Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Immunol Rev ; 326(1): 203-218, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39285525

RESUMEN

The increasing prevalence of immune-mediated non-communicable chronic diseases, such as food allergies, has prompted a deeper investigation into the role of the gut microbiome in modulating immune responses. Here, we explore the complex interactions between commensal microbes and the host immune system, highlighting the critical role of gut bacteria in maintaining immune homeostasis. We examine how modern lifestyle practices and environmental factors have disrupted co-evolved host-microbe interactions and discuss how changes in microbiome composition impact epithelial barrier function, responses to food allergens, and susceptibility to allergic diseases. Finally, we examine the potential of bioengineered microbiome-based therapies, and live biotherapeutic products, for reestablishing immune homeostasis to prevent or treat food allergies.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Simbiosis , Humanos , Animales , Microbioma Gastrointestinal/inmunología , Hipersensibilidad a los Alimentos/inmunología , Simbiosis/inmunología , Homeostasis , Alérgenos/inmunología , Alimentos , Inmunomodulación , Interacciones Microbiota-Huesped/inmunología , Probióticos/uso terapéutico
2.
Immun Inflamm Dis ; 12(7): e1316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023417

RESUMEN

BACKGROUND: The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE: This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS: The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION: The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.


Asunto(s)
Microbioma Gastrointestinal , Inmunidad Mucosa , Mucosa Intestinal , Humanos , Microbioma Gastrointestinal/inmunología , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Simbiosis/inmunología , Homeostasis/inmunología
3.
Immunity ; 57(6): 1428-1441.e8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38723638

RESUMEN

Induction of commensal-specific immunity contributes to tissue homeostasis, yet the mechanisms underlying induction of commensal-specific B cells remain poorly understood in part due to a lack of tools to identify these cells. Using phage display, we identified segmented filamentous bacteria (SFB) antigens targeted by serum and intestinal antibodies and generated B cell tetramers to track SFB-specific B cells in gut-associated lymphoid tissues. We revealed a compartmentalized response in SFB-specific B cell activation, with a gradient of immunoglobulin A (IgA), IgG1, and IgG2b isotype production along Peyer's patches contrasted by selective production of IgG2b within mesenteric lymph nodes. V(D)J sequencing and monoclonal antibody generation identified somatic hypermutation driven affinity maturation to SFB antigens under homeostatic conditions. Combining phage display and B cell tetramers will enable investigation of the ontogeny and function of commensal-specific B cell responses in tissue immunity, inflammation, and repair.


Asunto(s)
Linfocitos B , Animales , Linfocitos B/inmunología , Ratones , Ratones Endogámicos C57BL , Ganglios Linfáticos Agregados/inmunología , Activación de Linfocitos/inmunología , Antígenos Bacterianos/inmunología , Hipermutación Somática de Inmunoglobulina , Biblioteca de Péptidos , Ganglios Linfáticos/inmunología , Técnicas de Visualización de Superficie Celular , Simbiosis/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina A/inmunología
4.
Microbiol Res ; 285: 127758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781787

RESUMEN

The role of the plant innate immune system in the defense and symbiosis processes becomes integral in a complex network of interactions between plants and fungi. An understanding of the molecular characterization of the plant innate immune system is crucial because it constitutes plants' self-defense shield against harmful fungi, while creating mutualistic relationships with beneficial fungi. Due to the plant-induced awareness and their complexity of interaction with fungi, sufficient assessment of the participation of the plant innate immune system in ecological balance, agriculture, and maintenance of an infinite ecosystem is mandatory. Given the current global challenge, such as the surge of plant-infectious diseases, and pursuit of sustainable forms of agriculture; it is imperative to understand the molecular language of communication between plants and fungi. That knowledge can be practically used in diverse areas, e.g., in agriculture, new tactics may be sought after to try new methods that boost crop receptiveness against fungal pathogens and reduce the dependence on chemical management. Also, it could boost sustainable agricultural practices via enhancing mycorrhizal interactions that promote nutrient absorption and optimum cropping with limited exposure of environmental contamination. Moreover, this review offers insights that go beyond agriculture and can be manipulated to boost plant conservation, environmental restoration, and quality understanding of host-pathogen interactions. Consequently, this specific review paper has offered a comprehensive view of the complex plant innate immune-based responses with fungi and the mechanisms in which they interact.


