Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(42): e2409636121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374398

RESUMEN

The Ca2+ sensor synaptotagmin-1 (Syt1) triggers neurotransmitter release together with the neuronal sensitive factor attachment protein receptor (SNARE) complex formed by syntaxin-1, SNAP25, and synaptobrevin. Moreover, Syt1 increases synaptic vesicle (SV) priming and impairs spontaneous vesicle release. The Syt1 C2B domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of Syt1 and the mechanism underlying Ca2+ triggering of release are unknown. Using mutagenesis and electrophysiological experiments, we show that region II is functionally and spatially subdivided: Binding of C2B domain arginines to SNAP-25 acidic residues at one face of region II is crucial for Ca2+-evoked release but not for vesicle priming or clamping of spontaneous release, whereas other SNAP-25 and syntaxin-1 acidic residues at the other face mediate priming and clamping of spontaneous release but not evoked release. Mutations that disrupt region I impair the priming and clamping functions of Syt1 while, strikingly, mutations that enhance binding through this region increase vesicle priming and clamping of spontaneous release, but strongly inhibit evoked release and vesicle fusogenicity. These results support previous findings that the primary interface mediates the functions of Syt1 in vesicle priming and clamping of spontaneous release and, importantly, show that Ca2+ triggering of release requires a rearrangement of the primary interface involving dissociation of region I, while region II remains bound. Together with biophysical studies presented in [K. Jaczynska et al., bioRxiv [Preprint] (2024). https://doi.org/10.1101/2024.06.17.599417 (Accessed 18 June 2024)], our data suggest a model whereby this rearrangement pulls the SNARE complex to facilitate fast SV fusion.


Asunto(s)
Calcio , Neurotransmisores , Proteínas SNARE , Vesículas Sinápticas , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Calcio/metabolismo , Vesículas Sinápticas/metabolismo , Animales , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Neurotransmisores/metabolismo , Sintaxina 1/metabolismo , Sintaxina 1/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Ratas , Unión Proteica , Transmisión Sináptica
2.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39287685

RESUMEN

Two recent papers by Mehta et al. and Zhu et al. in this issue (https://doi.org/10.1083/jcb.202311191) discover that synaptotagmin-1, the primary calcium sensor at the synapse, forms biomolecular condensates, identifying a new layer of regulation in calcium-triggered synaptic vesicle exocytosis.


Asunto(s)
Calcio , Exocitosis , Sinapsis , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Calcio/metabolismo , Sinapsis/metabolismo , Animales , Vesículas Sinápticas/metabolismo , Humanos
3.
J Neurochem ; 168(9): 3188-3208, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091022

RESUMEN

Following exocytosis, the recapture of plasma membrane-stranded vesicular proteins into recycling synaptic vesicles (SVs) is essential for sustaining neurotransmission. Surface clustering of vesicular proteins has been proposed to act as a 'pre-assembly' mechanism for endocytosis that ensures high-fidelity retrieval of SV cargo. Here, we used single-molecule imaging to examine the nanoclustering of synaptotagmin-1 (Syt1) and synaptic vesicle protein 2A (SV2A) in hippocampal neurons. Syt1 forms surface nanoclusters through the interaction of its C2B domain with SV2A, which are sensitive to mutations in this domain (Syt1K326A/K328A) and SV2A knockdown. SV2A co-clustering with Syt1 is reduced by blocking SV2A's cognate interaction with Syt1 (SV2AT84A). Surprisingly, impairing SV2A-Syt1 nanoclustering enhanced the plasma membrane recruitment of key endocytic protein dynamin-1, causing accelerated Syt1 endocytosis, altered intracellular sorting and decreased trafficking of Syt1 to Rab5-positive endocytic compartments. Therefore, SV2A and Syt1 are segregated from the endocytic machinery in surface nanoclusters, limiting dynamin recruitment and negatively regulating Syt1 entry into recycling SVs.


Asunto(s)
Endocitosis , Hipocampo , Glicoproteínas de Membrana , Proteínas del Tejido Nervioso , Vesículas Sinápticas , Sinaptotagmina I , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Endocitosis/fisiología , Animales , Ratas , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Hipocampo/metabolismo , Neuronas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas
4.
Chem Biol Interact ; 400: 111165, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059605

RESUMEN

Acute kidney injury (AKI) is common and an independent risk factor for mortality in patients with paraquat (PQ) poisoning. Currently, no specific antidote is available. Synaptotagmin-1 (SYT1) has been identified as a key protein that facilitates PQ efflux in PQ-resistant A549 cells, thereby preventing PQ-induced lung injury. However, the protective effect of STY1 on PQ-induced AKI remains to be elucidated. This study exposed human kidney 2 (HK-2) cells overexpressing SYT1 to PQ. These cells exhibited significantly lower levels of growth inhibition, reactive oxygen species production, early apoptosis, and PQ accumulation compared to the parent HK-2 cells. Transcriptomic screening and Western blot analysis revealed that SYT1 overexpression significantly promoted the expression of glucose transporter 2 (GLUT2). Inhibition of GLUT2 completely abolished the protective effects of SYT1 overexpression in HK-2 cells and restored intracellular PQ concentrations. Further immunoprecipitation-shotgun and RNA interference experiments revealed that SYT1 binds to and stabilizes the protein SERPINE1 mRNA-binding protein 1 (SERBP1), enhancing the stability of GLUT2 mRNA and its protein levels. In summary, SYT1 antagonizes PQ intracellular accumulation and prevents nephrocyte toxicity by up-regulating SERBP1/GLUT2 expression. This study identifies a potential target for the treatment of PQ-induced AKI.


Asunto(s)
Transportador de Glucosa de Tipo 2 , Paraquat , Sinaptotagmina I , Regulación hacia Arriba , Humanos , Paraquat/toxicidad , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Regulación hacia Arriba/efectos de los fármacos , Línea Celular , Transportador de Glucosa de Tipo 2/metabolismo , Transportador de Glucosa de Tipo 2/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/patología
5.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38980206

RESUMEN

Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.


Asunto(s)
Calcio , Vesículas Sinápticas , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Calcio/metabolismo , Humanos , Animales , Vesículas Sinápticas/metabolismo , Multimerización de Proteína , Proteínas SNARE/metabolismo , Proteínas SNARE/genética , Transición de Fase , Mutación/genética , Células HEK293 , Fusión de Membrana , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Separación de Fases
6.
J Genet ; 1032024.
Artículo en Inglés | MEDLINE | ID: mdl-39049490

RESUMEN

We report the case of a Spanish pediatric patient with developmental delay, hypotonia, feeding difficulties, visual problems, and hyperkinetic movements. Whole-exome sequencing uncovered a new heterozygous de novo Synaptotagmin 1 (SYT1) missense variant, NM_005639.3:c.930T>A (p.Asp310Glu), in a female proband. This gene encodes the synaptotagmin-1 (SYT1) protein, which is a component of a protein complex involved in the fusion of synaptic vesicles with the presynaptic membrane. Pathogenic SYT1 variants have been associated with Baker-Gordon syndrome (BAGOS), an autosomal dominant neurodevelopmental disorder. Although up to 30 cases have been identified worldwide, to the best of our knowledge, this is the first patient described with mitochondrial respiratory chain deficiencies and rod-cone dysfunction. In conclusion, our data expand both the genetic and phenotypic spectrum associated with SYT1 variants.


Asunto(s)
Fenotipo , Sinaptotagmina I , Humanos , Femenino , Sinaptotagmina I/genética , Mutación Missense , Secuenciación del Exoma , Niño , Preescolar , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología
7.
Sci Rep ; 14(1): 14718, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926456

RESUMEN

We examined the role of protein tyrosine phosphatase receptor sigma (PTPRS) in the context of Alzheimer's disease and synaptic integrity. Publicly available datasets (BRAINEAC, ROSMAP, ADC1) and a cohort of asymptomatic but "at risk" individuals (PREVENT-AD) were used to explore the relationship between PTPRS and various Alzheimer's disease biomarkers. We identified that PTPRS rs10415488 variant C shows features of neuroprotection against early Tau pathology and synaptic degeneration in Alzheimer's disease. This single nucleotide polymorphism correlated with higher PTPRS transcript abundance and lower p(181)Tau and GAP-43 levels in the CSF. In the brain, PTPRS protein abundance was significantly correlated with the quantity of two markers of synaptic integrity: SNAP25 and SYT-1. We also found the presence of sexual dimorphism for PTPRS, with higher CSF concentrations in males than females. Male carriers for variant C were found to have a 10-month delay in the onset of AD. We thus conclude that PTPRS acts as a neuroprotective receptor in Alzheimer's disease. Its protective effect is most important in males, in whom it postpones the age of onset of the disease.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Polimorfismo de Nucleótido Simple , Sinapsis , Proteínas tau , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Proteína 25 Asociada a Sinaptosomas/metabolismo , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/líquido cefalorraquídeo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo
8.
Cell Rep ; 43(5): 114229, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38758649

RESUMEN

GPR133 (ADGRD1) is an adhesion G-protein-coupled receptor that signals through Gαs/cyclic AMP (cAMP) and is required for the growth of glioblastoma (GBM), an aggressive brain malignancy. The regulation of GPR133 signaling is incompletely understood. Here, we use proximity biotinylation proteomics to identify ESYT1, a Ca2+-dependent mediator of endoplasmic reticulum-plasma membrane bridge formation, as an intracellular interactor of GPR133. ESYT1 knockdown or knockout increases GPR133 signaling, while its overexpression has the opposite effect, without altering GPR133 levels in the plasma membrane. The GPR133-ESYT1 interaction requires the Ca2+-sensing C2C domain of ESYT1. Thapsigargin-mediated increases in cytosolic Ca2+ relieve signaling-suppressive effects of ESYT1 by promoting ESYT1-GPR133 dissociation. ESYT1 knockdown or knockout in GBM slows tumor growth, suggesting tumorigenic functions of ESYT1. Our findings demonstrate a mechanism for the modulation of GPR133 signaling by increased cytosolic Ca2+, which reduces the signaling-suppressive interaction between GPR133 and ESYT1 to raise cAMP levels.


Asunto(s)
Calcio , Glioblastoma , Receptores Acoplados a Proteínas G , Transducción de Señal , Sinaptotagmina I , Animales , Humanos , Ratones , Calcio/metabolismo , Línea Celular Tumoral , AMP Cíclico/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Células HEK293 , Ratones Desnudos , Proteínas Oncogénicas , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
9.
J Cell Biol ; 223(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647453

RESUMEN

Migrasomes, organelles crucial for cell communication, undergo distinct stages of nucleation, maturation, and expansion. The regulatory mechanisms of migrasome formation, particularly through biological cues, remain largely unexplored. This study reveals that calcium is essential for migrasome formation. Furthermore, we identify that Synaptotagmin-1 (Syt1), a well-known calcium sensor, is not only enriched in migrasomes but also indispensable for their formation. The calcium-binding ability of Syt1 is key to initiating migrasome formation. The recruitment of Syt1 to migrasome formation sites (MFS) triggers the swelling of MFS into unstable precursors, which are subsequently stabilized through the sequential recruitment of tetraspanins. Our findings reveal how calcium regulates migrasome formation and propose a sequential interaction model involving Syt1 and Tetraspanins in the formation and stabilization of migrasomes.


Asunto(s)
Calcio , Vesículas Extracelulares , Sinaptotagmina I , Animales , Humanos , Calcio/metabolismo , Señalización del Calcio , Comunicación Celular , Orgánulos/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Tetraspaninas/metabolismo , Tetraspaninas/genética , Vesículas Extracelulares/metabolismo , Ratones , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo
10.
J Mol Cell Biol ; 16(4)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38444183

RESUMEN

Fusion pore opening is a transient intermediate state of synaptic vesicle exocytosis, which is highly dynamic and precisely regulated by the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and synaptotagmin-1 (Syt1). Yet, the regulatory mechanism is not fully understood. In this work, using single-channel membrane fusion electrophysiology, we determined that SNAREpins are important for driving fusion pore opening and dilation but incapable of regulating the dynamics. When Syt1 was added, the closing frequency of fusion pores significantly increased, while the radius of fusion pores mildly decreased. In response to Ca2+, SNARE/Syt1 greatly increased the radius of fusion pores and reduced their closing frequency. Moreover, the residue F349 in the C2B domain of Syt1, which mediates Syt1 oligomerization, was required for clamping fusion pore opening in the absence of Ca2+, probably by extending the distance between the two membranes. Finally, in Ca2+-triggered fusion, the primary interface between SNARE and Syt1 plays a critical role in stabilizing and dilating the fusion pore, while the polybasic region of Syt1 C2B domain has a mild effect on increasing the radius of the fusion pore. In summary, our results suggest that Syt1, SNARE, and the anionic membrane synergically orchestrate the dynamics of fusion pore opening in synaptic vesicle exocytosis.


Asunto(s)
Calcio , Exocitosis , Fusión de Membrana , Proteínas SNARE , Vesículas Sinápticas , Sinaptotagmina I , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética , Proteínas SNARE/metabolismo , Animales , Calcio/metabolismo , Vesículas Sinápticas/metabolismo , Ratas
11.
Mol Psychiatry ; 29(6): 1798-1809, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38321119

RESUMEN

Synaptotagmin-1 (Syt1) is a presynaptic calcium sensor with two calcium binding domains, C2A and C2B, that triggers action potential-induced synchronous neurotransmitter release, while suppressing asynchronous and spontaneous release. We identified a de novo missense mutation (P401L) in the C2B domain in a patient with developmental delay and autistic symptoms. Expressing the orthologous mouse mutant (P400L) in cultured Syt1 null mutant neurons revealed a reduction in dendrite outgrowth with a proportional reduction in synapses. This was not observed in single Syt1PL-rescued neurons that received normal synaptic input when cultured in a control network. Patch-clamp recordings showed that spontaneous miniature release events per synapse were increased more than 500% in Syt1PL-rescued neurons, even beyond the increased rates in Syt1 KO neurons. Furthermore, action potential-induced asynchronous release was increased more than 100%, while synchronous release was unaffected. A similar shift to more asynchronous release was observed during train stimulations. These cellular phenotypes were also observed when Syt1PL was overexpressed in wild type neurons. Our findings show that Syt1PL desynchronizes neurotransmission by increasing the readily releasable pool for asynchronous release and reducing the suppression of spontaneous and asynchronous release. Neurons respond to this by shortening their dendrites, possibly to counteract the increased synaptic input. Syt1PL acts in a dominant-negative manner supporting a causative role for the mutation in the heterozygous patient. We propose that the substitution of a rigid proline to a more flexible leucine at the bottom of the C2B domain impairs clamping of release by interfering with Syt1's primary interface with the SNARE complex. This is a novel cellular phenotype, distinct from what was previously found for other SYT1 disease variants, and points to a role for spontaneous and asynchronous release in SYT1-associated neurodevelopmental disorder.


Asunto(s)
Mutación Missense , Trastornos del Neurodesarrollo , Neuronas , Neurotransmisores , Transmisión Sináptica , Sinaptotagmina I , Animales , Femenino , Humanos , Masculino , Ratones , Potenciales de Acción/fisiología , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp/métodos , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética
12.
Sci Bull (Beijing) ; 69(10): 1458-1471, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38402028

RESUMEN

Synaptic dysfunction is a core component of the pathophysiology of schizophrenia. However, the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood. The Stonin 2 (STON2) gene encodes a major adaptor for clathrin-mediated endocytosis (CME) of synaptic vesicles. In this study, we showed that the C-C (307Pro-851Ala) haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME. We found that schizophrenia-related STON2 variations led to protein dephosphorylation, which affected its interaction with synaptotagmin 1 (Syt1), a calcium sensor protein located in the presynaptic membrane that is critical for CME. STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission, short-term plasticity, and schizophrenia-like behaviors. Moreover, among seven antipsychotic drugs, patients with the C-C (307Pro-851Ala) haplotype responded better to haloperidol than did the T-A (307Ser-851Ser) carriers. The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice. Our findings demonstrated the effect of schizophrenia-related STON2 variations on synaptic dysfunction through the regulation of CME, which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.


Asunto(s)
Esquizofrenia , Transmisión Sináptica , Sinaptotagmina I , Animales , Femenino , Humanos , Masculino , Ratones , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Endocitosis/efectos de los fármacos , Técnicas de Sustitución del Gen , Predisposición Genética a la Enfermedad , Haloperidol/farmacología , Haplotipos , Fosforilación , Transporte de Proteínas , Esquizofrenia/metabolismo , Esquizofrenia/genética , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagmina I/genética
13.
Neuron ; 111(23): 3765-3774.e7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37738980

RESUMEN

Exocytosis and endocytosis are essential physiological processes and are of prime importance for brain function. Neurotransmission depends on the Ca2+-triggered exocytosis of synaptic vesicles (SVs). In neurons, exocytosis is spatiotemporally coupled to the retrieval of an equal amount of membrane and SV proteins by compensatory endocytosis. How exocytosis and endocytosis are balanced to maintain presynaptic membrane homeostasis and, thereby, sustain brain function is essentially unknown. We combine mouse genetics with optical imaging to show that the SV calcium sensor Synaptotagmin 1 couples exocytic SV fusion to the endocytic retrieval of SV membranes by promoting the local activity-dependent formation of the signaling lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at presynaptic sites. Interference with these mechanisms impairs PI(4,5)P2-triggered SV membrane retrieval but not exocytic SV fusion. Our findings demonstrate that the coupling of SV exocytosis and endocytosis involves local Synaptotagmin 1-induced lipid signaling to maintain presynaptic membrane homeostasis in central nervous system neurons.


Asunto(s)
Vesículas Sinápticas , Sinaptotagmina I , Animales , Ratones , Endocitosis/fisiología , Exocitosis/fisiología , Lípidos , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
14.
Int J Biol Macromol ; 253(Pt 4): 127096, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769766

RESUMEN

MicroRNAs (miRNAs) are important post-transcriptional factors involved in the regulation of gene expression and play crucial roles in biological processes related to milk fat metabolism. Our previous study revealed that miR-19a expression was significantly higher in the mammary epithelial cells of high-milk fat cows than in those of low-milk fat cows. However, the precise molecular mechanisms underlying these differences remain unclear. In this study, we found a high expression of miR-19a in the mammary tissues of dairy cows. The regulatory effects of miR-19a on bovine mammary epithelial cells (BMECs) were analyzed using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, which demonstrated that miR-19a significantly inhibited BMEC proliferation. Transfection of the miR-19a mimic into BMECs significantly upregulated the expression of milk fat marker genes LPL, SCAP, and SREBP1, promoting triglyceride (TG) synthesis and lipid droplet formation, whereas the miR-19a inhibitor exhibited the opposite function. TargetScan and miRWalk predictions revealed that synaptotagmin 1 (SYT1) is a target gene of miR-19a. A dual luciferase reporter gene assay, RT-qPCR, and western blot analyses revealed that miR-19a directly targets the 3'-untranslated region (UTR) of SYT1 and negatively regulates SYT1 expression. Functional validation revealed that overexpression of SYT1 in BMECs significantly downregulated the expression of LPL, SCAP, and SREBP1, and inhibited TG synthesis and lipid droplet formation. Conversely, the knockdown of SYT1 had the opposite effect. Altogether, miR-19a plays a crucial role in regulating the proliferation and differentiation of BMECs and regulates biological processes related to TG synthesis and lipid droplet formation by suppressing SYT1 expression. These findings provide a strong foundation for further research on the functional mechanisms underlying milk fat metabolism in dairy cows.


Asunto(s)
MicroARNs , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Triglicéridos/metabolismo , Glándulas Mamarias Animales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Regiones no Traducidas 3'/genética
15.
Int J Biol Macromol ; 216: 906-915, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914553

RESUMEN

Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin mined from the egg transcriptome of spider L. tredecimguttatus, was previously found to promote the release of dopamine from PC12 cells. However, the relevant molecular mechanism has not been fully clear. Here LETX-VI was demonstrated to rapidly penetrate the plasma membrane of PC12 cells via the vesicle exocytosis/endocytosis cycle, during which vesicular transmembrane protein synaptotagmin 1 (Syt1) functions as a receptor, with its vesicle luminal domain interacting with the C-terminal region of LETX-VI. The C-terminal sequence of LETX-VI is the functional region for both entering cells and promoting dopamine release. After gaining entry into the PC12 cells, LETX-VI down-regulated the phosphorylation levels of Syt1 at T201 and T195, thereby facilitating vesicle fusion with plasma membrane and thus promoting dopamine release. The relevant mechanism analysis indicated that LETX-VI has a protein phosphatase 2A (PP2A) activator activity. The present work has not only probed into the Syt1-mediated action mechanism of LETX-VI, but also revealed the structure-function relationship of the toxin, thus suggesting its potential applications in the drug transmembrane delivery and treatment of the diseases related to dopamine release and PP2A activity deficiency.


Asunto(s)
Dopamina , Sinaptotagmina I , Animales , Calcio/metabolismo , Membrana Celular/metabolismo , Endocitosis , Fusión de Membrana , Ratas , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Sinaptotagminas
16.
J Neurosci ; 42(30): 5816-5829, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35701163

RESUMEN

Synaptotagmin-1 (Syt1) is a vesicular calcium sensor required for synchronous neurotransmitter release, composed of a single-pass transmembrane domain linked to two C2 domains (C2A and C2B) that bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. Despite its essential role, how Syt1 couples calcium entry to synchronous release is poorly understood. Calcium binding to C2B is critical for synchronous release, and C2B additionally binds the SNARE complex. The C2A domain is also required for Syt1 function, but it is not clear why. Here, we asked what critical feature of C2A may be responsible for its functional role and compared this to the analogous feature in C2B. We focused on highly conserved poly-lysine patches located on the sides of C2A (K189-192) and C2B (K324-327). We tested effects of charge-neutralization mutations in either region (Syt1K189-192A and Syt1K326-327A) side by side to determine their relative contributions to Syt1 function in cultured cortical neurons from mice of either sex and in single-molecule experiments. Combining electrophysiological recordings and optical tweezers measurements to probe dynamic single C2 domain-membrane interactions, we show that both C2A and C2B polybasic patches contribute to membrane binding, and both are required for evoked release. The size of the readily releasable vesicle pool and the rate of spontaneous release were unaffected, so both patches are likely required specifically for synchronization of release. We suggest these patches contribute to cooperative membrane binding, increasing the overall affinity of Syt1 for negatively charged membranes and facilitating evoked release.SIGNIFICANCE STATEMENT Synaptotagmin-1 is a vesicular calcium sensor required for synchronous neurotransmitter release. Its tandem cytosolic C2 domains (C2A and C2B) bind calcium, acidic lipids, and SNARE proteins that drive fusion of the synaptic vesicle with the plasma membrane. How calcium binding to Synaptotagmin-1 leads to release and the relative contributions of the C2 domains are unclear. Combining electrophysiological recordings from cultured neurons and optical tweezers measurements of single C2 domain-membrane interactions, we show that conserved polybasic regions in both domains contribute to membrane binding cooperatively, and both are required for evoked release, likely by increasing the overall affinity of Synaptotagmin-1 for acidic membranes.


Asunto(s)
Dominios C2 , Calcio , Neurotransmisores , Sinaptotagmina I , Animales , Calcio/metabolismo , Lípidos , Ratones , Neurotransmisores/metabolismo , Proteínas SNARE/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
17.
J Alzheimers Dis ; 87(2): 843-861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35404278

RESUMEN

BACKGROUND: miR-34c has been found to be implicated in the pathological process of Alzheimer's disease, diabetes, and its complications. OBJECTIVE: To investigate the underlying mechanisms of miR-34c in the pathogenesis of diabetic encephalopathy (DE). METHODS: Diabetes mellitus rats were developed by incorporating a high-fat diet and streptozotocin injection. Morris water maze test and novel object recognition test were used to assess the cognitive function of rats. Expression of miR-34c were detected by fluorescence in situ hybridization and qRT-PCR. Immunofluorescence and western blot were used to evaluate synaptotagmin 1 (SYT1) and AdipoR2 or other proteins. Golgi staining was performed to investigate dendritic spine density. RESULTS: The increased miR-34c induced by advanced glycation end-products (AGEs) was mediated by ROS-JNK-p53 pathway, but not ROS-Rb-E2F1 pathway, in hippocampus of DE rats or in HT-22 cells. miR-34c negatively regulated the expression of SYT1, but not AdipoR2, in hippocampal neurons. miR-34c inhibitor rescued the AGE-induced decrease in the density of dendritic spines in primary hippocampal neurons. Administration of AM34c by the intranasal delivery increased the hippocampus levels of SYT1 and ameliorated the cognitive function in DE rats. The serum levels of miR-34c were increased in patients with DE comparing with normal controls. CONCLUSION: These results demonstrated that AGE-induced oxidative stress mediated increase of miR-34c through ROS-JNK-p53 pathway, resulting in synaptic deficits and cognitive decline by targeting SYT1 in DE, and the miR-34c/SYT1 axis could be considered as a novel therapeutic target for DE patients.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Diabetes Mellitus , MicroARNs , Animales , Disfunción Cognitiva/genética , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Hibridación Fluorescente in Situ , MicroARNs/genética , MicroARNs/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Proteína p53 Supresora de Tumor
18.
J Neurosci ; 42(19): 3919-3930, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35361702

RESUMEN

The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.


Asunto(s)
Dopamina , Sustancia Negra , Sinaptotagmina I , Sinaptotagminas , Animales , Dendritas , Dopamina/farmacología , Neuronas Dopaminérgicas , Estimulación Eléctrica , Femenino , Masculino , Ratones , Sinaptotagmina I/genética , Sinaptotagminas/genética
19.
Genet Med ; 24(4): 880-893, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35101335

RESUMEN

PURPOSE: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder. METHODS: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders. RESULTS: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability. CONCLUSION: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function.


Asunto(s)
Discapacidad Intelectual , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Sinaptotagmina I , Calcio/metabolismo , Genotipo , Humanos , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Sinaptotagmina I/genética
20.
J Comp Neurol ; 530(4): 705-728, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34468021

RESUMEN

Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.


Asunto(s)
Calcio , Retina , Pez Cebra , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Exocitosis/fisiología , Retina/metabolismo , Sinapsis/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...