Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.146
Filtrar
1.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709307

RESUMEN

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Ácido Láctico , Lipopolisacáridos , Transportadores de Ácidos Monocarboxílicos , Fibrosis Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Lipopolisacáridos/farmacología , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inhibidores , Ratones , Ácido Láctico/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ratones Endogámicos C57BL , Línea Celular , Masculino , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
2.
Prostate ; 84(9): 814-822, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558458

RESUMEN

BACKGROUND: Tumor initiation and progression necessitate a metabolic shift in cancer cells. Consequently, the progression of prostate cancer (PCa), a leading cause of cancer-related deaths in males globally, involves a shift from lipogenic to glycolytic metabolism. Androgen deprivation therapy (ADT) serves as the standard treatment for advanced-stage PCa. However, despite initial patient responses, castrate resistance emerges ultimately, necessitating novel therapeutic approaches. Therefore, in this study, we aimed to investigate the role of monocarboxylate transporters (MCTs) in PCa post-ADT and evaluate their potential as therapeutic targets. METHODS: PCa cells (LNCaP and C4-2 cell line), which has high prostate-specific membrane antigen (PSMA) and androgen receptor (AR) expression among PCa cell lines, was used in this study. We assessed the expression of MCT1 in PCa cells subjected to ADT using charcoal-stripped bovine serum (CSS)-containing medium or enzalutamide (ENZ). Furthermore, we evaluated the synergistic anticancer effects of combined treatment with ENZ and SR13800, an MCT1 inhibitor. RESULTS: Short-term ADT led to a significant upregulation in folate hydrolase 1 (FOLH1) and solute carrier family 16 member 1 (SLC16A1) gene levels, with elevated PSMA and MCT1 protein levels. Long-term ADT induced notable changes in cell morphology with further upregulation of FOLH1/PSMA and SLC16A1/MCT1 levels. Treatment with ENZ, a nonsteroidal anti-androgen, also increased PSMA and MCT1 expression. However, combined therapy with ENZ and SR13800 led to reduced PSMA level, decreased cell viability, and suppressed expression of cancer stem cell markers and migration indicators. Additionally, analysis of human PCa tissues revealed a positive correlation between PSMA and MCT1 expression in tumor regions. CONCLUSIONS: Our results demonstrate that ADT led to a significant upregulation in MCT1 levels. However, the combination of ENZ and SR13800 demonstrated a promising synergistic anticancer effect, highlighting a potential therapeutic significance for patients with PCa undergoing ADT.


Asunto(s)
Antagonistas de Andrógenos , Benzamidas , Transportadores de Ácidos Monocarboxílicos , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata , Simportadores , Masculino , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/genética , Línea Celular Tumoral , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Nitrilos/farmacología , Simportadores/metabolismo , Simportadores/antagonistas & inhibidores , Simportadores/genética , Benzamidas/farmacología
3.
Viruses ; 16(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38675909

RESUMEN

Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.


Asunto(s)
Adenoviridae , Neoplasias de la Mama , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Viroterapia Oncolítica , Virus Oncolíticos , Paclitaxel , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/farmacología , Adenoviridae/genética , Adenoviridae/fisiología , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Viroterapia Oncolítica/métodos , Femenino , Línea Celular Tumoral , Animales , Ratones , Simportadores/metabolismo , Simportadores/genética , Vectores Genéticos/genética
4.
Sci Rep ; 14(1): 9355, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654093

RESUMEN

Thyroid hormones (TH) play critical roles during nervous system development and patients carrying coding variants of MCT8 (monocarboxylate transporter 8) or THRA (thyroid hormone receptor alpha) present a spectrum of neurological phenotypes resulting from perturbed local TH action during early brain development. Recently, human cerebral organoids (hCOs) emerged as powerful in vitro tools for disease modelling recapitulating key aspects of early human cortex development. To begin exploring prospects of this model for thyroid research, we performed a detailed characterization of the spatiotemporal expression of MCT8 and THRA in developing hCOs. Immunostaining showed MCT8 membrane expression in neuronal progenitor cell types including early neuroepithelial cells, radial glia cells (RGCs), intermediate progenitors and outer RGCs. In addition, we detected robust MCT8 protein expression in deep layer and upper layer neurons. Spatiotemporal SLC16A2 mRNA expression, detected by fluorescent in situ hybridization (FISH), was highly concordant with MCT8 protein expression across cortical cell layers. FISH detected THRA mRNA expression already in neuroepithelium before the onset of neurogenesis. THRA mRNA expression remained low in the ventricular zone, increased in the subventricular zone whereas strong THRA expression was observed in excitatory neurons. In combination with a robust up-regulation of known T3 response genes following T3 treatment, these observations show that hCOs provide a promising and experimentally tractable model to probe local TH action during human cortical neurogenesis and eventually to model the consequences of impaired TH function for early cortex development.