Asunto(s)
Hongos , Interacciones Huésped-Patógeno , Inmunidad Innata , Enfermedades de las Plantas , Inmunidad de la Planta , Plantas , Simbiosis , Hongos/inmunología , Plantas/inmunología , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Agricultura , Micorrizas/fisiología , Ecosistema
6.
Nature ; 629(8013): 901-909, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658756

RESUMEN

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.


Asunto(s)
Colangitis Esclerosante , Microbioma Gastrointestinal , Inflamación , Hígado , Macrófagos , Enfermedad del Hígado Graso no Alcohólico , Simbiosis , Animales , Femenino , Humanos , Masculino , Ratones , Bacteroidetes/metabolismo , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/microbiología , Colangitis Esclerosante/patología , Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Perfilación de la Expresión Génica , Inflamación/inmunología , Inflamación/microbiología , Inflamación/patología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Hígado/inmunología , Hígado/patología , Hígado/microbiología , Macrófagos/citología , Macrófagos/inmunología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/microbiología , Enfermedad del Hígado Graso no Alcohólico/patología , Vena Porta , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/metabolismo , Análisis de la Célula Individual , Simbiosis/inmunología
7.
Nat Immunol ; 25(5): 790-801, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38664585

RESUMEN

Innate immune cells generate a multifaceted antitumor immune response, including the conservation of essential nutrients such as iron. These cells can be modulated by commensal bacteria; however, identifying and understanding how this occurs is a challenge. Here we show that the food commensal Lactiplantibacillus plantarum IMB19 augments antitumor immunity in syngeneic and xenograft mouse tumor models. Its capsular heteropolysaccharide is the major effector molecule, functioning as a ligand for TLR2. In a two-pronged manner, it skews tumor-associated macrophages to a classically active phenotype, leading to generation of a sustained CD8+ T cell response, and triggers macrophage 'nutritional immunity' to deploy the high-affinity iron transporter lipocalin-2 for capturing and sequestering iron in the tumor microenvironment. This process induces a cycle of tumor cell death, epitope expansion and subsequent tumor clearance. Together these data indicate that food commensals might be identified and developed into 'oncobiotics' for a multi-layered approach to cancer therapy.


Asunto(s)
Hierro , Microambiente Tumoral , Animales , Hierro/metabolismo , Ratones , Microambiente Tumoral/inmunología , Humanos , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Ratones Endogámicos C57BL , Lipocalina 2/metabolismo , Lipocalina 2/inmunología , Femenino , Simbiosis/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Activación de Macrófagos/inmunología , Ratones Noqueados
8.
Infect Immun ; 92(9): e0051623, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38647290

RESUMEN

The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/inmunología , Animales , Candida/inmunología , Candida/patogenicidad , Simbiosis/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Innata , Candidiasis/inmunología , Candidiasis/microbiología
9.
Nature ; 621(7977): 162-170, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587342

RESUMEN

Certain bacterial strains from the microbiome induce a potent, antigen-specific T cell response1-5. However, the specificity of microbiome-induced T cells has not been explored at the strain level across the gut community. Here, we colonize germ-free mice with complex defined communities (roughly 100 bacterial strains) and profile T cell responses to each strain. The pattern of responses suggests that many T cells in the gut repertoire recognize several bacterial strains from the community. We constructed T cell hybridomas from 92 T cell receptor (TCR) clonotypes; by screening every strain in the community against each hybridoma, we find that nearly all the bacteria-specific TCRs show a one-to-many TCR-to-strain relationship, including 13 abundant TCR clonotypes that each recognize 18 Firmicutes. By screening three pooled bacterial genomic libraries, we discover that these 13 clonotypes share a single target: a conserved substrate-binding protein from an ATP-binding cassette transport system. Peripheral regulatory T cells and T helper 17 cells specific for an epitope from this protein are abundant in community-colonized and specific pathogen-free mice. Our work reveals that T cell recognition of commensals is focused on widely conserved, highly expressed cell-surface antigens, opening the door to new therapeutic strategies in which colonist-specific immune responses are rationally altered or redirected.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Linfocitos T , Animales , Ratones , Antígenos de Superficie/inmunología , Bacterias/clasificación , Bacterias/inmunología , Firmicutes/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Linfocitos T/inmunología , Simbiosis/inmunología , Vida Libre de Gérmenes , Receptores de Antígenos de Linfocitos T/inmunología , Hibridomas/citología , Hibridomas/inmunología , Separación Celular
10.
Nature ; 607(7919): 563-570, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35831502

RESUMEN

Gut commensal bacteria with the ability to translocate across the intestinal barrier can drive the development of diverse immune-mediated diseases1-4. However, the key factors that dictate bacterial translocation remain unclear. Recent studies have revealed that gut microbiota strains can adapt and evolve throughout the lifetime of the host5-9, raising the possibility that changes in individual commensal bacteria themselves over time may affect their propensity to elicit inflammatory disease. Here we show that within-host evolution of the model gut pathobiont Enterococcus gallinarum facilitates bacterial translocation and initiation of inflammation. Using a combination of in vivo experimental evolution and comparative genomics, we found that E. gallinarum diverges into independent lineages adapted to colonize either luminal or mucosal niches in the gut. Compared with ancestral and luminal E. gallinarum, mucosally adapted strains evade detection and clearance by the immune system, exhibit increased translocation to and survival within the mesenteric lymph nodes and liver, and induce increased intestinal and hepatic inflammation. Mechanistically, these changes in bacterial behaviour are associated with non-synonymous mutations or insertion-deletions in defined regulatory genes in E. gallinarum, altered microbial gene expression programs and remodelled cell wall structures. Lactobacillus reuteri also exhibited broadly similar patterns of divergent evolution and enhanced immune evasion in a monocolonization-based model of within-host evolution. Overall, these studies define within-host evolution as a critical regulator of commensal pathogenicity that provides a unique source of stochasticity in the development and progression of microbiota-driven disease.


Asunto(s)
Bacterias , Traslocación Bacteriana , Evolución Biológica , Microbioma Gastrointestinal , Hígado , Bacterias/genética , Bacterias/inmunología , Bacterias/patogenicidad , Traslocación Bacteriana/genética , Pared Celular/genética , Enterococcus/genética , Enterococcus/inmunología , Microbioma Gastrointestinal/genética , Genómica , Interacciones Huésped-Patógeno/inmunología , Humanos , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/inmunología , Hígado/microbiología , Hígado/patología , Ganglios Linfáticos/microbiología , Mutación , Procesos Estocásticos , Simbiosis/genética , Simbiosis/inmunología
11.
J Immunol ; 208(2): 235-246, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-35017213

RESUMEN

The critical role of commensal microbiota in regulating the host immune response has been established. In addition, it is known that host-microbial interactions are bidirectional, and this interplay is tightly regulated to prevent chronic inflammatory disease. Although many studies have focused on the role of classic T cell subsets, unconventional lymphocytes such as NKT cells and innate lymphoid cells also contribute to the regulation of homeostasis at mucosal surfaces and influence the composition of the intestinal microbiota. In this review, we discuss the mechanisms involved in the cross-regulation between NKT cells, innate lymphoid cells, and the gut microbiota. Moreover, we highlight how disruptions in homeostasis can lead to immune-mediated disorders.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Células T Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Bacterias/inmunología , Hongos/inmunología , Microbioma Gastrointestinal/fisiología , Homeostasis/inmunología , Humanos , Inmunidad Innata/inmunología , Ratones , Simbiosis/inmunología , Linfocitos T Reguladores/inmunología
12.
Front Immunol ; 12: 761981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858414

RESUMEN

In inflammatory bowel disease (IBD), intestinal mucosa cell and intestinal epithelial cell are severely damaged, and then their susceptibility to bacteria increases, so many commensal bacteria become pathogenic. The pathogenic commensal bacteria can stimulate a series of compensatory immune responses in the intestine. However, the immune response prevents the intestinal tract from restoring homeostasis, which in turn produces an indispensable inflammatory response. On the contrary, in IBD, the fierce inflammatory response contributes to the development of IBD. However, the effect of commensal bacteria on inflammation in IBD has not been clearly studied. Therefore, we further summarize the changes brought about by the changes of commensal bacteria to the inflammation of the intestines and their mutual influence. This article reviews the protective mechanism of commensal bacteria in healthy people and the mechanism of commensal bacteria and immune response to the destruction of the intestinal barrier when IBD occurs. The treatment and prevention of IBD are also briefly summarized.


Asunto(s)
Bacterias/inmunología , Inmunidad Innata/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Mucosa Intestinal/inmunología , Intestinos/inmunología , Bacterias/patogenicidad , Citocinas/inmunología , Citocinas/metabolismo , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestinos/metabolismo , Intestinos/microbiología , Modelos Inmunológicos , Simbiosis/inmunología , Virulencia/inmunología
13.
Nature ; 600(7888): 302-307, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759313

RESUMEN

Small molecules derived from symbiotic microbiota critically contribute to intestinal immune maturation and regulation1. However, little is known about the molecular mechanisms that control immune development in the host-microbiota environment. Here, using a targeted lipidomic analysis and synthetic approach, we carried out a multifaceted investigation of immunomodulatory α-galactosylceramides from the human symbiont Bacteroides fragilis (BfaGCs). The characteristic terminal branching of BfaGCs is the result of incorporation of branched-chain amino acids taken up in the host gut by B. fragilis. A B. fragilis knockout strain that cannot metabolize branched-chain amino acids showed reduced branching in BfaGCs, and mice monocolonized with this mutant strain had impaired colonic natural killer T (NKT) cell regulation, implying structure-specific immunomodulatory activity. The sphinganine chain branching of BfaGCs is a critical determinant of NKT cell activation, which induces specific immunomodulatory gene expression signatures and effector functions. Co-crystal structure and affinity analyses of CD1d-BfaGC-NKT cell receptor complexes confirmed the interaction of BfaGCs as CD1d-restricted ligands. We present a structural and molecular-level paradigm of immunomodulatory control by interactions of endobiotic metabolites with diet, microbiota and the immune system.


Asunto(s)
Aminoácidos de Cadena Ramificada/inmunología , Aminoácidos de Cadena Ramificada/metabolismo , Bacteroides fragilis/metabolismo , Galactosilceramidas/inmunología , Galactosilceramidas/metabolismo , Microbioma Gastrointestinal/inmunología , Simbiosis/inmunología , Aminoácidos de Cadena Ramificada/química , Animales , Antígenos CD1d/inmunología , Bacteroides fragilis/genética , Humanos , Ratones , Modelos Animales , Modelos Moleculares , Células T Asesinas Naturales/citología , Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología
14.
Nutrients ; 13(11)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34836095

RESUMEN

The gut microbiota is a crucial factor in maintaining homeostasis. The presence of commensal microorganisms leads to the stimulation of the immune system and its maturation. In turn, dysbiosis with an impaired intestinal barrier leads to accelerated contact of microbiota with the host's immune cells. Microbial structural parts, i.e., pathogen-associated molecular patterns (PAMPs), such as flagellin (FLG), peptidoglycan (PGN), lipoteichoic acid (LTA), and lipopolysaccharide (LPS), induce inflammation via activation of pattern recognition receptors. Microbial metabolites can also develop chronic low-grade inflammation, which is the cause of many metabolic diseases. This article aims to systematize information on the influence of microbiota on chronic inflammation and the benefits of microbiota modification through dietary changes, prebiotics, and probiotic intake. Scientific research indicates that the modification of the microbiota in various disease states can reduce inflammation and improve the metabolic profile. However, since there is no pattern for a healthy microbiota, there is no optimal way to modify it. The methods of influencing microbiota should be adapted to the type of dysbiosis. Although there are studies on the microbiota and its effects on inflammation, this subject is still relatively unknown, and more research is needed in this area.


Asunto(s)
Disbiosis/inmunología , Microbioma Gastrointestinal/inmunología , Sistema Inmunológico/microbiología , Inflamación/microbiología , Enfermedad Crónica , Homeostasis , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Prebióticos/administración & dosificación , Probióticos/uso terapéutico , Simbiosis/inmunología
15.
Sci Rep ; 11(1): 19202, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584163

RESUMEN

In the present work, we established two novel embryonic cell lines from the mosquito Aedes fluviatilis containing or not the naturally occurring symbiont bacteria Wolbachia, which were called wAflu1 and Aflu2, respectively. We also obtained wAflu1 without Wolbachia after tetracycline treatment, named wAflu1.tet. Morphofunctional characterization was performed to help elucidate the symbiont-host interaction in the context of energy metabolism regulation and molecular mechanisms of the immune responses involved. The presence of Wolbachia pipientis improves energy performance in A. fluviatilis cells; it affects the regulation of key energy sources such as lipids, proteins, and carbohydrates, making the distribution of actin more peripheral and with extensions that come into contact with neighboring cells. Additionally, innate immunity mechanisms were activated, showing that the wAflu1 and wAflu1.tet cells are responsive after the stimulus using Gram negative bacteria. Therefore, this work confirms the natural, mutually co-regulating symbiotic relationship between W. pipientis and A. fluviatilis, modulating the host metabolism and immune pathway activation. The results presented here add important resources to the current knowledge of Wolbachia-arthropod interactions.


Asunto(s)
Aedes/microbiología , Inmunidad Innata , Wolbachia/inmunología , Aedes/inmunología , Aedes/metabolismo , Animales , Línea Celular , Femenino , Interacciones Microbiota-Huesped/inmunología , Simbiosis/inmunología
16.
Mol Plant ; 14(11): 1935-1950, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34314895

RESUMEN

An important question in biology is how organisms can associate with different microbes that pose no threat (commensals), pose a severe threat (pathogens), and those that are beneficial (symbionts). The root nodule symbiosis serves as an important model system for addressing such questions in the context of plant-microbe interactions. It is now generally accepted that rhizobia can actively suppress host immune responses during the infection process, analogous to the way in which plant pathogens can evade immune recognition. However, much remains to be learned about the mechanisms by which the host recognizes the rhizobia as pathogens and how, subsequently, these pathways are suppressed to allow establishment of the nitrogen-fixing symbiosis. In this study, we found that SymRK (Symbiosis Receptor-like Kinase) is required for rhizobial suppression of plant innate immunity in Lotus japonicus. SymRK associates with LjBAK1 (BRASSINOSTEROID INSENSITIVE 1-Associated receptor Kinase 1), a well-characterized positive regulator of plant innate immunity, and directly inhibits LjBAK1 kinase activity. Rhizobial inoculation enhances the association between SymRK and LjBAK1 in planta. LjBAK1 is required for the regulation of plant innate immunity and plays a negative role in rhizobial infection in L. japonicus. The data indicate that the SymRK-LjBAK1 protein complex serves as an intersection point between rhizobial symbiotic signaling pathways and innate immunity pathways, and support that rhizobia may actively suppress the host's ability to mount a defense response during the legume-rhizobium symbiosis.


Asunto(s)
Lotus/microbiología , Inmunidad de la Planta , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Rhizobium/fisiología , Simbiosis/inmunología , Proteínas de Arabidopsis/química , Lotus/inmunología , Proteínas de Plantas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Rhizobium/inmunología
17.
Nature ; 596(7870): 114-118, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34262174

RESUMEN

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
18.
Eur J Immunol ; 51(9): 2120-2136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242413

RESUMEN

Fundamental asymmetries between the host and its microbiome in enzymatic activities and nutrient storage capabilities have promoted mutualistic adaptations on both sides. As a result, the enteric immune system has evolved so as not to cause a zero-sum sterilization of non-self, but rather achieve a non-zero-sum self-reinforcing cooperation with its evolutionary partner the microbiome. In this review, we attempt to integrate the accumulated knowledge of immune-microbiome interactions into an evolutionary framework and trace the pattern of positive immune-microbiome feedback loops across epithelial, enteric nervous system, innate, and adaptive immune circuits. Indeed, the immune system requires commensal signals for its development and function, and reciprocally protects the microbiome from nutrient shortage and pathogen outgrowth. In turn, a healthy microbiome is the result of immune system curatorship as well as microbial ecology. The paradigms of host-microbiome asymmetry and the cooperative nature of their interactions identified in the gut are applicable across all tissues influenced by microbial activities. Incorporation of immune system influences into models of microbiome ecology will be a step forward toward defining what constitutes a healthy human microbiome and guide discoveries of novel host-microbiome mutualistic adaptations that may be harnessed for the promotion of human health.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Inmunidad Adaptativa/inmunología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/fisiología , Humanos , Inmunidad Innata/inmunología , Simbiosis/inmunología
19.
Nature ; 594(7863): 413-417, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33981034

RESUMEN

Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection1. Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen while limiting inflammatory anti-commensal responses1,2. Antigen-specific recognition of intestinal microorganisms by T cells has previously been described3,4. Although the local environment shapes the differentiation of effector cells3-5 it is unclear how microbiota-specific T cells are educated in the thymus. Here we show that intestinal colonization in early life leads to the trafficking of microbial antigens from the intestine to the thymus by intestinal dendritic cells, which then induce the expansion of microbiota-specific T cells. Once in the periphery, microbiota-specific T cells have pathogenic potential or can protect against related pathogens. In this way, the developing microbiota shapes and expands the thymic and peripheral T cell repertoire, allowing for enhanced recognition of intestinal microorganisms and pathogens.


Asunto(s)
Células Dendríticas/inmunología , Microbioma Gastrointestinal/inmunología , Linfocitos T/citología , Linfocitos T/inmunología , Timo/citología , Timo/inmunología , Envejecimiento/inmunología , Animales , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , ADN Bacteriano/análisis , Células Dendríticas/metabolismo , Escherichia coli/inmunología , Femenino , Masculino , Ratones , Especificidad de Órganos , Salmonella/inmunología , Simbiosis/inmunología , Timo/metabolismo
20.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975932

RESUMEN

Intestinal microbiomes are of vital importance in antagonizing systemic viral infection. However, very little literature has shown whether commensal bacteria play a crucial role in protecting against enteric virus systemic infection from the aspect of modulating host innate immunity. In the present study, we utilized an enteric virus, encephalomyocarditis virus (EMCV), to inoculate mice treated with phosphate-buffered saline (PBS) or given an antibiotic cocktail (Abx) orally or intraperitoneally to examine the impact of microbiota depletion on virulence and viral replication in vivo Microbiota depletion exacerbated the mortality, neuropathogenesis, viremia, and viral burden in brains following EMCV infection. Furthermore, Abx-treated mice exhibited severely diminished mononuclear phagocyte activation and impaired type I interferon (IFN) production and expression of IFN-stimulated genes (ISG) in peripheral blood mononuclear cells (PBMC), spleens, and brains. With the help of fecal bacterial 16S rRNA sequencing of PBS- and Abx-treated mice, we identified a single commensal bacterium, Blautia coccoides, that can restore mononuclear phagocyte- and IFNAR (IFN-α/ß receptor)-dependent type I IFN responses to restrict systemic enteric virus infection. These findings may provide insight into the development of novel therapeutics for preventing enteric virus infection or possibly alleviating clinical diseases by activating host systemic innate immune responses via respective probiotic treatment using B. coccoidesIMPORTANCE While cumulative data indicate that indigenous commensal bacteria can facilitate enteric virus infection, little is known regarding whether intestinal microbes have a protective role in antagonizing enteric systemic infection by modulating host innate immunity. Although accumulating literature has pointed out that the microbiota has a fundamental impact on host systemic antiviral innate immune responses mediated by type I interferon (IFN), only a few specific commensal bacteria species have been revealed to be capable of regulating IFN-I and ISG expression, not to mention the underlying mechanisms. Thus, it is important to understand the cross talk between microbiota and host anti-enteric virus innate immune responses and characterize the specific bacterial species that possess protective functions. Our study demonstrates how fundamental innate immune mediators such as mononuclear phagocytes and type I IFN are regulated by commensal bacteria to antagonize enteric virus systemic infection. In particular, we have identified a novel commensal bacterium, Blautia coccoides, that can restrict enteric virus replication and neuropathogenesis by activating IFN-I and ISG responses in mononuclear phagocytes via an IFNAR- and STAT1-mediated signaling pathway.


Asunto(s)
Infecciones por Cardiovirus/prevención & control , Virus de la Encefalomiocarditis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Interferón Tipo I/inmunología , Viremia/inmunología , Viremia/prevención & control , Animales , Antibacterianos/administración & dosificación , Infecciones por Cardiovirus/inmunología , Clostridiales/inmunología , Virus de la Encefalomiocarditis/patogenicidad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Simbiosis/inmunología , Replicación Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...