Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 763
Filtrar
1.
Crit Rev Eukaryot Gene Expr ; 34(4): 45-54, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505872

RESUMEN

HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Regulación hacia Abajo , Neoplasias del Cuello Uterino/genética , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Sincalida/genética , Sincalida/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo
2.
J Orthop Surg Res ; 19(1): 198, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528538

RESUMEN

PURPOSE: This study aimed to evaluate the protective effects of gentiopicroside against lipopolysaccharide-induced chondrocyte inflammation. METHODS: SW 1353 chondrosarcoma cells were stimulated with LPS (5 µg/ml) for 24 h and treated with different concentrations of gentiopicroside (GPS) for 24 h. The toxic effects of GPS on chondrocytes were determined using a CCK-8 assay and EdU staining. Western blotting, qPCR, and immunofluorescence analysis were used to examine the protective effect of GPS against the inflammatory response in chondrocytes induced by lipopolysaccharide (LPS). One-way ANOVA was used to compare the differences between the groups (significance level of 0.05). RESULTS: The CCK-8 results showed that 10, 20 and 40 µM GPS had no significant toxic effects on chondrocytes; GPS effectively reduced the production of IL-1ß and PGE2, reversed LPS-induced extracellular matrix degradation in cartilage by inhibiting the Stat3/Runx2 signaling pathway, and suppressed the hypertrophic transformation of SW 1353 chondrosarcoma cells. CONCLUSION: Our study demonstrated that GPS significantly inhibited the LPS-induced inflammatory response and hypertrophic cellular degeneration in SW 1353 chondrosarcoma cells and is a valuable traditional Chinese medicine for the treatment of knee osteoarthritis.


Asunto(s)
Condrosarcoma , Glucósidos Iridoides , Osteoartritis , Humanos , Condrocitos/metabolismo , Lipopolisacáridos/toxicidad , Osteoartritis/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hipertrofia , Condrosarcoma/tratamiento farmacológico , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo
3.
Neurochem Int ; 175: 105683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341034

RESUMEN

BACKGROUND: Oxidative stress and neuroinflammation are proven to play critical roles in the pathogenesis of Parkinson's disease (PD). As reported, patients with PD have lower level of STAT4 compared with healthy subjects. However, the biological functions and mechanisms of STAT4 in PD pathogenesis remain uncertain. This study aimed to investigate the roles and related mechanisms of STAT4 in PD development. METHODS: The intraperitoneal injection of MPTP (20 mg/kg) dissolved in physiological saline was performed to mimic PD-like conditions in vivo. MPP + solution was prepared for cell model of PD. Cell viability was measured by CCK-8. Griess reaction was conducted to measure NO concentrations. The mRNA and protein levels were evaluated by RT-qPCR and western blotting. ROS generation was assessed by DCFH-DA. The levels of inflammatory cytokines were measured by ELISA. Cell apoptosis was examined by flow cytometry and western blotting. Moreover, the SH-SY5Y cells were treated with conditioned medium from LPS-stimulated microglia and subjected to CCK-8 assays and ELISA. Mechanistically, CHIP assays and luciferase reporter assays were performed to verify the binding relationship between KISS1 and STAT4. For in vivo analysis, the histological changes of midbrain tissues of mice were determined by hematoxylin and eosin staining. The expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry staining. Iba-1 positive microglial cells in the striatum were assessed by immunofluorescence staining. RESULTS: For in vitro analysis, STAT4 level was downregulated after MPP+ treatment, and STAT4 upregulation inhibited the oxidative damage, inflammation and apoptosis in SH-SY5Y cells. STAT4 bound at +215-228 region of KISS1, and KISS1 upregulation counteracted the protection of STAT4 upregulation against cell damage. Moreover, STAT4 upregulation inhibited cell viability loss and inflammation induced by conditioned medium from LPS-treated microglia, whereas KISS1 upregulation had the opposite effect. For in vivo analysis, the protective effects of STAT4 upregulation against inflammatory response, oxidative stress, dopaminergic neuronal loss and microglia activation were attenuated by KISS1 upregulation. Moreover, the inactivation of MAPK pathway caused by STAT4 upregulation was reversed by KISS1 upregulation, and MAPK inhibition attenuated the MPP+-induced inflammation, oxidative stress and apoptosis in SH-SY5Y cells. CONCLUSION: STAT4 inhibits KISS1 to attenuate the oxidative damage, inflammation and neuronal apoptosis in PD by inactivating the MAPK pathway.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Animales , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Medios de Cultivo Condicionados/farmacología , Inflamación/inducido químicamente , Inflamación/metabolismo , Kisspeptinas , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Estrés Oxidativo , Enfermedad de Parkinson/metabolismo , Sincalida/efectos adversos , Sincalida/metabolismo , Factor de Transcripción STAT4/metabolismo
4.
J Exp Clin Cancer Res ; 43(1): 62, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419081

RESUMEN

BACKGROUND: In recent years, the development of adjunctive therapeutic hyperthermia for cancer therapy has received considerable attention. However, the mechanisms underlying hyperthermia resistance are still poorly understood. In this study, we investigated the roles of cold­inducible RNA binding protein (Cirbp) in regulating hyperthermia resistance and underlying mechanisms in nasopharyngeal carcinoma (NPC). METHODS: CCK-8 assay, colony formation assay, tumor sphere formation assay, qRT-PCR, Western blot were employed to examine the effects of hyperthermia (HT), HT + oridonin(Ori) or HT + radiotherapy (RT) on the proliferation and stemness of NPC cells. RNA sequencing was applied to gain differentially expressed genes upon hyperthermia. Gain-of-function and loss-of-function experiments were used to evaluate the effects of RNAi-mediated Cirbp silencing or Cirbp overexpression on the sensitivity or resistance of NPC cells and cancer stem-like cells to hyperthermia by CCK-8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay, and in subcutaneous xenograft animal model. miRNA transient transfection and luciferase reporter assay were used to demonstrate that Cirbp is a direct target of miR-377-3p. The phosphorylation levels of key members in ATM-Chk2 and ATR-Chk1 pathways were detected by Western blot. RESULTS: Our results firstly revealed that hyperthermia significantly attenuated the stemness of NPC cells, while combination treatment of hyperthermia and oridonin dramatically increased the killing effect on NPC cells and cancer stem cell (CSC)­like population. Moreover, hyperthermia substantially improved the sensitivity of radiation­resistant NPC cells and CSC­like cells to radiotherapy. Hyperthermia noticeably suppressed Cirbp expression in NPC cells and xenograft tumor tissues. Furthermore, Cirbp inhibition remarkably boosted anti­tumor­killing activity of hyperthermia against NPC cells and CSC­like cells, whereas ectopic expression of Cirbp compromised tumor­killing effect of hyperthermia on these cells, indicating that Cirbp overexpression induces hyperthermia resistance. ThermomiR-377-3p improved the sensitivity of NPC cells and CSC­like cells to hyperthermia in vitro by directly suppressing Cirbp expression. More importantly, our results displayed the significantly boosted sensitization of tumor xenografts to hyperthermia by Cirbp silencing in vivo, but ectopic expression of Cirbp almost completely counteracted hyperthermia-mediated tumor cell-killing effect against tumor xenografts in vivo. Mechanistically, Cirbp silencing-induced inhibition of DNA damage repair by inactivating ATM-Chk2 and ATR-Chk1 pathways, decrease in stemness and increase in cell death contributed to hyperthermic sensitization; conversely, Cirbp overexpression-induced promotion of DNA damage repair, increase in stemness and decrease in cell apoptosis contributed to hyperthermia resistance. CONCLUSION: Taken together, these findings reveal a previously unrecognized role for Cirbp in positively regulating hyperthermia resistance and suggest that thermomiR-377-3p and its target gene Cirbp represent promising targets for therapeutic hyperthermia.


Asunto(s)
Diterpenos de Tipo Kaurano , Hipertermia Inducida , MicroARNs , Neoplasias Nasofaríngeas , Animales , Humanos , Neoplasias Nasofaríngeas/patología , Sincalida/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , MicroARNs/genética , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
5.
Int Immunopharmacol ; 129: 111629, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346377

RESUMEN

BACKGROUND: As a common chronic musculoskeletal condition, osteoarthritis (OA) presently lacks particular treatment strategies. The aim of this study was to examine how AT-III therapies affected macrophage repolarity in order to slow down the advancement of OA. METHODS: RAW264.7 macrophages were polarized to M1 subtypes then administered with different concentrations of AT-III. Immunofluorescence, qRT-PCR and flow cytometry were used to assess the polarization of the macrophages. The mechanism of AT-III repolarize macrophages was evaluated by western blot. Furthermore, the effects of macrophage conditioned media (CM) on the migration, proliferation, and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were investigated using CCK-8 assays, the scratch test, and alcian blue staining. The effects of macrophage CM on chondrocyte proliferation and degeneration were investigated using CCK-8 and qRT-PCR. In vivo micro-CT and histological observations were performed on rats with anterior cruciate ligament transection and partial medial meniscectomy, either with or without AT-III treatment. RESULTS: AT-III repolarized M1 macrophages to M2 phenotype. Mechanistically, AT-III reduced the expression of Toll-like receptor(TLR) 4 induced by lipopolysaccharide in RAW264.7 and lowered nuclear factor-κB (NF-κB) signaling molecules p-p65 and p-IκBα. The TLR4 agonist RS09 reversed the effects of AT-III on macrophage repolarization. AT-III-induced macrophages CM stimulated BMSCs migration, proliferation and chondrogenic differentiation. AT-III-treated macrophage CM promoted chondrocyte proliferation while inhibiting chondrocyte degeneration. In vivo, AT-III treatment alleviated the degree of synovitis, inhibited subchondral bone remodeling and reduced cartilage destruction in the rat OA model. CONCLUSIONS: AT-III attenuates OA by repolarizing macrophages through inactivating TLR4/NF-κB signaling. These data suggest that AT-III may be an effective therapeutic candidate for OA treatment.


Asunto(s)
FN-kappa B , Osteoartritis , Ratas , Animales , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Sincalida/uso terapéutico , Macrófagos , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
6.
Aging (Albany NY) ; 16(2): 1767-1780, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38244583

RESUMEN

Approximately 10% of gastric cancers are associated with Epstein-Barr virus (EBV). Tremella fuciformis polysaccharides (TFPs) are characterized by antioxidative and anti-inflammatory effects in different diseases. However, whether TFP improves EBV-associated gastric cancer (EBVaGC) has never been explored. The effects of TFP on EBV-infected GC cell viability were determined using a CCK-8 assay and flow cytometry. Western blotting and RT-qPCR were performed to explore the expression of ferroptosis-related proteins. The CCK-8 assay showed that TFP decreased EBV-infected GC cell viability in a dose- and time-dependent manner. Flow cytometry assays indicated that TFP significantly induced EBV-infected GC cell death. TFP also reduced the migratory capacity of EBV-infected GC cells. Furthermore, treatment with TFP significantly increased the mRNA levels of PTGS2 and Chac1 in EBV-infected GC cells. Western blot assays indicated that TFP suppressed the expression of NRF2, HO-1, GPX4 and xCT in EBV-infected GC cells. More importantly, overexpression of NRF2 could obviously rescue TFP-induced downregulation of GPX4 and xCT in EBV-infected GC cells. In summary, we showed novel data that TFP induced ferroptosis in EBV-infected GC cells by inhibiting NRF2/HO-1 signaling. The current findings may shed light on the potential clinical application of TFP in the treatment of EBVaGC.


Asunto(s)
Basidiomycota , Infecciones por Virus de Epstein-Barr , Ferroptosis , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/genética , Neoplasias Gástricas/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Sincalida/metabolismo
7.
Arab J Gastroenterol ; 25(1): 51-57, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38220478

RESUMEN

BACKGROUND AND STUDY AIMS: Glypican 2 (GPC2) is a member of the glypican gene family and is expressed in multiple kinds of cancer. However, the function and mechanism of GPC2 in colorectal cancer remains unclear. In this study, we aimed to identify the role of GPC2 on tumor cell proliferation and survival in colorectal cancer. PATIENTS AND METHODS: Ten pairs of colon cancer and matched normal colon tissues were collected in this research. GEPIA was used to analysis the GPC2 gene expression profile in TGCA data base. RT-qPCR and western blot assay were performed to determine the mRNA and protein expressions. CCK-8, Flow cytometry and colon formation assay were applied to evaluate cell viability. IHC staining was performed to evaluate the protein expression in tissues. The function of GPC2 in vivo was verified by an animal model of colon cancer. RESULTS: Through the bioinformatics analysis and qRT-PCR validation, we found that GPC2 was upregulated in the colon cancer tissues and cells. GPC2 knockdown suppressed cell proliferation in vitro and in vivo was confirmed by the results of CCK-8, colony formation assays, and tumor xenograft models. Moreover, by the analysis of flow cytometry assay and gain-or-loss function experiments, we discovered that CEP164 was highly associated with the expression state of GPC2, and mediated G2/M-phase arrest in GPC2-downregulated tumor cells. CONCLUSION: GPC2 might be a novel oncogenic gene in colorectal cancer, suggesting that it could be a considerable marker for the diagnosis and prognosis of colorectal cancer.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Glipicanos/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Pronóstico , Sincalida/genética , Sincalida/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica
8.
Pathol Res Pract ; 254: 155095, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237399

RESUMEN

BACKGROUND: To explore the role of Kelch repeat and BTB (POZ) domain containing 2 (KBTBD2) in Gastric cancer(GC) via studying the level of KBTBD2 and its impact on GC cells and mice model. METHODS: Expression of KBTBD2 in GC was analyzed by analysis of TCGA data, Western blotting and Real-time quantitative polymerasechain reaction (RT-qPCR). The role of KBTBD2 on GC cells proliferation, viability, invasion, migration and apoptosis in vitro were assessed by using western blotting,RT-qPCR,CCK-8, EDU, Colony Formation Assay, Wound healing assay, Transwell, JC-1 mitochondrial membrane potential and flow cytometry assay, respectively. And levels of Bcl-2, BAX, PARP, E-cadherin, Vimentin, N-cadherin, EGFR, SOS1, NROS, BRAF,ERK1/2 and GAPDH were tested by western blotting. Relation of KBTBD2 and epidermal growth factor receptor (EGFR) was predicted by KEGG analysis. KBTBD2 gene GSEA enrichment was analyzed by using R language. Moreover, CCK-8, western blotting, and wound healing assays were used to verify the correlation of KBTBD2 and EGFR pathway. Finally, tumor growth in mice was also investigated. Cells proliferation, migration and apoptosis were detected by Ki67 staining, Tunnel staining and mouse lung metastasis model. RESULTS: KBTBD2 was highly expressed in GC, and was related to poor prognosis. Moreover, silencing KBTBD2 suppressed GC cell proliferation, migration and invasion, while also inhibited the EMT, but promoted apoptosis. At the same time, KBTBD2 overexpression showed opposite results. In addition, KBTBD2 regulated the EGFR pathway. Further, silencing KBTBD2 inhibited tumor growth, cell proliferation and migration but promoted apoptosis in vivo, and KBTBD2 overexpression showed opposite results. CONCLUSIONS: KBTBD2 was highly expressed in GC. KBTBD2 promotes the progress of GC by activating EGFR signal pathway. KBTBD2 may thus be a novel target for treating GC.


Asunto(s)
Neoplasias Gástricas , Animales , Ratones , Neoplasias Gástricas/patología , Sincalida/genética , Sincalida/metabolismo , Línea Celular Tumoral , Transducción de Señal , Receptores ErbB/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
9.
Appl Biochem Biotechnol ; 196(2): 717-728, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37178251

RESUMEN

This study aimed to explore the molecular mechanism of LCN2 regulating aerobic glycolysis on abnormal proliferation of HCC cells. Based on the prediction of GEPIA database, the expression levels of LCN2 in hepatocellular carcinoma tissues were detected by RT-qPCR analysis, western blot, and immunohistochemical staining, respectively. In addition, CCK-8 kit, clone formation, and EdU staining were used to analyze the effect of LCN2 on the proliferation of hepatocellular carcinoma cells. Glucose uptake and lactate production were detected using kits. In addition, western blot was used to detect the expressions of aerobic glycolysis-related proteins. Finally, western blot was used to detect the expressions of phosphorylation of JAK2 and STAT3. We found LCN2 was upregualted in hepatocellular carcinoma tissues. CCK-8 kit, clone formation, and EdU staining results showed that LCN2 could promote the proliferation in hepatocellular carcinoma cells (Huh7 and HCCLM3 cells). Western blot results and kits confirmed that LCN2 significantly promotes aerobic glycolysis in hepatocellular carcinoma cells. Western blot results showed that LCN2 could significantly upregulate the phosphorylation of JAK2 and STAT3. Our results indicated that LCN2 activated the JAK2/STAT3 signaling pathway, promoted aerobic glycolysis, and accelerated malignant proliferation of hepatocellular carcinoma cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucólisis , Janus Quinasa 2/metabolismo , Lipocalina 2/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal , Sincalida/metabolismo , Sincalida/farmacología , Factor de Transcripción STAT3/metabolismo
10.
Adipocyte ; 13(1): 2282566, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-37993991

RESUMEN

BACKGROUND: Platinum is a commonly used drug for ovarian cancer (OvCa) treatment, but drug resistance limits its clinical application. This study intended to delineate the effects of adipocytes on platinum resistance in OvCa. METHODS: OvCa cells were maintained in the adipocyte-conditioned medium. Cell viability and apoptosis were detected by CCK-8 and flow cytometry, separately. Proliferation and apoptosis-related protein expression were assayed by western blot. The IC50 values of cisplatin and carboplatin were determined using CCK-8. IGF1 secretion and expression were assayed via ELISA and western blot, respectively. A xenograft model was established, and pathological changes were detected by H&E staining. Proliferation and apoptosis-associated protein expression was assessed via IHC. RESULTS: Adipocytes promoted the viability and repressed cell apoptosis in OvCa, as well as enhancing platinum resistance, while the addition of IGF-1 R inhibitor reversed the effects of adipocytes on proliferation, apoptosis, and drug resistance of OvCa cells. Treatment with different concentrations of Ojeok-san (OJS) inhibited the adipocyte-induced platinum resistance in OvCa cells by suppressing IGF1. The combined treatment of OJS and cisplatin significantly inhibited tumour growth in vivo with good mouse tolerance. CONCLUSION: In summary, OJS inhibited OvCa proliferation and platinum resistance by suppressing adipocyte paracrine IGF1 secretion.


Asunto(s)
Cisplatino , Neoplasias Ováricas , Humanos , Femenino , Animales , Ratones , Cisplatino/farmacología , Cisplatino/metabolismo , Cisplatino/uso terapéutico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Sincalida/metabolismo , Sincalida/farmacología , Sincalida/uso terapéutico , Resistencia a Antineoplásicos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Adipocitos/metabolismo
11.
Exp Eye Res ; 238: 109751, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38097101

RESUMEN

Choroidal neovascularization (CNV) is the primary pathogenic process underlying wet age-related macular degeneration, leading to severe vision loss. Despite current anti-vascular endothelial growth factor (VEGF) therapies, several limitations persist. Crocetin, a major bioactive constituent of saffron, exhibits multiple pharmacological activities, yet its role and mechanism in CNV remain unclear. Here, we investigated the potential effects of crocetin on CNV using in vitro and in vivo models. In human umbilical vein endothelial cells, crocetin demonstrated inhibition of VEGF-induced cell proliferation, migration, and tube formation in vitro, as assessed by CCK-8 and EdU assays, transwell and scratch assays, and tube formation analysis. Additionally, crocetin suppressed choroidal sprouting in ex vivo experiments. In the human retinal pigment epithelium (RPE) cell line ARPE-19, crocetin attenuated cobalt chloride-induced hypoxic cell injury, as evidenced by CCK-8 assay. As evaluated by quantitative PCR and Western blot assay, it also reduced hypoxia-induced expression of VEGF and hypoxia-inducible factor 1α (HIF-1α), while enhancing zonula occludens-1 expression. In a laser-induced CNV mouse model, intravitreal administration of crocetin significantly reduced CNV size and suppressed elevated expressions of VEGF, HIF-1α, TNFα, IL-1ß, and IL-6. Moreover, crocetin treatment attenuated the elevation of phospho-S6 in laser-induced CNV and hypoxia-induced RPE cells, suggesting its potential anti-angiogenic effects through antagonizing the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Our findings indicate that crocetin may hold promise as an effective drug for the prevention and treatment of CNV.


Asunto(s)
Neovascularización Coroidal , Células Endoteliales , Ratones , Animales , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sincalida/metabolismo , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/prevención & control , Neovascularización Coroidal/metabolismo , Hipoxia/metabolismo , Modelos Animales de Enfermedad , Epitelio Pigmentado de la Retina/metabolismo
12.
J Dev Orig Health Dis ; 14(5): 670-677, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38073570

RESUMEN

Increasing evidence shows that maternal hyperglycemia inhibits cardiomyocyte (CM) proliferation and promotes cell apoptosis during fetal heart development, which leads to cardiac dysplasia. Accumulating evidence suggests that the overexpression of miR-21 in CMs has a protective role in cardiac function. Therefore, we investigated whether miR-21 can rescue CM injury caused by high glucose. First, we performed biological function analysis of miR-21-5p overexpression in H9c2 cells treated with high glucose. We found that the proliferation of H9c2 cells treated with high glucose decreased significantly and was rescued after overexpression of miR-21-5p. CCK-8 and EdU incorporation assays were performed to assess cell proliferation. The cell proliferation of the miR-21-5p mimic transfection group was improved compared with that of the NC mimic group (*p < 0.05, miR-21-5p mimics vs. NC mimics) when the proliferation of H9c2 cells was reduced by high glucose (****p < 0.0001, high glucose (HG) vs. normal glucose (NG)). Then, we verified the targeted and negative regulation of miR-21-5p on Rhob using a dual-luciferase activity assay and RT-qPCR, respectively. We further demonstrated that miR-21-5p regulates Rhob to rescue the inhibition of CM proliferation induced by high glucose. The CCK-8 results showed that the cell proliferation of the siRNA-Rhob group was higher than that of the NC mimic group (***p < 0.001) and that of the cotransfection group with Up-Rhob plasmids and miR-21-5p mimics was lower than that of the miR-21-5p mimic group (*p < 0.05). Conclusion: Overexpression of miR-21-5p rescues the inhibition of high glucose-induced CM proliferation through regulation of Rhob.


Asunto(s)
Glucosa , MicroARNs , Miocitos Cardíacos , Apoptosis/genética , Proliferación Celular , Glucosa/toxicidad , Glucosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Sincalida/metabolismo , Regulación hacia Arriba , Proteína de Unión al GTP rhoB/metabolismo , Animales , Ratas
13.
Sci Rep ; 13(1): 19659, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37952042

RESUMEN

The prognosis for the WHO grade 4 IDH-mutant astrocytoma is better than IDH-wildtype glioblastoma (GBM) patients. The purpose of this study is to explore the potential mechanism of how IDH1 mutation can increase the efficacy of radiotherapy and to establish a risk-score model to predict the efficacy of radiotherapy in WHO grade 4 gliomas. First, we conducted experimental study on the effect of IDH1R132H mutation on glioma cells in vitro. Radiosensitivity of glioma cells was detected by γ-H2AX after 5 Gy radiation. Cell proliferation, migration and invasion were determined respectively by CCK-8, EDU, monolayer cell migration scratch assay and Transwell assay. Then we analyzed IDH1 gene status and the survival of WHO grade 4 glioma patients received radiotherapy in our center and verified our results by analyzing CGGA and TCGA database. For the risk-score model, we use CGGA data to find genetic differences between WHO grade 4 IDH-mutant astrocytoma and IDH-wildtype GBM patients, and determined a 4-gene radiotherapy-related signature through survival analysis by R software. Evaluation and verification through different glioma validation sets and different statistical methods. For in vitro experiments, we established glioma cells stably overexpressing IDH1 wild-type and IDH1-mutant proteins. γ-H2AX assay showed that IDH1-mutant glioma cells had higher radiosensitivity than wild-type. CCK-8 and EDU assay showed that proliferation capacity of IDH1-mutant glioma cells declined. Transwell assay and monolayer cell migration scratch assay also showed that IDH1-mutant glioma cells reduced migration and invasion capabilities. Among the 83 WHO grade 4 glioma patients who received radiotherapy in our center, WHO grade 4 IDH-mutant astrocytoma patients had longer OS and PFS versus IDH-wildtype GBM (P = 0.0336, P = 0.0324, respectively). TCGA and CGGA database analysis had the similar results. Through complex analysis of CGGA and TCGA databases, we established a risk-model that can predict the efficacy of radiotherapy for WHO grade 4 glioma patients. The 4-gene radiotherapy-related signature including ADD3, GRHPR, RHBDL1 and SLC9A9. Patients in the high-risk group had worse OS compared to low-risk group (P = 0.0001). High- and low-risk groups of patients receiving radiotherapy have significant survival differences, while patients who did not receive radiotherapy have no survival difference both in CGGA and TCGA databases. WHO grade 4 IDH-mutant astrocytoma is more radiosensitive than IDH-wildtype GBM patients. Our 4-gene radiotherapy-related signature can predict the radiation efficacy of WHO grade 4 glioma patients, and it may provide some reference for clinical treatment options.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Sincalida/genética , Sincalida/metabolismo , Glioma/genética , Glioma/radioterapia , Mutación , Pronóstico , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Organización Mundial de la Salud , Proteínas de Unión a Calmodulina/genética
14.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1892-1901, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37997376

RESUMEN

Krüppel-like zinc-finger transcription factor 5 (KLF5) is a vital regulator of breast cancer (BC) onset and progression. The mechanism by which KLF5 regulates BC is still not clearly known. In this study, bioinformatics analysis shows that BC-affected individuals with elevated KLF5 expression levels have poor clinical outcomes. We further verify that miR-145-5p regulated KLF5 expression to promote cell apoptosis and inhibit cell proliferation in BC via dual-luciferase reporter assay, western blot analysis, qRT-PCR, CCK-8 assay and cell apoptosis assay. In addition, based on bioinformatics analysis, the binding of ENST00000422059 with miR-145-5p is confirmed by dual-luciferase reporter assay. Subsequently, FISH, western blot analysis, qRT-PCR, CCK-8 and cell apoptosis assays verified that ENST00000422059 increases KLF5 protein expression by sponging miRNA to promote cell proliferation and inhibit cell apoptosis. Finally, ENST00000422059 is found to accelerate tumor progression by regulating the miR-145-5p/KLF5 axis in vivo. In conclusion, this study suggests that ENST00000422059 upregulates KLF5 by sponging miR-145-5p to promote BC progression.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama/metabolismo , Sincalida/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/genética , Proliferación Celular/genética , Luciferasas/metabolismo , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo
15.
Aging (Albany NY) ; 15(21): 12209-12224, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37921870

RESUMEN

PURPOSE: The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid ß (Aß) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS: In vivo, 5 µL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aß42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS: Aß42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1ß, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 ß and IL-18, reduced Aß deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION: Aß42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease. PURPOSE: The study aimed to investigate whether astrocyte pyroptosis, and the subsequent neuroinflammatory response that exerts amyloid ß (Aß) neurotoxic effects, has an effect on endothelial cells, along with the underlying mechanisms. METHODS: In vivo, 5 µL of disease venom was injected into the lateral ventricle of APP/PS1 mice for treatment. Pyroptosis was induced by treating astrocytes with Aß42 in vitro. Small interfering RNA (siRNA) was used to silence caspase-1 and Gasdermin D (GSDMD) mRNA expression. Cell viability was determined using a CCK-8 detection kit. Scanning electron microscopy (SEM), Annexin V/propidium iodide (PI) double staining, RT-qPCR, immunofluorescence, western blotting, and enzyme-linked immunosorbent assay (ELISA) were used to detect cell pyroptosis. The degree of pathological damage to the brain and aortic tissue was assessed by hematoxylin-eosin staining and immunohistochemistry. RESULTS: Aß42 induced astrocyte pyroptosis dependent on the GSDMD/Gasdermin E (GSDME)/Caspase 11/NLRP3 pathway, releasing large amounts of inflammatory factors, such as TNF-α, IL-1α, IL-1ß, and IL-18. Astrocyte pyroptosis caused endothelial cell dysfunction and release of large amounts of vasoconstrictors (ET and vWF). Knockdown of GSDMD reduced astrocyte pyroptosis in the cerebral cortex and hippocampal tissue, decreased the release of inflammatory factors IL-1 ß and IL-18, reduced Aß deposition and tau protein, increased the release of peripheral vasodilator substances (eNOS), and decreased the release of vasoconstrictor substances (ET, vWF), thereby reducing brain tissue damage and vascular injury in APP/PS1 mice. CONCLUSION: Aß42 induced astrocyte pyroptosis, while GSDMD knockout inhibited astrocyte pyroptosis, reduced the release of inflammatory factors, and alleviated brain tissue damage and vascular damage in APP/PS1 mice. Therefore, GSDMD is a novel therapeutic target for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Lesiones del Sistema Vascular , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Piroptosis , Proteínas tau/metabolismo , Interleucina-1beta/metabolismo , Astrocitos/metabolismo , Interleucina-18/metabolismo , Gasderminas , Células Endoteliales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Anexina A5/metabolismo , Anexina A5/farmacología , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Hematoxilina/metabolismo , Hematoxilina/farmacología , Propidio/metabolismo , Propidio/farmacología , Sincalida/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de von Willebrand , Caspasa 1/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Mensajero/metabolismo , Vasoconstrictores/farmacología , Vasodilatadores/farmacología
16.
J Orthop Surg Res ; 18(1): 910, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031136

RESUMEN

OBJECTIVE: Osteosarcoma is a rare primary malignant tumor of the bone characterized by poor survival rates, owing to its unclear pathogenesis. Rho GTPase-activating protein 44 (ARHGAP44), which belongs to the Rho GTPase-activating protein family, has promising applications in the targeted therapy of tumors. Therefore, this study aimed to investigate the biological function of ARHGAP44 in osteosarcoma and its possible application as a therapeutic target. METHODS: The expression level of ARHGAP44 in osteosarcoma and its relationship with tumor prognosis were detected using Gene Expression Omnibus database analysis and immunohistochemical staining of clinical specimens. The cell model of ARHGAP44 knockdown was constructed, and the effects of this gene on the malignant biological behavior of osteosarcoma cells were investigated using CCK-8, clone formation, transwell invasion, wound healing, and flow cytometry assays. Western blotting was performed to detect the expression of ARHGAP44, p53, C-myc, and Cyclin D1 in osteosarcoma. RESULTS: Biogenic analysis showed that ARHGAP44 was highly expressed in osteosarcoma. This result was associated with poor tumor prognosis and negatively correlated with the expression of the tumor suppressor gene p53. Immunohistochemistry and western blotting revealed significantly upregulated expression of ARHGAP44 in osteosarcoma tissues. Additionally, Kaplan-Meier analysis of clinical specimens suggested that ARHGAP44 was negatively correlated with tumor prognosis. CCK-8, clone formation, transwell invasion, wound healing, and flow cytometry assays showed that downregulation of ARHGAP44 expression significantly reduced the malignant biological behavior of osteosarcoma cells. Furthermore, western blotting showed that the expression level of p53 in osteosarcoma cells was significantly increased after the downregulation of ARHGAP44 expression, whereas the expression of C-myc and Cyclin D1 was significantly decreased compared with that in the control group. CONCLUSION: ARHGAP44 was highly expressed in osteosarcoma and was negatively correlated with its prognosis. The downregulation of ARHGAP44 expression reduced the malignant biological behavior of osteosarcoma cells. These findings suggest that the downregulation of ARHGAP44 expression inhibits the malignant progression of osteosarcoma by regulating the p53/C-myc/Cyclin D1 pathway, demonstrating the potential of ARHGAP44 as a therapeutic target for osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Apoptosis , Neoplasias Óseas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación Neoplásica de la Expresión Génica , Osteosarcoma/patología , Sincalida/genética , Sincalida/metabolismo , Sincalida/farmacología , Proteína p53 Supresora de Tumor/genética
17.
Neuropharmacology ; 241: 109739, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37820935

RESUMEN

Cholecystokinin (CCK) is a peptide that has been implicated in pain modulation. Acid sensitive ion channels (ASICs) also play an important role in pain associated with tissue acidification. However, it is still unclear whether there is an interaction between CCK signaling and ASICs during pain process. Herein, we report that a functional link between them in rat dorsal root ganglion (DRG) neurons. Pretreatment with CCK-8 concentration-dependently increased acid-evoked ASIC currents. CCK-8 increased the maximum response of ASICs to acid, but did not changed their acid sensitivity. Enhancement of ASIC currents by CCK-8 was mediated by the stimulation of CCK2 receptor (CCK2R), rather than CCK1R. The enhancement of ASIC currents by CCK-8 was prevented by application of either G-protein inhibitor GDP-ß-S or protein kinase C (PKC) inhibitor GF109203×, but not by protein kinase A (PKA) inhibitor H-89 or JNK inhibitor SP600125. Moreover, CCK-8 increased the number of action potentials triggered by acid stimuli by activating CCK2R. Finally, CCK-8 dose-dependently exacerbated acid-induced nociceptive behavior in rats through local CCK2R. Together, these results indicated that CCK-8/CCK2R activation enhanced ASIC-mediated electrophysiological activity in DRG neurons and nociception in rats. The enhancement effect depended on G-proteins and intracellular PKC signaling rather than PKA and JNK signaling pathway. These findings provided that CCK-8/CCK2R is an important therapeutic target for ASIC-mediated pain.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Sincalida , Ratas , Animales , Ratas Sprague-Dawley , Sincalida/farmacología , Sincalida/metabolismo , Canales Iónicos Sensibles al Ácido/metabolismo , Células Receptoras Sensoriales , Dolor/metabolismo , Ganglios Espinales/metabolismo
18.
Pathol Res Pract ; 251: 154886, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844486

RESUMEN

BACKGROUND: Runt-related transcription factor 1 (RUNX1), also called acute myeloid leukaemia 1, is a member of RUNX family of transcription factors. This family is composed of evolutionarily conserved transcription factors that function as critical lineage determinants in various tissues, however its function in cancer development and clinical significance in RCC are still unknown. METHODS: We used paraffin-embedded tumor tissues from 100 patients and fresh-harvested and paired adjacent normal renal tissues from 15 RCC patients who underwent primary surgical resection in Xijing Hospital between 2018 and 2022. The expression level of RUNX1 was evaluated by immunohistochemistry and Western Blot. RUNX1 promoted tumor cells proliferation, migration and invasion were verified by CCK-8, wound-healing and transwell assays. Finally, we constructed a xenografts model of the 786-O cell lines to observe the effect of RUNX1 on tumorigenesis in vivo. RESULTS: TCGA database showed higher RUNX1 expression levels in KIRC (kidney renal clear cell carcinoma). In overall survival analysis, RCC patients with higher RUNX1 expression level would have a shorter survival period than those with lower expression. Similarly, immunohistochemical results of our cohort also showed that RUNX1 was over-expression in cancer tissues than in corresponding non-cancer tissues. We also proved this result at protein level by western-blot. Meanwhile, prognostic and OS analyses of our cohort showed that the RUNX1 expression level was an individual prognostic factor in RCC patients. CCK-8, wound-healing and transwell assays proved that the overexpression of RUNX1 in Caki-1 cells promoted the proliferation, migration and invasion of the cells. Knocking down RUNX1 in 786-O cells inhibited the proliferation, migration and invasion of cells. The experimental results of xenografts model in nude mice showed that the knockdown of RUNX1 in 786-O cells slowed down the growth of tumor. CONCLUSION: RUNX1 is a poor prognostic factor of clear cell renal carcinoma, which may provide a novel therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Ratones Desnudos , Sincalida/metabolismo , Sincalida/farmacología , Pronóstico , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
19.
Tissue Cell ; 85: 102223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776785

RESUMEN

Periodontitis represents a severe inflammatory illness in tooth supporting tissue. It has been supported that cAMP response element binding protein 1 (CREB1), a common transcription factor, extensively participates in osteogenic differentiation. Here, the current study was to look into the impacts of CREB1 on the process of periodontitis and its possible action mechanism. After human periodontal ligament stem cells (PDLSCs) were challenged with zoledronic acid (ZA), CREB1 expression was examined with RT-qPCR and western blotting. CCK-8 assay appraised cell activity. Following CREB1 elevation or/and vascular endothelial growth factor (VEGF) silencing in ZA-treated PDLSCs, CCK-8 and TUNEL assays separately estimated cell viability and apoptosis. Western blotting tested the expression of apoptosis- and osteogenic differentiation-associated proteins. ALP staining measured PDLSCs osteogenic ability and ARS staining estimated mineralized nodule formation. JASPAR predicted the potential binding of CREB1 with VEGF promoter, which was then testified by ChIP and luciferase reporter assays. RT-qPCR and western blotting tested VEGF expression. CREB1 expression was declined in ZA-exposed PDLSCs and CREB1 elevation exacerbated the viability and osteogenic differentiation while obstructed the apoptosis of PDLSCs. Additionally, CREB1 bond to VEGF promoter and transcriptionally activated VEGF expression. Further, VEGF absence partially stimulated the apoptosis while suppressed the osteogenic differentiation of CREB1-overexpressing PDLSCs treated by ZA. To be concluded, CREB1 might activate VEGF transcription to obstruct the apoptosis while contribute to the osteogenic differentiation of ZA-treated PDLSCs.


Asunto(s)
Osteogénesis , Periodontitis , Humanos , Apoptosis/genética , Diferenciación Celular/fisiología , Proliferación Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal , Periodontitis/metabolismo , Transducción de Señal/fisiología , Sincalida/metabolismo , Células Madre , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/metabolismo
20.
Pathol Res Pract ; 248: 154710, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37494805

RESUMEN

BACKGROUND: The ubiquitin ligase family member triplex motif protein 21 (TRIM21), which is involved in the proliferation, metastasis, and selective death of tumor cells, is crucial in the ubiquitination of a number of tumor marker proteins. As research progresses, more studies demonstrate that TRIM21 expression levels can be used to predict cancer prognosis. However, it is unclear how exactly TRIM21 contributes to cervical squamous carcinoma. METHODS: Immunohistochemistry, Western Blot, and q-PCR were utilized to determine the expression level of TRIM21 in 113 patients with CESC removed by stage I surgery at Xijing Hospital from 2018 to 2023 using paraffin-embedded tumor tissues and 12 pairs of fresh tumor tissues and their paracancerous tissues. Log-rank analysis using SPSS 23.0 was performed for prognosis and survival analysis using univariate/multifactorial analysis. CCK-8, wound-healing and Scratch assay verified that TRIM21 promoted cell proliferation, migration and invasion. The effect of overexpression and knockdown of TRIM21 on tumor stemness was examined using sphere-forming assay and Western Blot. Finally, we constructed a xenograft model to observe the effect of TRIM21 on tumorigenesis in Si Ha cell lines in vivo. RESULTS: TRIM21 expression is greater in CESC tissues than in paracancerous tissues, according to immunohistochemical data. Similarly, at the protein and mRNA levels, we verified this conclusion using Western-Blotting and q-PCR. Prognostic and OS analysis showed that TRIM21 expression levels are associated with individual prognostic factors. CCK-8, Wound healing, Transwell, and Sphere-forming tests all demonstrated that TRIM21 overexpression enhances Ca Ski cell proliferation, migration, invasion, and stemness. TRIM21 knockdown in Si Ha inhibited tumor cell proliferation, migration, invasion, and stemness. The experimental results of xenograft models demonstrated that TRIM21 knockdown in Si Ha cells inhibited tumor development. CONCLUSION: TRIM21 is a poor predictor of prognosis for cervical squamous cell carcinoma and might open up new avenues for investigation into therapeutic targets.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias del Cuello Uterino , Femenino , Humanos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/metabolismo , Procesos Neoplásicos , Pronóstico , Sincalida/genética , Sincalida/metabolismo , Neoplasias del Cuello Uterino/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA