Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Biol Sci ; 20(9): 3334-3352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993557

RESUMEN

Type 2 diabetes mellitus (T2DM) increases the risk of non-alcoholic fatty liver disease (NAFLD) progression to advanced stages, especially upon high-fat diet (HFD). HFD-induced hepatic fibrosis can be marked by oxidative stress, inflammation, and activation of hepatic stellate cells. Sirtuin 1/2 (SIRT1/2), NAD-dependent class III histone deacetylases, are involved in attenuation of fibrosis. In our conducted research, TGF-ß1-activated LX-2 cells, free fatty acid (FFA)-treated simultaneous co-culture (SCC) cells, and HFD-induced hepatic fibrosis in Zucker diabetic fatty (ZDF) rats, a widely used animal model in the study of metabolic syndromes, were used to evaluate the protective effect of Tenovin-1, a SIRT1/2 inhibitor. ZDF rats were divided into chow diet, HFD, and HFD + Tenovin-1 groups. Tenovin-1 reduced hepatic damage, inhibited inflammatory cell infiltration, micro/ macro-vesicular steatosis and prevented collagen deposition HFD-fed rats. Tenovin-1 reduced serum biochemical parameters, triglyceride (TG) and malondialdehyde (MDA) levels but increased glutathione, catalase, and superoxide dismutase levels. Tenovin-1 mitigated proinflammatory cytokines IL-6, IL-1ß, TNFα and fibrosis biomarkers in HFD rats, TGF-ß1-activated LX-2 and FFA treated SCC cells. Additionally, Tenovin-1 suppressed SIRT1/2 expression and inhibited JNK-1 and STAT3 phosphorylation in HFD rats and FFA-treated SCC cells. In conclusion, Tenovin-1 attenuates hepatic fibrosis by stimulating antioxidants and inhibiting inflammatory cytokines under HFD conditions in diabetic rats.


Asunto(s)
Dieta Alta en Grasa , Cirrosis Hepática , Ratas Zucker , Sirtuina 1 , Sirtuina 2 , Animales , Dieta Alta en Grasa/efectos adversos , Ratas , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Sirtuina 1/metabolismo , Sirtuina 2/metabolismo , Sirtuina 2/antagonistas & inhibidores , Masculino , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Estrés Oxidativo/efectos de los fármacos
2.
Front Immunol ; 15: 1404122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979411

RESUMEN

Introduction: Chronic obstructive pulmonary disease (COPD) is a major global cause of mortality with limited effective treatments. Sirtuins (SIRT) are histone deacetylases that are involved in the regulation of redox and inflammatory homeostasis. Hence, the present study aims to investigate the role of SIRT-2 in modulating inflammation in a murine model of COPD. Methods: COPD in mice was established by cigarette smoke (CS) exposure for 60 days, and AK-7 was used as the specific SIRT-2 inhibitor. AK-7 (100 µg/kg and 200 µg/kg body weight) was administered intranasally 1 h before CS exposure. Molecular docking was performed to analyze the binding affinity of different inflammatory proteins with AK-7. Results: Immune cell analysis showed a significantly increased number of macrophages (F4/80), neutrophils (Gr-1), and lymphocytes (CD4+, CD8+, and CD19+) in the COPD, group and their population was declined by AK-7 administration. Total reactive oxygen species, total inducible nitric oxide synthase, inflammatory mediators such as neutrophil elastase, C-reactive protein, histamine, and cytokines as IL4, IL-6, IL-17, and TNF-α were elevated in COPD and declined in the AK-7 group. However, IL-10 showed reverse results representing anti-inflammatory potency. AK-7 administration by inhibiting SIRT-2 decreased the expression of p-NF-κB, p-P38, p-Erk, and p-JNK and increased the expression of Nrf-2. Furthermore, AK-7 also declined the lung injury by inhibiting inflammation, parenchymal destruction, emphysema, collagen, club cells, and Kohn pores. AK-7 also showed good binding affinity with inflammatory proteins. Discussion: The current study reveals that SIRT-2 inhibition mitigates COPD severity and enhances pulmonary therapeutic interventions, suggesting AK-7 as a potential therapeutic molecule for COPD medication development.


Asunto(s)
FN-kappa B , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica , Sirtuina 2 , Animales , Sirtuina 2/metabolismo , Sirtuina 2/antagonistas & inhibidores , Ratones , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Estrés Oxidativo/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Pulmón/patología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Endogámicos C57BL , Citocinas/metabolismo , Carbazoles
3.
Drug Dev Res ; 85(4): e22224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867474

RESUMEN

The mammalian cytoplasmic protein SIRT2, a class III histone deacetylase family member, possesses NAD+-dependent lysine deacetylase/deacylase activity. Dysregulation of SIRT2 has been implicated in the pathogenesis of several diseases, including neurological and metabolic disorders and cancer; thus, SIRT2 emerges as a potential therapeutic target. Herein, we identified a series of diaryl acetamides (ST61-ST90) by the structural optimization of our hit STH2, followed by enhanced SIRT2 inhibitory potency and selectivity. Among them, ST72, ST85, and ST88 selectively inhibited SIRT2 with IC50 values of 9.97, 5.74, and 8.92 µM, respectively. Finally, the entire study was accompanied by in silico prediction of binding modes of docked compounds and the stability of SIRT2-ligand complexes. We hope our findings will provide substantial information for designing selective inhibitors of SIRT2.


Asunto(s)
Acetamidas , Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Sirtuina 2/metabolismo , Humanos , Acetamidas/química , Acetamidas/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química
4.
J Med Chem ; 67(12): 10076-10095, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38847803

RESUMEN

The NAD+-dependent lysine deacylase sirtuin 2 (Sirt2) is involved in multiple pathological conditions such as cancer. Targeting Sirt2 has thus received an increased interest for therapeutic purposes. Furthermore, the orthologue from Schistosoma mansoni (SmSirt2) has been considered for the potential treatment of the neglected tropical disease schistosomiasis. We previously identified a 1,2,4-oxadiazole-based scaffold from the screening of the "Kinetobox" library as a dual inhibitor of human Sirt2 (hSirt2) and SmSirt2. Herein, we describe the structure-activity studies on 1,2,4-oxadiazole-based analogues, which are potent inhibitors of human Sirt2 deacetylation. As proposed by docking studies, a substrate-competitive and cofactor-noncompetitive binding mode of inhibition could be determined in vitro via binding assays and kinetic analysis and further confirmed by a crystal structure of an oxadiazole inhibitor in complex with hSirt2. Optimized analogues reduced cell viability and inhibited prostate cancer cell migration, in correlation with Sirt2 deacetylase inhibition both in vitro and in cells.


Asunto(s)
Oxadiazoles , Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Humanos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , Movimiento Celular/efectos de los fármacos
5.
PLoS One ; 19(6): e0305000, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913635

RESUMEN

Human sirtuin-2 (SIRT2) has emerged as an attractive drug target for a variety of diseases. The enzyme is a deacylase that can remove chemically different acyl modifications from protein lysine residues. Here, we developed a high-throughput screen based on a homogeneous time-resolved fluorescence (HTRF) binding assay to identify inhibitors of SIRT2's demyristoylase activity, which is uncommon among many ligands that only affect its deacetylase activity. From a test screen of 9600 compounds, we identified a small molecule that inhibited SIRT2's deacetylase activity (IC50 = 7 µM) as well as its demyristoylase activity (IC50 = 37 µM). The inhibitor was composed of two small fragments that independently inhibited SIRT2: a halogenated phenol fragment inhibited its deacetylase activity, and a tricyclic thiazolobenzimidazole fragment inhibited its demyristoylase activity. The high-throughput screen also detected multiple deacetylase-specific SIRT2 inhibitors.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Fluorescencia
6.
J Mol Model ; 30(6): 188, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801625

RESUMEN

BACKGROUND: Sirtuins (SIRTs) are NAD+-dependent deacetylases that play various roles in numerous pathophysiological processes, holding promise as therapeutic targets worthy of further investigation. Among them, the SIRT2 subtype is closely associated with tumorigenesis and malignancies. Dysregulation of SIRT2 activation can regulate the expression levels of related genes in cancer cells, leading to tumor occurrence and metastasis. METHODS: In this study, we used computer simulations to screen for novel SIRT2 inhibitors from the FDA database, based on which 10 compounds with high docking scores and good interactions were selected for in vitro anti-pancreatic cancer metastasis testing and enzyme binding inhibition experiments. The results showed that fluvastatin sodium may possess inhibitory activity against SIRT2. Subsequently, fluvastatin sodium was subjected to molecular docking experiments with various SIRT isoforms, and the combined results from Western blotting experiments indicated its potential as a SIRT2 inhibitor. Next, molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations were performed, revealing the binding mode of fluvastatin sodium at the SIRT2 active site, further validating the stability and interaction of the ligand-protein complex under physiological conditions. RESULTS: Overall, this study provides a systematic virtual screening workflow for the discovery of SIRT2 activity inhibitors, identifies the potential inhibitory effect of fluvastatin sodium as a lead compound on SIRT2, and opens up a new direction for developing highly active and selectively targeted SIRT2 inhibitors.


Asunto(s)
Fluvastatina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Sirtuina 2 , Fluvastatina/farmacología , Fluvastatina/química , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Sirtuina 2/metabolismo , Humanos , Unión Proteica , Dominio Catalítico , Simulación por Computador
7.
Antiviral Res ; 226: 105888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641024

RESUMEN

296 million people worldwide are predisposed to developing severe end-stage liver diseases due to chronic hepatitis B virus (HBV) infection. HBV forms covalently closed circular DNA (cccDNA) molecules that persist as episomal DNA in the nucleus of infected hepatocytes and drive viral replication. Occasionally, the HBV genome becomes integrated into host chromosomal DNA, a process that is believed to significantly contribute to circulating HBsAg levels and HCC development. Neither cccDNA accumulation nor expression from integrated HBV DNA are directly targeted by current antiviral treatments. In this study, we investigated the antiviral properties of a newly described allosteric modulator, FLS-359, that targets sirtuin 2 (SIRT2), an NAD+-dependent deacylase. Our results demonstrate that SIRT2 modulation by FLS-359 and by other tool compounds inhibits cccDNA synthesis following de novo infection of primary human hepatocytes and HepG2 (C3A)-NTCP cells, and FLS-359 substantially reduces cccDNA recycling in HepAD38 cells. While pre-existing cccDNA is not eradicated by short-term treatment with FLS-359, its transcriptional activity is substantially impaired, likely through inhibition of viral promoter activities. Consistent with the inhibition of viral transcription, HBsAg production by HepG2.2.15 cells, which contain integrated HBV genomes, is also suppressed by FLS-359. Our study provides further insights on SIRT2 regulation of HBV infection and supports the development of potent SIRT2 inhibitors as HBV antivirals.


Asunto(s)
Antivirales , ADN Circular , ADN Viral , Virus de la Hepatitis B , Hepatocitos , Sirtuina 2 , Replicación Viral , Humanos , ADN Circular/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Hepatocitos/virología , Hepatocitos/efectos de los fármacos , Antivirales/farmacología , Replicación Viral/efectos de los fármacos , Células Hep G2 , Regulación Alostérica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
8.
Proc Natl Acad Sci U S A ; 121(18): e2319833121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648480

RESUMEN

Sirt2 is a nicotinamide adenine dinucleotide (NAD+)-dependent protein lysine deacylase that can remove both acetyl group and long-chain fatty acyl groups from lysine residues of many proteins. It was reported to affect inflammatory bowel disease (IBD) symptoms in a mouse model. However, conflicting roles were reported, with genetic knockout aggravating while pharmacological inhibition alleviating IBD symptoms. These seemingly conflicting reports cause confusion and deter further efforts in developing Sirt2 inhibitors as a potential treatment strategy for IBD. We investigated these conflicting reports and elucidated the role of Sirt2 in the mouse model of IBD. We essentially replicated these conflicting results and confirmed that Sirt2 inhibitors' protective effect is not through off-targets as two very different Sirt2 inhibitors (TM and AGK2) showed similar protection in the IBD mouse model. We believe that the differential effects of inhibitors and knockout are due to the fact that the Sirt2 inhibitors only inhibit some but not all the activities of Sirt2. This hypothesis is confirmed by the observation that a PROTAC degrader of Sirt2 did not protect mice in the IBD model, similar to Sirt2 knockout. Our study provides an interesting example where genetic knockout and pharmacological inhibition do not align and emphasizes the importance of developing substrate-dependent inhibitors. Importantly, we showed that the effect of Sirt2 inhibition in IBD is through regulating the gut epithelium barrier by inhibiting Arf6-mediated endocytosis of E-cadherin, a protein important for the intestinal epithelial integrity. This mechanistic understanding further supports Sirt2 as a promising therapeutic target for treating IBD.


Asunto(s)
Colitis , Mucosa Intestinal , Sirtuina 2 , Animales , Humanos , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/prevención & control , Modelos Animales de Enfermedad , Furanos , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Quinolinas , Sirtuina 2/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/genética
9.
J Neuroimmune Pharmacol ; 18(3): 529-550, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37698780

RESUMEN

Sirtuin 2 (SIRT2) has been proposed to have a central role on aging, inflammation, cancer and neurodegenerative diseases; however, its specific function remains controversial. Recent studies propose SIRT2 pharmacological inhibition as a therapeutic strategy for several neurodegenerative diseases including Alzheimer's disease (AD). Surprisingly, none of these published studies regarding the potential interest of SIRT2 inhibition has assessed the peripheral adverse side consequences of this treatment. In this study, we demonstrate that the specific SIRT2 inhibitor, the compound 33i, does not exhibit genotoxic or mutagenic properties. Moreover, pharmacological treatment with 33i, improved cognitive dysfunction and long-term potentiation, reducing amyloid pathology and neuroinflammation in the APP/PS1 AD mouse model. However, this treatment increased peripheral levels of the inflammatory cytokines IL-1ß, TNF, IL-6 and MCP-1. Accordingly, peripheral SIRT2 inhibition with the blood brain barrier impermeable compound AGK-2, worsened the cognitive capacities and increased systemic inflammation. The analysis of human samples revealed that SIRT2 is increased in the brain but not in the serum of AD patients. These results suggest that, although SIRT2 pharmacological inhibition may have beneficial consequences in neurodegenerative diseases, its pharmacological inhibition at the periphery would not be recommended and the systemic adverse side effects should be considered. This information is essential to maximize the therapeutic potential of SIRT2 inhibition not only for AD but also for other neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Sirtuina 2 , Animales , Humanos , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/patología , Ratones Transgénicos , Sirtuina 2/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología
10.
Int J Mol Sci ; 24(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37298312

RESUMEN

Sirtuin isoform 2 (SIRT2) is one of the seven sirtuin isoforms present in humans, being classified as class III histone deacetylases (HDACs). Based on the high sequence similarity among SIRTs, the identification of isoform selective modulators represents a challenging task, especially for the high conservation observed in the catalytic site. Efforts in rationalizing selectivity based on key residues belonging to the SIRT2 enzyme were accompanied in 2015 by the publication of the first X-ray crystallographic structure of the potent and selective SIRT2 inhibitor SirReal2. The subsequent studies led to different experimental data regarding this protein in complex with further different chemo-types as SIRT2 inhibitors. Herein, we reported preliminary Structure-Based Virtual Screening (SBVS) studies using a commercially available library of compounds to identify novel scaffolds for the design of new SIRT2 inhibitors. Biochemical assays involving five selected compounds allowed us to highlight the most effective chemical features supporting the observed SIRT2 inhibitory ability. This information guided the following in silico evaluation and in vitro testing of further compounds from in-house libraries of pyrazolo-pyrimidine derivatives towards novel SIRT2 inhibitors (1-5). The final results indicated the effectiveness of this scaffold for the design of promising and selective SIRT2 inhibitors, featuring the highest inhibition among the tested compounds, and validating the applied strategy.


Asunto(s)
Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/química , Dominio Catalítico , Bibliotecas de Moléculas Pequeñas , Conformación Proteica , Simulación del Acoplamiento Molecular
11.
Cells ; 11(7)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406775

RESUMEN

Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Furanos , Paclitaxel , Quinolinas , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Femenino , Furanos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Paclitaxel/farmacología , Quinolinas/farmacología , Sirtuina 2/antagonistas & inhibidores
12.
São Paulo; s.n; s.n; 2022. 68 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-1415033

RESUMEN

A doença de Chagas é causada pelo Trypanosoma cruzi, e atualmente, acomete entre 6 a 7 milhões de pessoas em todo o mundo. A quimioterapia disponível para seu o tratamento se baseia apenas em dois fármacos, nifurtimox e benznidazol, com mais de 50 anos de descoberto. Estes fármacos apresentam eficácia limitada, pois são pouco efetivos na fase crônica e apresentam alta toxicidade, resultando em efeitos adversos graves. Esse panorama mostra a necessidade de novas abordagens terapêuticas contra essa doença. Nesse sentido, a inibição de vias bioquímicas essencias para o parasita se mostram como uma boa sugestão para identificação de compostos promissores candidatos a novos agentes quimioterápicos. A sirtuína 2 (Sir2) são enzimas reguladoras que participam de mecanismos epigenéticos em tripanossomatídeos, e no T. cruzi possuem um papel fundamental em todos os seus estágios evolutivos, devido a este fato, se apresentam como um alvo promissor na busca por novos fármacos contra a doença de Chagas. Neste sentido propomos a busca de inibidores da Sir2 proteína 1 do T. cruzi (TcSir2rp1) que é geneticamente validada como alvo farmacológico, por meio da estratégia de triagem biológica. Realizou-se a expressão da enzima recombinante por biologia molecular em um sistema de transformação utilizando cepa de Escherichia coli Artic Express (DE3). Foi feita a purificação e a confirmação da obtenção da proteína recombinante se deu por gel SDS-PAGE. Após a obtenção da enzima os parâmetros cinéticos foram determinados por experimentos de fluorimetria. A triagem foi realizada para um conjunto de 82 compostos, previamente sintetizados pelo nosso grupo de pesquisa, como inibidores da TcSir2p1 em dose única de 100 µM. Os ensaios foram realizados em triplicata e em experimentos independentes. Dentre os 82 compostos testados, 20 apresentaram inibições maior que 50% contra a enzima TcSir2rp1, na dose de 100 µM. Dentre estes, se destacaram 3 compostos derivados de chalconas, para os quais foi determinada a potência. O composto 1 foi o que mais potente, apresentando valor de IC50 de 11,65 µM, já os compostos 3 e 5 foram menos potentes (IC50= 38,50 µM e 19,85 µM, respectivamente). Diante dos resultados obtidos, pode-se concluir que a estratégia de triagem biológica é promissora na identificação de inibidores da TcSir2p1 candidatos a agentes anti- T. cruzi


Chagas disease is caused by Trypanosoma cruzi, and currently affects 6 to 7 million people worldwide. The chemotherapy available for its treatment is based on only two drugs, nifurtimox and benznidazole, with more than 50 years of discovery. These drugs have limited efficacy, as they are ineffective in the chronic phase and have high toxicity, resulting in serious adverse effects. This panorama shows the need for new therapeutic approaches against this disease. In this sense, the inhibition of essential biochemical pathways for the parasite proves to be a good suggestion for the identification of promising compounds candidates for new chemotherapeutic agents. Sirtuin 2 (Sir2) are regulatory enzymes that participate in epigenetic mechanisms in trypanosomatids, and in T. cruzi they have a fundamental role in all their evolutionary stages, due to this fact, they present themselves as a promising target in the search for new drugs against Chagas disease. In this sense, we propose the search for inhibitors of Sir2 protein 1 of T. cruzi (TcSir2rp1) which is genetically validated as a pharmacological target, through the biological screening strategy. The expression of the recombinant enzyme was performed by molecular biology in a transformation system using strain of Escherichia coli Artic Express (DE3). Purification was performed and confirmation of obtaining the recombinant protein was performed by SDS-PAGE gel. After obtaining the enzyme, the kinetic parameters were determined by fluorimetry experiments. Screening was performed for a set of 82 compounds, previously synthesized by our research group, as TcSir2p1 inhibitors in a single dose of 100 µM. Assays were performed in triplicate and in independent experiments. Among the 82 compounds tested, 20 showed inhibitions greater than 50% against the enzyme TcSir2rp1, at a dose of 100 µM. Among these, 3 compounds derived from chalcones stood out, for which the potency was determined. Compound 1 was the most potent, with an IC50 value of 11.65 µM, while compounds 3 and 5 were less potent (IC50= 38.50 µM and 19.88 µM, respectively). In view of the results obtained, it can be concluded that the biological screening strategy is promising in the identification of TcSir2p1 inhibitors candidates for anti-T. cruzi agents


Asunto(s)
Enfermedad de Chagas/patología , Sirtuina 2/antagonistas & inhibidores , Trypanosoma cruzi/clasificación , Productos Biológicos/farmacología , Preparaciones Farmacéuticas/análisis , Quimioterapia , Medicamentos de Referencia , Epigenómica/instrumentación , Fluorometría/métodos
13.
São Paulo; s.n; s.n; 2022. 113 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-1415035

RESUMEN

As doenças negligenciadas são causadas por agentes infecciosos e parasitários, como vírus, bactérias, protozoários e helmintos. Essas doenças são prevalentes em populações de baixa renda que vivem em países em desenvolvimento e são responsáveis por incapacitar e levar milhares de pessoas à morte. Este nome se dá pois, apesar de sua grande relevância médica, recebem pouca atenção dos governos e indústrias farmacêuticas. Dentre essas doenças podemos destacar a Doença de Chagas, doença infecciosa causada pelo parasita hemoflagelado Trypanosoma cruzi. Endêmica em 21 países, com 6 a 7 milhões de pessoas infectadas resultando em 7500 mortes por ano. A quimioterapia disponível contra essa parasitose é baseada em apenas dois medicamentos, o benznidazol e o nifurtimox, ativos principalmente na fase aguda da doença e com efeitos adversos graves que comprometem a adesão ao tratamento e, além disso, apesar dos enormes esforços na pesquisa de novos agentes antichagásicos em nível nacional e internacional, na maioria realizada academicamente, ainda não foram encontradas alternativas terapêuticas para a doença, persistindo, assim, a necessidade de descoberta e desenvolvimento de novos fármacos. O início de um planejamento de um novo fármaco se dá pela definição de um alvo bioquímico a ser utilizado na busca de moléculas que possam exercer a função de inibidores ou moduladores, conforme a atividade biológica desejada. Neste sentido, as sirtuínas 2 (Sir2) são enzimas que se mostraram essenciais para o crescimento in vitro do T. cruzi em suas formas amastigota e epimastigota. No caso de tripanossomatídeos, em geral, a superexpressão de Sir2 está relacionada à sobrevivência de formas amastigotas. Assim, essas evidências indicam que a Sir2 de tripanosomatídeos tem grande potencial como alvo biológico na busca e desenvolvimento de novos fármacos antichagásicos. O objetivo principal deste projeto foi identificar moléculas que apresentaram atividade inibitória para a sirtuína 2 de T. cruzi por meio da utilização da estratégia de Planejamento de Fármacos Baseada no Ligante - Ligand Based Drug Design (LBDD) e o desenvolvimento de análogos dos inibidores da Sir2. A modificação molecular está entre algumas das técnicas tradicionais usadas no desenvolvimento racional de um fármaco, e é usada principalmente no desenvolvimento de análogos, e busca melhorar as propriedades farmacocinéticas e/ou farmacodinâmicas de um protótipo, obter propriedades de interação semelhantes ao alvo e, em alguns casos, revelar uma atividade biológica. Com este intuito, análogos do sirtinol e da salermida foram sintetizados e uma nova rota sintética utilizando o microrreator em fluxo contínuo foi desenvolvida e apresentou rendimento superior quando comparado à síntese em bancada. A partir desta metodologia foram obtidos 20 compostos. Os ensaios in vitro contra formas amastigotas do T. cruzi indicaram que 8 compostos inibiram a atividade parasitária em mais de 50%, na dose de 10 µM, sendo que alguns destes apresentaram maior inibição parasitária quando comparados ao benznidazol, o fármaco de referência e único disponível no Brasil. Com estes resultados preliminares, novos ensaios estão sendo realizados para identificar potência e mecanismo de ação destes candidatos a agentes tripanomicidas


Neglected diseases are caused by infectious and parasitic agents such as viruses, bacteria, protozoa and helminths. These diseases are prevalent in low-income populations living in developing countries and are responsible for disabling and killing thousands of people. They get this name because, despite their great medical relevance, they end up receiving little attention from governments and pharmaceutical industries. Among these diseases, we can highlight Chagas disease, an infectious endemic disease caused by the hemoflagellate parasite Trypanosoma cruzi. This disease is endemic in 21 countries, with 6 to 7 million people infected resulting in 7,500 deaths per year. Chemotherapy is based on just two drugs, benznidazole and nifurtimox, which are mainly active in the acute phase of the disease. These drugs have adverse effects that compromise adherence, even more, considering that they are not effective from the point of view of the chronic phase of the disease. Despite the enormous efforts in researching new anti-chagasic agents at the national and international level, and mostly carried out academically, therapeutic alternatives for the disease have not yet been found, thus, the need for the discovery and development of new drugs persists. Sirtuins 2 (Sir2) are enzymes that have been shown to be essential for the in vitro growth of T. cruzi in its amastigote and epimastigote forms. In the case of trypanosomatids in general, Sir2 overexpression is related to the survival of amastigote forms. Sir2 inhibitors, such as sirtinol, have shown efficacy in leishmanicides. Thus, these evidences indicate that Sir2 from trypanosomatids can be considered as a biological target in the search and development of new anti-chagasic drugs. The beginning of a new drug planning study is the definition of a biochemical target to be used in the search for molecules that can play the role of inhibitors or modulators, according to the desired biological activity. The main objective of this project was to identify molecules that presented inhibitory activity to sirtuin 2 of T. cruzi using the Ligand Based Drug Design (LBDD) strategy of planning and the development of analogues of Sir2 inhibitors. Molecular modification is a traditional technique used in the rational development of a drug, as well as the use of natural products, combinatorial chemistry, high-throughput screening (HTS), among others. Mainly used in the development of analogues, molecular modification is applied for different purposes, among them, it seeks to improve the pharmacokinetic and/or pharmacodynamic properties of a prototype, obtain target-like interaction properties and, in some cases, reveal an activity biological. For this purpose, analogues of sirtinol and salermide were synthesized and a new synthetic route using the microreactor in continuous flow was developed and presented superior yield when compared to benchtop synthesis. From this methodology, 20 compounds were obtained. in vitro assays against amastigote forms of T. cruzi indicated that 8 compounds inhibited parasitic activity by more than 50% at a dose of 10 µM, and some of these showed greater parasitic inhibition when compared to benznidazole, the reference drug, and only available in Brazil. With these preliminary results, new assays are being carried out to identify the potency and mechanism of action of these candidate trypanocidal agents


Asunto(s)
Preparaciones Farmacéuticas/análisis , Química , Estrategias de Salud , Quimioterapia/clasificación , Sirtuina 2/antagonistas & inhibidores , Técnicas In Vitro/métodos , Diseño de Fármacos , Flujo Continuo , Enfermedades Transmisibles/complicaciones , Enfermedad de Chagas/patología , Enfermedades Endémicas/prevención & control , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Metodología como un Tema , Ensayos Analíticos de Alto Rendimiento/instrumentación , Enfermedades Desatendidas/complicaciones , Epigenómica/clasificación , Cumplimiento y Adherencia al Tratamiento
14.
ChemMedChem ; 16(22): 3484-3494, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34382754

RESUMEN

Small-molecule inhibitors of the human sirtuin SIRT2 are being developed because of their therapeutic potential in a variety of diseases. Here, we developed a high-throughput screen to identify novel SIRT2 inhibitors using a fluorescent SIRT2 probe, 1-aminoanthracene (AMA). AMA has high fluorescence when bound to SIRT2, and its fluorescence reduces >10-fold when it is displaced from SIRT2 by other ligands. We used this property of AMA to screen a library of known bioactive compounds for SIRT2 binding and discovered two known pharmaceutical compounds that bind SIRT2 with Kd values in the low µM range, ascorbyl palmitate and pictilisib. Both compounds inhibit the deacetylase and defatty-acylase activities of SIRT2. While pictilisib has selectivity for SIRT2, ascorbyl palmitate also inhibits the enzymatic activities of SIRT1 and SIRT6. Finally, we show that ascorbyl palmitate inhibits SIRT2 deacetylase and defatty-acylase activities in cells, and SIRT2 inhibition by ascorbyl palmitate contributes to the cytotoxicity of the compound. Our work discovered novel SIRT2 deacylase inhibitors and presents a screening approach that can be applied on a larger scale.


Asunto(s)
Ácido Ascórbico/farmacología , Ensayos Analíticos de Alto Rendimiento , Palmitatos/farmacología , Sirtuina 2/antagonistas & inhibidores , Ácido Ascórbico/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Palmitatos/química , Sirtuina 2/metabolismo , Relación Estructura-Actividad
15.
Eur J Med Chem ; 224: 113709, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34303869

RESUMEN

Sirtuin 2 (SIRT2) is a member of the human sirtuins, which regulates various biological processes and is deemed as a novel biomarker for different cancers. Depending on the tumor type, SIRT2 knockout leads to a controversial role in tumorigenesis, however, pharmacological inhibition of SIRT2 results exclusively in growth inhibition of various cancer cells. In this respect, selective SIRT2 inhibitors hold therapeutic promise in a wide range of tumors. The literature has a batch of successful stories of SIRT2 modulators discovery. This review presents our perspective on the up-to-date selective SIRT2 inhibitors and their antiproliferative activity.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Neoplasias/tratamiento farmacológico , Sirtuina 2/antagonistas & inhibidores , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Neoplasias/patología , Sirtuina 2/metabolismo
16.
Int J Mol Sci ; 22(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068624

RESUMEN

Melanoma cells are resistant to most anticancer chemotherapeutics. Despite poor response rates and short-term efficacy, chemotherapy remains the main approach to treating this cancer. The underlying mechanisms of the intrinsic chemoresistance of melanoma remain unclear, but elucidating these mechanisms is important to improve the efficacy of chemotherapy regimens. Increasing evidence suggests that sirtuin 2 (SIRT2) plays a key role in the response of melanoma cells to chemotherapeutics; thus, in the present study, we evaluated the impact of shRNA-mediated and pharmacological inhibition of SIRT2 on the sensitivity of melanoma cells to cisplatin, which is used in several regimens to treat melanoma patients. We found that cells with SIRT2 inhibition revealed increased sensitivity to cisplatin and exhibited increased accumulation of γ-H2AX and reduced EGFR-AKT-RAF-ERK1/2 (epidermal growth factor receptor-protein B kinase-RAF kinase-extracellular signal-regulated kinase 1/2) pathway signaling compared to control cells. Thus, our results show that sirtuin 2 inhibition increased the in vitro efficacy of cisplatin against melanoma cells.


Asunto(s)
Cisplatino/farmacología , Melanoma/tratamiento farmacológico , Sirtuina 2/genética , Línea Celular Tumoral , Cisplatino/efectos adversos , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas c-akt , Sirtuina 2/antagonistas & inhibidores , Quinasas raf/genética
17.
ACS Chem Biol ; 16(7): 1266-1275, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34139124

RESUMEN

Because of their involvement in various biological pathways, the sirtuin enzyme family members SIRT1, SIRT2, and SIRT3 play both tumor-promoting and tumor-suppressing roles, based on the context and experimental conditions. Thus, an interesting question is whether inhibiting one of them or inhibiting all of them would be better for treating cancers. Pharmacologically, this is difficult to address, due in part to potential off-target effects of different compounds. Compounds with almost identical properties but differing in SIRT1-3 selectivity will be useful for addressing this question. Here, we have developed a pan SIRT1-3 inhibitor (NH4-6) and a SIRT2-selective inhibitor (NH4-13) with very similar chemical structures, with the only difference being the substitution of an ester bond to an amide bond. Such a minimal difference allows us to accurately compare the anticancer effect of pan SIRT1-3 inhibition and SIRT2-selective inhibition in cellular and mouse models. NH4-6 showed stronger cytotoxicity than NH4-13 in cancer cell lines. In mice, both inhibitors showed similar anticancer efficacy. However, NH4-6 is toxic to mice, which hinders the use of higher dosages. These results highlight the advantage of SIRT2-selective inhibitors as potential anticancer therapeutics.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Sirtuina 1/antagonistas & inhibidores , Sirtuina 2/antagonistas & inhibidores , Sirtuina 3/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Carbamatos/farmacocinética , Carbamatos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/farmacocinética , Humanos , Lisina/análogos & derivados , Lisina/farmacocinética , Lisina/uso terapéutico , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Neuroreport ; 32(12): 1001-1008, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34102645

RESUMEN

OBJECTIVE: Ferroptosis plays an important role in traumatic brain injury (TBI). The p53 protein is a major mediator of ferroptosis. However, the role of p53-mediated ferroptosis in TBI has not been studied. Sirtuin 2 (SIRT2) exerts a protective effects role in TBI, although the underlying mechanism of this protection remains unclear. In the present study, we tested the hypothesis that that SIRT2 mitigates TBI by regulating p53-mediated ferroptosis. METHODS AND RESULTS: To model TBI in mice, we used the controlled cortical impact (CCI) injury method. We found that ferroptosis was significantly activated by CCI, and peaked 3 days following CCI, as evidenced by upregulation of GPX4 and SLC7A11, increased content of decreases glutathione, lipid peroxidation, malondialdehyde and ferrous ion. Inhibition of ferroptosis significantly alleviated neurological indications and brain edema. In addition, knockout of p53 significantly blocked ferroptosis following CCI. Furthermore, we found that inhibition of SIRT2 upregulated the acetylation of p53, as well as p53 expression, and exacerbated ferroptosis following CCI. Interestingly, knockout of p53 rescued the SIRT2 inhibition-induced exacerbation of ferroptosis. CONCLUSIONS: These findings indicate that p53-mediated ferroptosis contributes to the pathogenesis of TBI. Furthermore, we demonstrate that SIRT2 exerts a neuroprotective effect against TBI by suppressing p53-mediated ferroptosis.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Ferroptosis/fisiología , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Animales , Benzamidas/farmacología , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/patología , Femenino , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sulfonamidas/farmacología , Proteína p53 Supresora de Tumor/genética
19.
Future Med Chem ; 13(16): 1397-1409, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34189957

RESUMEN

Infections caused by protozoans remain a public health issue, especially in tropical countries. Serious adverse events, lack of efficacy at the different stages of the infection and routes of administration that have a negative impact on treatment adherence are some of the problems with currently available therapy against these diseases. Here we describe an epigenetic target, sirtuin 2 and its related proteins, that is promising given the results in phenotypic assays and in vivo models against Sir2 of Plasmodium falciparum, Leishmania donovani, Leishmania infantum, Schistosoma mansoni, Trypanosoma brucei and Trypanosoma cruzi parasites. The results we present highlight how this target can be extensively explored and how its inhibitors might be employed in the clinic.


Asunto(s)
Antiprotozoarios/farmacología , Descubrimiento de Drogas , Sirtuina 2/antagonistas & inhibidores , Animales , Antiprotozoarios/química , Humanos , Leishmania/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Sirtuina 2/metabolismo , Trypanosoma/efectos de los fármacos
20.
Sci Rep ; 11(1): 10169, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986372

RESUMEN

Sirtuin 2 (Sirt2) nicotinamide adenine dinucleotide-dependent deacetylase enzyme has been reported to alter diverse biological functions in the cells and onset of diseases, including cancer, aging, and neurodegenerative diseases, which implicate the regulation of Sirt2 function as a potential drug target. Available Sirt2 inhibitors or modulators exhibit insufficient specificity and potency, and even partially contradictory Sirt2 effects were described for the available inhibitors. Herein, we applied computational screening and evaluation of FDA-approved drugs for highly selective modulation of Sirt2 activity via a unique inhibitory mechanism as reported earlier for SirReal2 inhibitor. Application of stringent molecular docking results in the identification of 48 FDA-approved drugs as selective putative inhibitors of Sirt2, but only top 10 drugs with docking scores > - 11 kcal/mol were considered in reference to SirReal2 inhibitor for computational analysis. The molecular dynamics simulations and post-simulation analysis of Sirt2-drug complexes revealed substantial stability for Fluphenazine and Nintedanib with Sirt2. Additionally, developed 3D-QSAR-models also support the inhibitory potential of drugs, which exclusively revealed highest activities for Nintedanib (pIC50 ≥ 5.90 µM). Conclusively, screened FDA-approved drugs were advocated as promising agents for Sirt2 inhibition and required in vitro investigation for Sirt2 targeted drug development.


Asunto(s)
Dominio Catalítico/efectos de los fármacos , Reposicionamiento de Medicamentos/métodos , Sirtuina 2/antagonistas & inhibidores , Acetamidas/química , Acetamidas/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Preparaciones Farmacéuticas/química , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Sirtuina 2/química , Tiazoles/química , Tiazoles/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...