Asunto(s)
Corteza Cerebral , Transportadores de Ácidos Monocarboxílicos , Neurogénesis , Organoides , ARN Mensajero , Simportadores , Receptores alfa de Hormona Tiroidea , Femenino , Humanos , Embarazo , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/metabolismo , Organoides/metabolismo , Primer Trimestre del Embarazo/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Simportadores/genética , Simportadores/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/genética
6.
J Cell Mol Med ; 28(9): e18352, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685685

RESUMEN

Gliomas, the most lethal tumours in brain, have a poor prognosis despite accepting standard treatment. Limited benefits from current therapies can be attributed to genetic, epigenetic and microenvironmental cues that affect cell programming and drive tumour heterogeneity. Through the analysis of Hi-C data, we identified a potassium-chloride co-transporter SLC12A5 associated with disrupted topologically associating domain which was downregulated in tumour tissues. Multiple independent glioma cohorts were included to analyse the characterization of SLC12A5 and found it was significantly associated with pathological features, prognostic value, genomic alterations, transcriptional landscape and drug response. We constructed two SLC12A5 overexpression cell lines to verify the function of SLC12A5 that suppressed tumour cell proliferation and migration in vitro. In addition, SLC12A5 was also positively associated with GABAA receptor activity and negatively associated with pro-tumour immune signatures and immunotherapy response. Collectively, our study provides a comprehensive characterization of SLC12A5 in glioma and supports SLC12A5 as a potential suppressor of disease progression.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glioma , Cotransportadores de K Cl , Simportadores , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Movimiento Celular/genética , Pronóstico , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética
7.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488830

RESUMEN

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Asunto(s)
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Anión Orgánico , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bacterias/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(13): e2306763121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498711

RESUMEN

Lactate-proton symporter monocarboxylate transporter 1 (MCT1) facilitates lactic acid export from T cells. Here, we report that MCT1 is mandatory for the development of virus-specific CD8+ T cell memory. MCT1-deficient T cells were exposed to acute pneumovirus (pneumonia virus of mice, PVM) or persistent γ-herpesvirus (Murid herpesvirus 4, MuHV-4) infection. MCT1 was required for the expansion of virus-specific CD8+ T cells and the control of virus replication in the acute phase of infection. This situation prevented the subsequent development of virus-specific T cell memory, a necessary step in containing virus reactivation during γ-herpesvirus latency. Instead, persistent active infection drove virus-specific CD8+ T cells toward functional exhaustion, a phenotype typically seen in chronic viral infections. Mechanistically, MCT1 deficiency sequentially impaired lactic acid efflux from activated CD8+ T cells, caused an intracellular acidification inhibiting glycolysis, disrupted nucleotide synthesis in the upstream pentose phosphate pathway, and halted cell proliferation which, ultimately, promoted functional CD8+ T cell exhaustion instead of memory development. Taken together, our data demonstrate that MCT1 expression is mandatory for inducing T cell memory and controlling viral infection by CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Simportadores , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Ácido Láctico/metabolismo , Transporte Biológico , Simportadores/genética , Simportadores/metabolismo
9.
Mov Disord Clin Pract ; 11(5): 567-570, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454300

RESUMEN

BACKGROUND: Deficiencies in the thyroid hormone transporter monocarboxylate 8 (MCT8) due to pathogenic variants in the SLC16A2 gene (OMIM 300095) result in a complex phenotype with main endocrine and neurologic symptoms. This rare disorder, named Allan-Herndon-Dudley syndrome (AHDS) (OMIM 300523), is inherited in an X-linked trait. One of the prominent features of AHDS is the presence of movement disorders (MD), which are complex and carry a significant burden of the disease. CASES: Patient 1: male with hypotonia since birth, developmental delay, dystonic posturing at 4 months and at 15 months, and startle reaction developed with sensory stimuli. Patient 2: male, at 2 months, shows hypotonia and developmental delay, paroxysmal episodes triggered by a stimulus with sudden blush, tonic asymmetric posture, and no epileptiform activity. At 10 months, generalized dystonic posturing. Patient 3: typical neurodevelopmental milestones until 6 months; at 24 months, dystonia, startle reaction, and upper motoneuron signs. CONCLUSIONS: We aim to describe our patients diagnosed with AHDS, focusing on MD phenomenology and strengthening the phenotype-genotype correlations for this rare condition.


Asunto(s)
Hipotonía Muscular , Humanos , Masculino , Hipotonía Muscular/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/deficiencia , Atrofia Muscular/genética , Atrofia Muscular/patología , Lactante , Trastornos del Movimiento/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Simportadores/genética , Simportadores/deficiencia , Colombia , Preescolar , Fenotipo , Discapacidades del Desarrollo/genética
10.
Mol Metab ; 83: 101926, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553002

RESUMEN

OBJECTIVE: Ketone bodies (such as ß-hydroxybutyrate or BHB) have been recently proposed as signals involved in brain regulation of energy homeostasis and obesity development. However, the precise role of ketone bodies sensing by the brain, and its impact on metabolic disorder development remains unclear. Nevertheless, partial deletion of the ubiquitous ketone bodies transporter MCT1 in mice (HE mice) results in diet-induced obesity resistance, while there is no alteration under normal chow diet. These results suggest that ketone bodies produced during the high fat diet would be important signals involved in obesity onset. METHODS: In the present study we used a specific BHB infusion of the hypothalamus and analyzed the energy homeostasis of WT or HE mice fed a normal chow diet. RESULTS: Our results indicate that high BHB levels sensed by the hypothalamus disrupt the brain regulation of energy homeostasis. This brain control dysregulation leads to peripheral alterations of energy expenditure mechanisms. CONCLUSIONS: Altogether, the changes induced by high ketone bodies levels sensed by the brain increase the risk of obesity onset in mice.


Asunto(s)
Ácido 3-Hidroxibutírico , Metabolismo Energético , Hipotálamo , Cuerpos Cetónicos , Ratones Endogámicos C57BL , Obesidad , Animales , Hipotálamo/metabolismo , Ratones , Cuerpos Cetónicos/metabolismo , Masculino , Obesidad/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Homeostasis , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/metabolismo , Simportadores/genética
11.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38396788

RESUMEN

Innate immune cells, including macrophages, are functionally affected by thyroid hormone (TH). Macrophages can undergo phenotypical alterations, shifting between proinflammatory (M1) and immunomodulatory (M2) profiles. Cellular TH concentrations are, among others, determined by TH transporters. To study the effect of TH and TH transporters on macrophage polarization, specific proinflammatory and immunomodulatory markers were analyzed in bone marrow-derived macrophages (BMDMs) depleted of triiodothyronine (T3) and BMDMs with a knockout (KO) of Mct8 and Mct10 and a double KO (dKO) of Mct10/Mct8. Our findings show that T3 is important for M1 polarization, while a lack of T3 stimulates M2 polarization. Mct8 KO BMDMs are unaffected in their T3 responsiveness, but exhibit slight alterations in M2 polarization, while Mct10 KO BMDMs show reduced T3 responsiveness, but unaltered polarization markers. KO of both the Mct8 and Mct10 transporters decreased T3 availability and, contrary to the T3-depleted BMDMs, showed partially increased M1 markers and unaltered M2 markers. These data suggest a role for TH transporters besides transport of TH in BMDMs. This study highlights the complex role of TH transporters in macrophages and provides a new angle on the interaction between the endocrine and immune systems.


Asunto(s)
Macrófagos , Simportadores , Hormonas Tiroideas , Animales , Ratones , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Simportadores/genética , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Triyodotironina/farmacología , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
12.
J Endocrinol ; 261(1)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329368

RESUMEN

The solute carrier (SLC) family is a large group of membrane transport proteins. Their dysfunction plays an important role in the pathogenesis of thyroid cancer. The most well-known SLC is the sodium-iodide symporter (NIS), also known as sodium/iodide co-transporter or solute carrier family 5 member 5 (SLC5A5) in thyroid cancer. The dysregulation of NIS in thyroid cancer is well documented. The role of NIS in the uptake of iodide is critical in the treatment of thyroid cancer, radioactive iodide (RAI) therapy in particular. In addition to NIS, other SLC members may affect the autophagy, proliferation, and apoptosis of thyroid cancer cells, indicating that an alteration in SLC members may affect different cellular events in the evolution of thyroid cancer. The expression of the SLC members may impact the uptake of chemicals by the thyroid, suggesting that targeting SLC members may be a promising therapeutic strategy in thyroid cancer.


Asunto(s)
Simportadores , Neoplasias de la Tiroides , Humanos , Yoduros/metabolismo , Neoplasias de la Tiroides/genética , Simportadores/genética , Simportadores/metabolismo
13.
Neurochem Int ; 174: 105695, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373478

RESUMEN

The neuron-specific K+/Cl- co-transporter 2, KCC2, which is critical for brain development, regulates γ-aminobutyric acid-dependent inhibitory neurotransmission. Consistent with its function, mutations in KCC2 are linked to neurodevelopmental disorders, including epilepsy, schizophrenia, and autism. KCC2 possesses 12 transmembrane spans and forms an intertwined dimer. Based on its complex architecture and function, reduced cell surface expression and/or activity have been reported when select disease-associated mutations are present in the gene encoding the protein, SLC12A5. These data suggest that KCC2 might be inherently unstable, as seen for other complex polytopic ion channels, thus making it susceptible to cellular quality control pathways that degrade misfolded proteins. To test these hypotheses, we examined KCC2 stability and/or maturation in five model systems: yeast, HEK293 cells, primary rat neurons, and rat and human brain synaptosomes. Although studies in yeast revealed that KCC2 is selected for endoplasmic reticulum-associated degradation (ERAD), experiments in HEK293 cells supported a more subtle role for ERAD in maintaining steady-state levels of KCC2. Nevertheless, this system allowed for an analysis of KCC2 glycosylation in the ER and Golgi, which serves as a read-out for transport through the secretory pathway. In turn, KCC2 was remarkably stable in primary rat neurons, suggesting that KCC2 folds efficiently in more native systems. Consistent with these data, the mature glycosylated form of KCC2 was abundant in primary rat neurons as well as in rat and human brain. Together, this work details the first insights into the influence that the cellular and membrane environments have on several fundamental KCC2 properties, acknowledges the advantages and disadvantages of each system, and helps set the stage for future experiments to assess KCC2 in a normal or disease setting.


Asunto(s)
Cotransportadores de K Cl , Animales , Humanos , Ratas , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Cotransportadores de K Cl/metabolismo , Cloruro de Potasio/metabolismo , Saccharomyces cerevisiae/metabolismo , Simportadores/genética , Simportadores/metabolismo
14.
J Pediatr Endocrinol Metab ; 37(4): 371-374, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38345890

RESUMEN

OBJECTIVES: To report an unusual case of MCT8 deficiency (Allan-Herndon-Dudley syndrome), an X-linked condition caused by pathogenic variants in the SLC16A2 gene. Defective transport of thyroid hormones (THs) in this condition leads to severe neurodevelopmental impairment in males, while heterozygous females are usually asymptomatic or have mild TH abnormalities. CASE PRESENTATION: A girl with profound developmental delay, epilepsy, primary amenorrhea, elevated T3, low T4 and free T4 levels was diagnosed with MCT8-deficiency at age 17 years, during evaluation for primary ovarian insufficiency (POI). Cytogenetic analysis demonstrated balanced t(X;16)(q13.2;q12.1) translocation with a breakpoint disrupting SLC16A2. X-chromosome inactivation studies revealed a skewed inactivation of the normal X chromosome. CONCLUSIONS: MCT8-deficiency can manifest clinically and phenotypically in women with SLC16A2 aberrations when nonrandom X inactivation occurs, while lack of X chromosome integrity due to translocation can cause POI.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Insuficiencia Ovárica Primaria , Simportadores , Masculino , Adolescente , Humanos , Femenino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Diagnóstico Tardío , Insuficiencia Ovárica Primaria/genética , Transportadores de Ácidos Monocarboxílicos/genética , Translocación Genética , Simportadores/genética
15.
Clin Cancer Res ; 30(7): 1220-1222, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197869

RESUMEN

Advanced differentiated thyroid cancer that is resistant to radioactive iodine therapy may become responsive with a unique treatment combination of chloroquine and vorinostat. This treatment was demonstrated in cellular and animal models of thyroid cancer to inhibit endocytosis of the plasma membrane-bound iodine transporter, NIS, and restore iodine uptake. See related article by Read et al., p. 1352.


Asunto(s)
Yodo , Simportadores , Neoplasias de la Tiroides , Animales , Neoplasias de la Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/radioterapia , Radioisótopos de Yodo/uso terapéutico , Radioisótopos de Yodo/metabolismo , Simportadores/genética
16.
Eur J Nutr ; 63(2): 589-598, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170273

RESUMEN

PURPOSE: This study aimed to explore the differences in iodine metabolism and expression of NIS and Pendrin in pregnant rats under different iodine nutritional status. METHODS: Female Wistar rats were divided into four groups: low iodine (LI), normal iodine (NI), ten fold high iodine (10HI), and fifty fold high iodine (50HI). The intervention began after one week of adaptive feeding. Iodine metabolism experiments were performed beginning on the 15th day of pregnancy. 24-h iodine intake and excretion were calculated. The concentrations of iodine in urine, fecal, thyroid, and placenta were measured by ICP-MS. PCR and Western Blot were used to detect the mRNA levels and cell membrane protein of sodium/iodide symporter (NIS) and Pendrin in the small intestine, thyroid, kidney, and placenta. RESULTS: Fecal iodine excretion (FIE) and urinary iodine excretion (UIE) in the 50HI group were significantly higher than those in the NI group (P < 0.05). The NIS protein and mRNA in the kidney and small intestine have an upward trend in iodine deficiency and a downward trend in iodine excess. Thyroid and placental iodine storage in the 50HI group were significantly higher than those in the NI group (P < 0.05). NIS, Pendrin protein, and mRNA in the thyroid and placenta tend to increase when iodine is deficient and decrease when there is excess. CONCLUSION: Iodine excretion and iodine stores in the placenta and thyroid gland are positively correlated with iodine intake. NIS and Pendrin are also regulated by iodine intake.


Asunto(s)
Yodo , Simportadores , Ratas , Femenino , Embarazo , Animales , Yodo/metabolismo , Estado Nutricional , Ratas Wistar , Placenta/metabolismo , Simportadores/genética , Simportadores/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Acta Physiol (Oxf) ; 240(3): e14083, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38240467

RESUMEN

This review aims to systematically analyze the effect of exercise on muscle MCT protein levels and mRNA expression of their respective genes, considering exercise intensity, and duration (single-exercise session and training program) in humans and rodents, to observe whether both models offer aligned results. The review also aims to report methodological aspects that need to be improved in future studies. A systematic search was conducted in the PubMed and Web of Science databases, and the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) checklist was followed. After applying inclusion and exclusion criteria, 41 studies were included and evaluated using the Cochrane collaboration tool for risk of bias assessment. The main findings indicate that exercise is a powerful stimulus to increase MCT1 protein content in human muscle. MCT4 protein level increases can also be observed after a training program, although its responsiveness is lower compared to MCT1. Both transporters seem to change independently of exercise intensity, but the responses that occur with each intensity and each duration need to be better defined. The effect of exercise on muscle mRNA results is less defined, and more research is needed especially in humans. Moreover, results in rodents only agree with human results on the effect of a training program on MCT1 protein levels, indicating increases in both. Finally, we addressed important and feasible methodological aspects to improve the design of future studies.


Asunto(s)
Simportadores , Humanos , Simportadores/genética , Simportadores/metabolismo , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Proteínas Musculares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Mol Ther ; 32(4): 1096-1109, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38291756

RESUMEN

Spasticity, affecting ∼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.


Asunto(s)
Traumatismos de la Médula Espinal , Simportadores , Animales , Ratas , Neuronas Motoras/metabolismo , Espasticidad Muscular/genética , Espasticidad Muscular/terapia , Calidad de Vida , Reflejo Anormal , Espasmo/metabolismo , Espasmo/patología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/terapia , Simportadores/genética
19.
Funct Integr Genomics ; 24(1): 10, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38221563

RESUMEN

Thyroid cancer is the most common type of endocrine cancer. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain containing 6 (CMTM6) is recognized as one of its potential immunotherapy targets. The purpose of this study was to investigate the role and molecular mechanism of CMTM6 in regulating the development of thyroid cancer cells. In this study, expression levels of CMTM6 and the sodium/iodide symporter (NIS) were detected by qRT-PCR. Additionally, colony formation assay and flow cytometry were used to detect cell proliferation and apoptosis, while expression levels of various proteins were assessed using Western blotting. Further, the apoptosis and invasion capacity of cells were investigated by scratch and transwell experiments. Finally, the effect of CMTM6 on the epithelial-mesenchymal transition (EMT) of thyroid cancer cells was determined by immunofluorescence assay, which measured the expression levels of epithelial and mesenchymal phenotypic markers. The results of qRT-PCR experiments showed that CMTM6 was highly expressed in thyroid cancer tissues and cells. In addition, knockdown of CMTM6 expression significantly increased NIS expression. Function experiments demonstrated that small interfering (si)-CMTM6 treatment inhibited the proliferation, migration, invasion, and EMT of thyroid cancer cells, while promoting apoptosis of FTC133 cells. Furthermore, mechanistic studies showed that mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) phosphorylation were inhibited by si-CMTM6, as demonstrated by Western blot experiments. In conclusion, our findings demonstrated the role of CMTM6 in the metastasis of thyroid cancer. Briefly, CMTM6 exerts its tumor-promoting effect through the MAPK signaling pathway and could potentially be used as a valuable biomarker for thyroid cancer diagnosis and prognosis.


Asunto(s)
Proteínas con Dominio MARVEL , Proteínas de la Mielina , Simportadores , Neoplasias de la Tiroides , Humanos , Línea Celular Tumoral , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Simportadores/genética , Simportadores/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Proteínas con Dominio MARVEL/genética , Proteínas con Dominio MARVEL/metabolismo , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo
20.
J Med Virol ; 96(1): e29428, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38258306

RESUMEN

To investigate the relationship between the expression of hepatitis B virus (HBV) functional receptor sodium taurocholate cotransporting polypeptide (NTCP) with disease progression and gender-specific differences in chronic HBV-infected patients. Liver samples were collected from chronic HBV-infected patients who underwent percutaneous liver biopsy or liver surgery. HBV DNA levels and the mRNA and protein expression levels of NTCP in liver tissues were determined. The relationship between NTCP expression and HBV DNA levels, inflammatory activity, fibrosis, and gender-specific differences were analyzed. A total of 94 chronic HBV-infected patients were included. Compared with patients with a METAVIR score of A0-1 or F0-1, patients with score of A2 or F2/F3 had a relatively higher level of NTCP expression. NTCP levels were positively correlated with HBV DNA levels. The inflammatory activity scores and fibrosis scores of women <50 years were significantly lower than those of women ≥50 years and age-matched males. In patients with score A0-2 or F0-3, women <50 years have lower NTCP expression level compared to women ≥50 years and age-matched males. NTCP can promote the disease progression by affecting the viral load of HBV. The NTCP expression difference may be why male and postmenopausal women are more prone to disease progression than reproductive women.


Asunto(s)
Hepatitis B Crónica , Transportadores de Anión Orgánico Sodio-Dependiente , Simportadores , Femenino , Humanos , Masculino , Progresión de la Enfermedad , ADN Viral/genética , Fibrosis , Virus de la Hepatitis B , Hepatitis B Crónica/genética , Inflamación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA