regeneration. Coumarin aesculetin inhibits osteoporosis through hampering the ruffled border formation of mature osteoclasts. However, little is known regarding the effects of aesculetin on the impairment of matrix vesicle biogenesis. MC3T3-E1 cells were cultured in differentiation media with 1-10 µM aesculetin for up to 21 days. Aesculetin boosted the bone morphogenetic protein-2 expression, and alkaline phosphatase activation of differentiating MC3T3-E1 cells. The presence of aesculetin strengthened the expression of collagen type 1 and osteoprotegerin and transcription of Runt-related transcription factor 2 in differentiating osteoblasts for 9 days. When ≥1-5 µM aesculetin was added to differentiating cells for 15-18 days, the induction of non-collagenous proteins of bone sialoprotein II, osteopontin, osteocalcin, and osteonectin was markedly enhanced, facilitating the formation of hydroxyapatite crystals and mineralized collagen matrix. The induction of annexin V and PHOSPHO 1 was further augmented in ≥5 µM aesculetin-treated differentiating osteoblasts for 21 days. In addition, the levels of tissue-nonspecific alkaline phosphatase and collagen type 1 were further enhanced within the extracellular space and on matrix vesicles of mature osteoblasts treated with aesculetin, indicating matrix vesicle-mediated bone mineralization. Finally, aesculetin markedly accelerated the production of thrombospondin-1 and tenascin C in mature osteoblasts, leading to their adhesion to preformed collagen matrix. Therefore, aesculetin enhanced osteoblast differentiation, and matrix vesicle biogenesis and mineralization. These findings suggest that aesculetin may be a potential osteo-inductive agent preventing bone pathologies or enhancing bone regeneration.


Asunto(s)
Matriz Ósea/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Osteoblastos/citología , Umbeliferonas/farmacología , Animales , Matriz Ósea/efectos de los fármacos , Línea Celular , Colágeno Tipo I/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Osteoblastos/efectos de los fármacos , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Osteonectina/metabolismo , Osteopontina/metabolismo , Osteoprotegerina/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Cells ; 10(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34831122

RESUMEN

BACKGROUND: Hyaluronans exist in different forms, accordingly with molecular weight and degree of crosslinking. Here, we tested the capability to induce osteogenic differentiation in hDPSCs (human dental pulp stem cells) of three hyaluronans forms: linear pharmaceutical-grade hyaluronans at high and (HHA) low molecular weight (LHA) and hybrid cooperative complexes (HCC), containing both sizes. METHODS: hDPSCs were treated with HHA, LHA, HCC for 7, 14 and 21 days. The effects of hyaluronans on osteogenic differentiation were evaluated by qRT-PCR and WB of osteogenic markers and by Alizarin Red S staining. To identify the involved pathway, CD44 was analyzed by immunofluorescence, and YAP/TAZ expression was measured by qRT-PCR. Moreover, YAP/TAZ inhibitor-1 was used, and the loss of function of YAP/TAZ was evaluated by qRT-PCR, WB and immunofluorescence. RESULTS: We showed that all hyaluronans improves osteogenesis. Among these, HCC is the main inducer of osteogenesis, along with overexpression of bone related markers and upregulating CD44. We also found that this biological process is subordinate to the activation of YAP/TAZ pathway. CONCLUSIONS: We found that HA's molecular weight can have a relevant impact on HA performance for bone regeneration, and we unveil a new molecular mechanism by which HA acts on stem cells.


Asunto(s)
Huesos/citología , Diferenciación Celular , Pulpa Dental/citología , Ácido Hialurónico/farmacología , Transducción de Señal , Células Madre/citología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Separación Celular , Células Cultivadas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Hialuranos/metabolismo , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Osteopontina/genética , Osteopontina/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo
17.
Int J Mol Sci ; 22(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34681574

RESUMEN

(1) Aim: To immunohistochemically evaluate the effect of a volume-stable collagen scaffold (VCMX) on periodontal regeneration. (2) Methods: In eight beagle dogs, acute two-wall intrabony defects were treated with open flap debridement either with VCMX (test) or without (control). After 12 weeks, eight defects out of four animals were processed for paraffin histology and immunohistochemistry. (3) Results: All defects (four test + four control) revealed periodontal regeneration with cementum and bone formation. VCMX remnants were integrated in bone, periodontal ligament (PDL), and cementum. No differences in immunohistochemical labeling patterns were observed between test and control sites. New bone and cementum were labeled for bone sialoprotein, while the regenerated PDL was labeled for periostin and collagen type 1. Cytokeratin-positive epithelial cell rests of Malassez were detected in 50% of the defects. The regenerated PDL demonstrated a larger blood vessel area at the test (14.48% ± 3.52%) than at control sites (8.04% ± 1.85%, p = 0.0007). The number of blood vessels was higher in the regenerated PDL (test + control) compared to the pristine one (p = 0.012). The cell proliferative index was not statistically significantly different in pristine and regenerated PDL. (4) Conclusions: The data suggest a positive effect of VCMX on angiogenesis and an equally high cell turnover in the regenerated and pristine PDL. This VCMX supported periodontal regeneration in intrabony defects.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Colágeno Tipo I/metabolismo , Colágeno/administración & dosificación , Sialoproteína de Unión a Integrina/metabolismo , Ligamento Periodontal/metabolismo , Animales , Regeneración Ósea/efectos de los fármacos , Colágeno/química , Colágeno/farmacología , Cemento Dental/química , Perros , Regeneración Tisular Guiada Periodontal , Queratinas/metabolismo , Desbridamiento Periodontal , Ligamento Periodontal/química , Porosidad , Antígeno Nuclear de Célula en Proliferación/metabolismo , Andamios del Tejido/química
18.
Biochem Biophys Res Commun ; 581: 46-52, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34653678

RESUMEN

Excessive inflammation leads to periodontitis, which inhibits the osteogenic differentiation of human dental pulp stem cells (hDPSCs), irreversibly injured and difficultly repaired for the important dental pulp. Hence, it is necessary to study the functional gene to enhance the osteogenic differentiation of hDPSCs. Previous found that SNHG7 expression was increased in the osteogenic differentiation of hDPSCs. However, the regulatory functions of SNHG7 on osteogenic differentiation of hDPSCs in the inflammatory microenvironment still remains unknown. In this study, hDPSCs treatment with 50 ng/mL TNF-α to mimic the inflammatory microenvironment, then cultured in osteoblast differentiation medium for 14 days. SNHG7, miR-6512-3p, BSP, DSPP, DMP-1, RUNX2 and OPN in hDPSCs were detect by RT-qPCR. We found that SNHG7 expression was reduced during the osteogenic differentiation of hDPSCs after different concentrations TNF-α treatment. SNHG7 overexpression improved the TNF-α-induced suppression of calcium deposition, ALP activity, and the expression of BSP, DSPP, DMP-1, RUNX2 and OPN. Furthermore, SNHG7 can sponge with miR-6512-3p. miR-6512-3p expression was increased during the osteogenic differentiation of hDPSCs after different concentrations TNF-α treatment while inhibited after SNHG7 overexpression. knockdown of miR-6512-3p improved the TNF-α-induced suppression of calcium deposition, ALP activity, and the expression of BSP, DSPP, DMP-1, RUNX2 and OPN. Finally, miR-6512-3p overexpression reversed the effect of SNHG7 on the osteo/dentinogenic differentiation of TNF-α-treated hDPSCs. In conclusions, SNHG7 improves the osteogenic differentiation of hDPSCs by inhibiting miR-6512-3p expression under 50 ng/mL TNF-α-induced inflammatory environment, which provided potential targets for the treatment of periodontitis.


Asunto(s)
MicroARNs/genética , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , ARN Nucleolar Pequeño/genética , Células Madre/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Diferenciación Celular , Células Cultivadas , Microambiente Celular/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Pulpa Dental/citología , Pulpa Dental/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , MicroARNs/metabolismo , Modelos Biológicos , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , Osteopontina/genética , Osteopontina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Nucleolar Pequeño/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
19.
J Mater Chem B ; 9(36): 7506-7515, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551053

RESUMEN

Polyetheretherketone (PEEK) has been widely used in the fields of orthopedics and trauma, but weak osteointegration and bacterial infection affect its long-term stability and repair effects. Surface modification is an effective way to improve the osteogenic and antibacterial activity of PEEK implants. In the present study, a layer of acrylic acid (AA) polymer coating loaded with zinc ions (Zn2+) was constructed on the surface of PEEK (PEEK-AA-Zn) using a strategy of combining plasma-induced graft polymerization with a chemical immersion technique. Successful construction of the AA coating remarkably enhanced the hydrophilicity of PEEK, and effectively loaded and released Zn2+. In vitro cell culture using MC3T3-E1 preosteoblasts showed that the Zn2+ released from PEEK-AA-Zn promoted cell proliferation and elevated gene expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and bone sialoprotein (BSP). Antibacterial tests revealed that PEEK-AA-Zn efficiently inhibited the proliferation of Staphylococcus aureus (S. aureus). These results suggest that the combined method of graft polymerization and ion incorporation endows PEEK with excellent osteogenic and antibacterial activity, which provides a wide range of possibilities for developing PEEK implants with multifunctional properties for bone tissue repair.


Asunto(s)
Acrilatos/química , Antibacterianos/química , Benzofenonas/química , Materiales Biocompatibles/química , Gases em Plasma/química , Polímeros/química , Zinc/química , Animales , Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Sialoproteína de Unión a Integrina/genética , Sialoproteína de Unión a Integrina/metabolismo , Ratones , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/efectos de los fármacos , Polimerizacion , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Regulación hacia Arriba/efectos de los fármacos
20.
Nat Commun ; 12(1): 5196, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34465793

RESUMEN

Bone metastasis is an incurable complication of breast cancer. In advanced stages, patients with estrogen-positive tumors experience a significantly higher incidence of bone metastasis (>87%) compared to estrogen-negative patients (<56%). To understand the mechanism of this bone-tropism of ER+ tumor, and to identify liquid biopsy biomarkers for patients with high risk of bone metastasis, the secreted extracellular vesicles and cytokines from bone-tropic breast cancer cells are examined in this study. Both exosomal miR-19a and Integrin-Binding Sialoprotein (IBSP) are found to be significantly upregulated and secreted from bone-tropic ER+ breast cancer cells, increasing their levels in the circulation of patients. IBSP is found to attract osteoclast cells and create an osteoclast-enriched environment in the bone, assisting the delivery of exosomal miR-19a to osteoclast to induce osteoclastogenesis. Our findings reveal a mechanism by which ER+ breast cancer cells create a microenvironment favorable for colonization in the bone. These two secreted factors can also serve as effective biomarkers for ER+ breast cancer to predict their risks of bone metastasis. Furthermore, our screening of a natural compound library identifies chlorogenic acid as a potent inhibitor for IBSP-receptor binding to suppress bone metastasis of ER+ tumor, suggesting its preventive use for bone recurrence in ER+ patients.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/metabolismo , Exosomas/metabolismo , Sialoproteína de Unión a Integrina/metabolismo , MicroARNs/metabolismo , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Exosomas/genética , Femenino , Humanos , Sialoproteína de Unión a Integrina/genética , Ratones , Ratones Noqueados , Ratones Desnudos , MicroARNs/genética , Metástasis de la Neoplasia , Osteoclastos/metabolismo , Receptores de Estrógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA