Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Nature ; 630(8015): 166-173, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38778114

RESUMEN

For many adult human organs, tissue regeneration during chronic disease remains a controversial subject. Regenerative processes are easily observed in animal models, and their underlying mechanisms are becoming well characterized1-4, but technical challenges and ethical aspects are limiting the validation of these results in humans. We decided to address this difficulty with respect to the liver. This organ displays the remarkable ability to regenerate after acute injury, although liver regeneration in the context of recurring injury remains to be fully demonstrated. Here we performed single-nucleus RNA sequencing (snRNA-seq) on 47 liver biopsies from patients with different stages of metabolic dysfunction-associated steatotic liver disease to establish a cellular map of the liver during disease progression. We then combined these single-cell-level data with advanced 3D imaging to reveal profound changes in the liver architecture. Hepatocytes lose their zonation and considerable reorganization of the biliary tree takes place. More importantly, our study uncovers transdifferentiation events that occur between hepatocytes and cholangiocytes without the presence of adult stem cells or developmental progenitor activation. Detailed analyses and functional validations using cholangiocyte organoids confirm the importance of the PI3K-AKT-mTOR pathway in this process, thereby connecting this acquisition of plasticity to insulin signalling. Together, our data indicate that chronic injury creates an environment that induces cellular plasticity in human organs, and understanding the underlying mechanisms of this process could open new therapeutic avenues in the management of chronic diseases.


Asunto(s)
Transdiferenciación Celular , Hepatocitos , Hepatopatías , Hígado , Humanos , Sistema Biliar/citología , Sistema Biliar/metabolismo , Sistema Biliar/patología , Biopsia , Plasticidad de la Célula , Enfermedad Crónica , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/citología , Células Epiteliales/patología , Hepatocitos/metabolismo , Hepatocitos/citología , Hepatocitos/patología , Insulina/metabolismo , Hígado/patología , Hígado/metabolismo , Hígado/citología , Hepatopatías/patología , Hepatopatías/metabolismo , Regeneración Hepática , Organoides/metabolismo , Organoides/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Serina-Treonina Quinasas TOR/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(4): 166335, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34973373

RESUMEN

BACKGROUND & AIMS: Loss of primary cilia in epithelial cells is known to cause cystic diseases of the liver and kidney. We have previously shown that during experimental and human cirrhosis that primary cilia were predominantly expressed on biliary cells in the ductular reaction. However, the role of primary cilia in the pathogenesis of the ductular reaction is not fully understood. METHODS: Primary cilia were specifically removed in biliary epithelial cells (BECs) by the administration of tamoxifen to Kif3af/f;CK19CreERT mice at week 2 of a 20-week course of TAA treatment. Biliary progenitor cells were isolated and grown as organoids from gallbladders. Cells and tissue were analysed using histology, immunohistochemistry and Western blot assays. RESULTS: At the end of 20 weeks TAA administration, primary cilia loss in liver BECs resulted in multiple microscopic cystic lesions within an unaltered ductular reaction. These were not seen in control mice who did not receive TAA. There was no effect of biliary primary cilia loss on the development of cirrhosis. Increased cellular proliferation was seen within the cystic structures associated with a decrease in hepatocyte lobular proliferation. Loss of primary cilia within biliary organoids was initially associated with reduced cell passage survival but this inhibitory effect was diminished in later passages. ERK but not WNT signalling was enhanced in primary cilia loss-induced cystic lesions in vivo and its inhibition reduced the expansion of primary cilia deficient biliary progenitor cells in vitro. CONCLUSIONS: TAA-treated kif3a BEC-specific knockout mice had an unaltered progression to cirrhosis, but developed cystic lesions that showed increased proliferation.


Asunto(s)
Cilios/patología , Quistes/patología , Cinesinas/genética , Hepatopatías/patología , Animales , Sistema Biliar/citología , Proliferación Celular , Cilios/metabolismo , Quistes/inducido químicamente , Modelos Animales de Enfermedad , Células Epiteliales/citología , Células Epiteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Queratina-19/genética , Queratina-19/metabolismo , Cinesinas/deficiencia , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Tioacetamida/toxicidad
3.
J Nanobiotechnology ; 19(1): 406, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34872583

RESUMEN

BACKGROUND: Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is highly influenced by genetic determinants. Many genome-wide association studies (GWAS) have reported that numerous genetic loci were significantly associated with PBC susceptibility. However, the effects of genetic determinants on liver cells and its immune microenvironment for PBC remain unclear. RESULTS: We constructed a powerful computational framework to integrate GWAS summary statistics with scRNA-seq data to uncover genetics-modulated liver cell subpopulations for PBC. Based on our multi-omics integrative analysis, 29 risk genes including ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. By combining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited a notable enrichment by PBC-related genetic association signals (Permuted P < 0.05). The risk gene of ORMDL3 showed the highest expression proportion in cholangiocytes than other liver cells (22.38%). The ORMDL3+ cholangiocytes have prominently higher metabolism activity score than ORMDL3- cholangiocytes (P = 1.38 × 10-15). Compared with ORMDL3- cholangiocytes, there were 77 significantly differentially expressed genes among ORMDL3+ cholangiocytes (FDR < 0.05), and these significant genes were associated with autoimmune diseases-related functional terms or pathways. The ORMDL3+ cholangiocytes exhibited relatively high communications with macrophage and monocyte. Compared with ORMDL3- cholangiocytes, the VEGF signaling pathway is specific for ORMDL3+ cholangiocytes to interact with other cell populations. CONCLUSIONS: To the best of our knowledge, this is the first study to integrate genetic information with single cell sequencing data for parsing genetics-influenced liver cells for PBC risk. We identified that ORMDL3+ cholangiocytes with higher metabolism activity play important immune-modulatory roles in the etiology of PBC.


Asunto(s)
Sistema Biliar , Cirrosis Hepática Biliar , Proteínas de la Membrana/genética , Análisis de la Célula Individual/métodos , Sistema Biliar/citología , Sistema Biliar/metabolismo , Células Cultivadas , Estudio de Asociación del Genoma Completo , Humanos , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/metabolismo , Proteínas de la Membrana/metabolismo , RNA-Seq
4.
Nature ; 597(7874): 87-91, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34433966

RESUMEN

Studies based on single cells have revealed vast cellular heterogeneity in stem cell and progenitor compartments, suggesting continuous differentiation trajectories with intermixing of cells at various states of lineage commitment and notable degrees of plasticity during organogenesis1-5. The hepato-pancreato-biliary organ system relies on a small endoderm progenitor compartment that gives rise to a variety of different adult tissues, including the liver, pancreas, gall bladder and extra-hepatic bile ducts6,7. Experimental manipulation of various developmental signals in the mouse embryo has underscored important cellular plasticity in this embryonic territory6. This is reflected in the existence of human genetic syndromes as well as congenital malformations featuring multi-organ phenotypes in liver, pancreas and gall bladder6. Nevertheless, the precise lineage hierarchy and succession of events leading to the segregation of an endoderm progenitor compartment into hepatic, biliary and pancreatic structures have not yet been established. Here we combine computational modelling approaches with genetic lineage tracing to accurately reconstruct the hepato-pancreato-biliary lineage tree. We show that a multipotent progenitor subpopulation persists in the pancreato-biliary organ rudiment, contributing cells not only to the pancreas and gall bladder but also to the liver. Moreover, using single-cell RNA sequencing and functional experiments we define a specialized niche that supports this subpopulation in a multipotent state for an extended time during development. Together these findings indicate sustained plasticity underlying hepato-pancreato-biliary development that might also explain the rapid expansion of the liver while attenuating pancreato-biliary growth.


Asunto(s)
Sistema Biliar/citología , Linaje de la Célula , Hígado/citología , Páncreas/citología , Nicho de Células Madre , Animales , Sistema Biliar/embriología , Sistema Biliar/metabolismo , Linaje de la Célula/genética , Rastreo Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Páncreas/embriología , Páncreas/metabolismo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Nicho de Células Madre/genética
5.
Hepatology ; 74(6): 3345-3361, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34320243

RESUMEN

BACKGROUND AND AIMS: Liver regeneration after extreme hepatocyte loss occurs through transdifferentiation of biliary epithelial cells (BECs), which includes dedifferentiation of BECs into bipotential progenitor cells (BPPCs) and subsequent redifferentiation into nascent hepatocytes and BECs. Although multiple molecules and signaling pathways have been implicated to play roles in the BEC-mediated liver regeneration, mechanisms underlying the dedifferentiation-redifferentiation transition and the early phase of BPPC redifferentiation that is pivotal for both hepatocyte and BEC directions remain largely unknown. APPROACH AND RESULTS: The zebrafish extreme liver damage model, genetic mutation, pharmacological inhibition, transgenic lines, whole-mount and fluorescent in situ hybridizations and antibody staining, single-cell RNA sequencing, quantitative real-time PCR, and heat shock-inducible overexpression were used to investigate roles and mechanisms of farnesoid X receptor (FXR; encoded by nuclear receptor subfamily 1, group H, member 4 [nr1h4]) in regulating BPPC redifferentiation. The nr1h4 expression was significantly up-regulated in response to extreme liver injury. Genetic mutation or pharmacological inhibition of FXR was ineffective to BEC-to-BPPC dedifferentiation but blocked the redifferentiation of BPPCs to both hepatocytes and BECs, leading to accumulation of undifferentiated or less-differentiated BPPCs. Mechanistically, induced overexpression of extracellular signal-related kinase (ERK) 1 (encoded by mitogen-activated protein kinase 3) rescued the defective BPPC-to-hepatocyte redifferentiation in the nr1h4 mutant, and ERK1 itself was necessary for the BPPC-to-hepatocyte redifferentiation. The Notch activities in the regenerating liver of nr1h4 mutant attenuated, and induced Notch activation rescued the defective BPPC-to-BEC redifferentiation in the nr1h4 mutant. CONCLUSIONS: FXR regulates BPPC-to-hepatocyte and BPPC-to-BEC redifferentiations through ERK1 and Notch, respectively. Given recent applications of FXR agonists in the clinical trials for liver diseases, this study proposes potential underpinning mechanisms by characterizing roles of FXR in the stimulation of dedifferentiation-redifferentiation transition and BPPC redifferentiation.


Asunto(s)
Regeneración Hepática , Glicoproteínas de Membrana Plaquetaria/fisiología , Células Madre/fisiología , Animales , Sistema Biliar/citología , Diferenciación Celular , Regeneración Hepática/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Pez Cebra
6.
Hepatology ; 74(6): 3269-3283, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34129689

RESUMEN

BACKGROUND AND AIMS: Stratified therapy has entered clinical practice in primary biliary cholangitis (PBC), with routine use of second-line therapy in nonresponders to first-line therapy with ursodeoxycholic acid (UDCA). The mechanism for nonresponse to UDCA remains, however, unclear and we lack mechanistic serum markers. The UK-PBC study was established to explore the biological basis of UDCA nonresponse in PBC and identify markers to enhance treatment. APPROACH AND RESULTS: Discovery serum proteomics (Olink) with targeted multiplex validation were carried out in 526 subjects from the UK-PBC cohort and 97 healthy controls. In the discovery phase, untreated PBC patients (n = 68) exhibited an inflammatory proteome that is typically reduced in scale, but not resolved, with UDCA therapy (n = 416 treated patients). Nineteen proteins remained at a significant expression level (defined using stringent criteria) in UDCA-treated patients, six of them representing a tightly linked profile of chemokines (including CCL20, known to be released by biliary epithelial cells (BECs) undergoing senescence in PBC). All showed significant differential expression between UDCA responders and nonresponders in both the discovery and validation cohorts. A linear discriminant analysis, using serum levels of C-X-C motif chemokine ligand 11 and C-C motif chemokine ligand 20 as markers of responder status, indicated a high level of discrimination with an AUC of 0.91 (CI, 0.83-0.91). CONCLUSIONS: UDCA under-response in PBC is characterized by elevation of serum chemokines potentially related to cellular senescence and was previously shown to be released by BECs in PBC, suggesting a potential role in the pathogenesis of high-risk disease. These also have potential for development as biomarkers for identification of high-risk disease, and their clinical utility as biomarkers should be evaluated further in prospective studies.


Asunto(s)
Cirrosis Hepática Biliar/tratamiento farmacológico , Ácido Ursodesoxicólico/uso terapéutico , Anciano , Sistema Biliar/citología , Sistema Biliar/metabolismo , Biomarcadores/sangre , Estudios de Casos y Controles , Quimiocinas/sangre , Células Epiteliales/metabolismo , Femenino , Humanos , Cirrosis Hepática Biliar/sangre , Cirrosis Hepática Biliar/metabolismo , Masculino , Persona de Mediana Edad , Proteoma , Insuficiencia del Tratamiento
7.
Biotechnol Bioeng ; 118(7): 2572-2584, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33811654

RESUMEN

The integration of a bile drainage structure into engineered liver tissues is an important issue in the advancement of liver regenerative medicine. Primary biliary cells, which play a vital role in bile metabolite accumulation, are challenging to obtain in vitro because of their low density in the liver. In contrast, large amounts of purified hepatocytes can be easily acquired from rodents. The in vitro chemically induced liver progenitors (CLiPs) from primary mature hepatocytes offer a platform to produce biliary cells abundantly. Here, we generated a functional CLiP-derived tubular bile duct-like structure using the chemical conversion technology. We obtained an integrated tubule-hepatocyte tissue via the direct coculture of hepatocytes on the established tubular biliary-duct-like structure. This integrated tubule-hepatocyte tissue was able to transport the bile, as quantified by the cholyl-lysyl-fluorescein assay, which was not observed in the un-cocultured structure or in the biliary cell monolayer. Furthermore, this in vitro integrated tubule-hepatocyte tissue exhibited an upregulation of hepatic marker genes. Together, these findings demonstrated the efficiency of the CLiP-derived tubular biliary-duct-like structures regarding the accumulation and transport of bile.


Asunto(s)
Bilis/metabolismo , Sistema Biliar/metabolismo , Diferenciación Celular , Células Epiteliales/metabolismo , Hepatocitos/metabolismo , Células Madre/metabolismo , Animales , Sistema Biliar/citología , Transporte Biológico Activo , Técnicas de Cocultivo , Células Epiteliales/citología , Hepatocitos/citología , Masculino , Ratas , Ratas Wistar , Células Madre/citología
8.
Science ; 371(6532)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33632817

RESUMEN

The liver is organized into zones in which hepatocytes express different metabolic enzymes. The cells most responsible for liver repopulation and regeneration remain undefined, because fate mapping has only been performed on a few hepatocyte subsets. Here, 14 murine fate-mapping strains were used to systematically compare distinct subsets of hepatocytes. During homeostasis, cells from both periportal zone 1 and pericentral zone 3 contracted in number, whereas cells from midlobular zone 2 expanded in number. Cells within zone 2, which are sheltered from common injuries, also contributed to regeneration after pericentral and periportal injuries. Repopulation from zone 2 was driven by the insulin-like growth factor binding protein 2-mechanistic target of rapamycin-cyclin D1 (IGFBP2-mTOR-CCND1) axis. Therefore, different regions of the lobule exhibit differences in their contribution to hepatocyte turnover, and zone 2 is an important source of new hepatocytes during homeostasis and regeneration.


Asunto(s)
Hepatocitos/fisiología , Regeneración Hepática , Hígado/fisiología , Animales , Sistema Biliar/citología , Enfermedades de las Vías Biliares/fisiopatología , Proliferación Celular , Ciclina D1/metabolismo , Técnicas de Sustitución del Gen , Homeostasis , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Hígado/citología , Ratones , Serina-Treonina Quinasas TOR/metabolismo
9.
Hepatology ; 74(1): 397-410, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33314176

RESUMEN

BACKGROUND AND AIMS: Following mild liver injury, pre-existing hepatocytes replicate. However, if hepatocyte proliferation is compromised, such as in chronic liver diseases, biliary epithelial cells (BECs) contribute to hepatocytes through liver progenitor cells (LPCs), thereby restoring hepatic mass and function. Recently, augmenting innate BEC-driven liver regeneration has garnered attention as an alternative to liver transplantation, the only reliable treatment for patients with end-stage liver diseases. Despite this attention, the molecular basis of BEC-driven liver regeneration remains poorly understood. APPROACH AND RESULTS: By performing a chemical screen with the zebrafish hepatocyte ablation model, in which BECs robustly contribute to hepatocytes, we identified farnesoid X receptor (FXR) agonists as inhibitors of BEC-driven liver regeneration. Here we show that FXR activation blocks the process through the FXR-PTEN (phosphatase and tensin homolog)-PI3K (phosphoinositide 3-kinase)-AKT-mTOR (mammalian target of rapamycin) axis. We found that FXR activation blocked LPC-to-hepatocyte differentiation, but not BEC-to-LPC dedifferentiation. FXR activation also suppressed LPC proliferation and increased its death. These defects were rescued by suppressing PTEN activity with its chemical inhibitor and ptena/b mutants, indicating PTEN as a critical downstream mediator of FXR signaling in BEC-driven liver regeneration. Consistent with the role of PTEN in inhibiting the PI3K-AKT-mTOR pathway, FXR activation reduced the expression of pS6, a marker of mTORC1 activation, in LPCs of regenerating livers. Importantly, suppressing PI3K and mTORC1 activities with their chemical inhibitors blocked BEC-driven liver regeneration, as did FXR activation. CONCLUSIONS: FXR activation impairs BEC-driven liver regeneration by enhancing PTEN activity; the PI3K-AKT-mTOR pathway controls the regeneration process. Given the clinical trials and use of FXR agonists for multiple liver diseases due to their beneficial effects on steatosis and fibrosis, the detrimental effects of FXR activation on LPCs suggest a rather personalized use of the agonists in the clinic.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Regeneración Hepática/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Células Madre/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Sistema Biliar/citología , Proliferación Celular , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Hígado/efectos de los fármacos , Hígado/fisiología , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Madre/fisiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Expert Rev Gastroenterol Hepatol ; 15(2): 159-164, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32933347

RESUMEN

INTRODUCTION: Interstitial cells of Cajal (ICCs) are a special type of interstitial cells located in the gastrointestinal tract muscles. They are closely related to smooth muscle cells and neurons, participate in gastrointestinal motility and nerve signal transmission, and are pacemaker cells for gastrointestinal electrical activity. Research interest in ICCs has continuously grown since they were first discovered in 1893. Later, researchers discovered that they are also present in other organs, including the biliary tract, urethra, bladder, etc.; these cells were named interstitial Cajal-like cells (ICLCs), and attempts have been made to explain their relationships with certain diseases. AREAS COVERED: This review paper summarizes the morphology, identification, classification, function, and distribution of ICLCs in the biliary tract and their relationship to biliary tract diseases. EXPERT OPINION: Based on the function and distribution of ICLCs in the biliary tract system, ICLCs will provide a more reliable theoretical basis for the mechanisms of pathogenesis of and treatments for biliary tract diseases.


Asunto(s)
Sistema Biliar/citología , Telocitos/clasificación , Telocitos/fisiología , Humanos , Células Intersticiales de Cajal/clasificación , Células Intersticiales de Cajal/fisiología
11.
STAR Protoc ; 1(1): 100009, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-33111070

RESUMEN

This protocol is a procedure for establishment and culture of cancer and non-cancer organoids using tissues from biliary tract carcinoma (BTC) patients. These BTC organoids can be used for various biological analyses and drug screening. One challenge in establishing and culturing BTC organoids is non-cancer cells contaminating surgically resected tumor tissues form organoids concurrently with cancer organoids. Careful validation that the established organoids are cancer-derived is important. For complete details on the use and generation of this protocol, please refer to Saito et al. (2019) in the journal Cell Reports.


Asunto(s)
Neoplasias del Sistema Biliar , Sistema Biliar/citología , Carcinoma , Técnicas de Cultivo de Célula/métodos , Organoides , Técnicas de Cultivo de Tejidos/métodos , Humanos , Organoides/citología , Organoides/metabolismo
12.
Hepatology ; 72(5): 1786-1799, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32060934

RESUMEN

BACKGROUND AND AIMS: During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver required to maintain organismal homeostasis. The developmental cues controlling the differentiation of committed progenitors into these cell types, however, are incompletely understood. Here, we discover an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. APPROACH AND RESULTS: Exposure of zebrafish embryos to 17ß-estradiol (E2) during liver development significantly decreased hepatocyte-specific gene expression, liver size, and hepatocyte number. In contrast, pharmacological blockade of estrogen synthesis or nuclear estrogen receptor (ESR) signaling enhanced liver size and hepatocyte marker expression. Transgenic reporter fish demonstrated nuclear ESR activity in the developing liver. Chemical inhibition and morpholino knockdown of nuclear estrogen receptor 2b (esr2b) increased hepatocyte gene expression and blocked the effects of E2 exposure. esr2b-/- mutant zebrafish exhibited significantly increased expression of hepatocyte markers with no impact on liver progenitors, other endodermal lineages, or vasculature. Significantly, E2-stimulated Esr2b activity promoted biliary epithelial differentiation at the expense of hepatocyte fate, whereas loss of esr2b impaired biliary lineage commitment. Chemical and genetic epistasis studies identified bone morphogenetic protein (BMP) signaling as a mediator of the estrogen effects. The divergent impact of estrogen on hepatobiliary fate was confirmed in a human hepatoblast cell line, indicating the relevance of this pathway for human liver development. CONCLUSIONS: Our studies identify E2, esr2b, and downstream BMP activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant clinical implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.


Asunto(s)
Sistema Biliar/embriología , Estradiol/metabolismo , Receptor beta de Estrógeno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Sistema Biliar/citología , Sistema Biliar/metabolismo , Diferenciación Celular/genética , Línea Celular , Embrión no Mamífero , Estradiol/administración & dosificación , Receptor beta de Estrógeno/genética , Femenino , Técnicas de Silenciamiento del Gen , Hepatocitos/fisiología , Hígado/citología , Hígado/metabolismo , Masculino , Modelos Animales , Morfolinos/administración & dosificación , Morfolinos/genética , Transducción de Señal/genética , Células Madre/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
13.
Hepatology ; 71(3): 972-989, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31330051

RESUMEN

BACKGROUND AND AIMS: Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS: Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS: We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.


Asunto(s)
Sistema Biliar/fisiopatología , Colangitis Esclerosante/fisiopatología , Regeneración/fisiología , Nicho de Células Madre/fisiología , Adulto , Anciano , Animales , Sistema Biliar/citología , Diferenciación Celular , Colangitis Esclerosante/terapia , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Piridinas/toxicidad , Receptores Notch/fisiología , Vía de Señalización Wnt/fisiología
14.
Yakugaku Zasshi ; 139(12): 1509-1512, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31787637

RESUMEN

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) are expected to be applicable to large-scale in vitro hepatotoxicity screening systems. Accordingly, methods for generating HLCs from human iPS cells have been improved over the past decade. However, although human hepatocytes have zone-specific characteristics in vivo, there is currently no technique to generate zone-specific HLCs from human iPS cells. Therefore, to generate HLCs with zone-specific properties from human iPS cells, we cultured iPS-HLCs using a parenchymal or nonparenchymal cell-conditioned medium (CM). The results showed that urea production and gluconeogenesis capacity in iPS-HLCs were increased by culturing with cholangiocyte-CM, and glutamine production and drug metabolism capacity in iPS-HLCs were increased by culturing with hepatocyte-CM. It was thus clarified that iPS-HLCs acquire zone 1 hepatocyte-like properties by culturing with cholangiocyte-CM and that iPS-HLCs acquire zone 3 hepatocyte-like properties by culturing with hepatocyte-CM. In addition, we found that WNT inhibitory factor-1 secreted from cholangiocytes, and WNT7B and WNT8B secreted from hepatocytes play important roles in the zone-specific conversion of iPS-HLCs. We hope that our findings will facilitate the application of iPS-HLCs to drug discovery research.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Descubrimiento de Drogas , Hepatocitos , Células Madre Pluripotentes Inducidas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistema Biliar/citología , Sistema Biliar/metabolismo , Técnicas de Cultivo de Célula , Medios de Cultivo , Gluconeogénesis , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Urea/metabolismo , Proteínas Wnt/metabolismo
15.
Cells ; 8(11)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731674

RESUMEN

Human biliary tree stem/progenitor cells (hBTSCs), reside in peribiliary glands, are mainly stimulated by primary sclerosing cholangitis (PSC) and cholangiocarcinoma. In these pathologies, hBTSCs displayed epithelial-to-mesenchymal transition (EMT), senescence characteristics, and impaired differentiation. Here, we investigated the effects of cholest-4,6-dien-3-one, an oxysterol involved in cholangiopathies, on hBTSCs biology. hBTSCs were isolated from donor organs, cultured in self-renewal control conditions, differentiated in mature cholangiocytes by specifically tailored medium, or exposed for 10 days to concentration of cholest-4,6-dien-3-one (0.14 mM). Viability, proliferation, senescence, EMT genes expression, telomerase activity, interleukin 6 (IL6) secretion, differentiation capacity, and HDAC6 gene expression were analyzed. Although the effect of cholest-4,6-dien-3-one was not detected on hBTSCs viability, we found a significant increase in cell proliferation, senescence, and IL6 secretion. Interestingly, cholest-4.6-dien-3-one impaired differentiation in mature cholangiocytes and, simultaneously, induced the EMT markers, significantly reduced the telomerase activity, and induced HDAC6 gene expression. Moreover, cholest-4,6-dien-3-one enhanced bone morphogenic protein 4 (Bmp-4) and sonic hedgehog (Shh) pathways in hBTSCs. The same pathways activated by human recombinant proteins induced the expression of EMT markers in hBTSCs. In conclusion, we demonstrated that chronic exposition of cholest-4,6-dien-3-one induced cell proliferation, EMT markers, and senescence in hBTSC, and also impaired the differentiation in mature cholangiocytes.


Asunto(s)
Sistema Biliar/citología , Colestenonas/efectos adversos , Histona Desacetilasa 6/genética , Interleucina-6/genética , Sistema Biliar/efectos de los fármacos , Sistema Biliar/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Senescencia Celular , Transición Epitelial-Mesenquimal , Histona Desacetilasa 6/metabolismo , Humanos , Interleucina-6/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Donantes de Tejidos
16.
Sci Rep ; 9(1): 17466, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767912

RESUMEN

Despite considerable recent insight into the molecular phenotypes and type 2 innate immune functions of tuft cells in rodents, there is sparse knowledge about the region-specific presence and molecular phenotypes of tuft cells in the human digestive tract. Here, we traced cholinergic tuft cells throughout the human alimentary tract with immunohistochemistry and deciphered their region-specific distribution and biomolecule coexistence patterns. While absent from the human stomach, cholinergic tuft cells localized to villi and crypts in the small and large intestines. In the biliary tract, they were present in the epithelium of extra-hepatic peribiliary glands, but not observed in the epithelia of the gall bladder and the common duct of the biliary tract. In the pancreas, solitary cholinergic tuft cells were frequently observed in the epithelia of small and medium-size intra- and inter-lobular ducts, while they were absent from acinar cells and from the main pancreatic duct. Double immunofluorescence revealed co-expression of choline acetyltransferase with structural (cytokeratin 18, villin, advillin) tuft cell markers and eicosanoid signaling (cyclooxygenase 1, hematopoietic prostaglandin D synthase, 5-lipoxygenase activating protein) biomolecules. Our results indicate that region-specific cholinergic signaling of tuft cells plays a role in mucosal immunity in health and disease, especially in infection and cancer.


Asunto(s)
Sistema Biliar/citología , Intestinos/citología , Páncreas/citología , Transducción de Señal , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Adolescente , Adulto , Anciano , Sistema Biliar/metabolismo , Niño , Ciclooxigenasa 1/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Humanos , Mucosa Intestinal/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Queratina-18/metabolismo , Masculino , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Páncreas/metabolismo , Adulto Joven
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(12): 165557, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521820

RESUMEN

Primary sclerosing cholangitis (PSC) is characterized by increased mast cell (MC) infiltration, biliary damage and hepatic fibrosis. Cholangiocytes secrete stem cell factor (SCF), which is a chemoattractant for c-kit expressed on MCs. We aimed to determine if blocking SCF inhibits MC migration, biliary damage and hepatic fibrosis. METHODS: FVB/NJ and Mdr2-/- mice were treated with Mismatch or SCF Vivo-Morpholinos. We measured (i) SCF expression and secretion; (ii) hepatic damage; (iii) MC migration/activation and histamine signaling; (iv) ductular reaction and biliary senescence; and (v) hepatic fibrosis. In human PSC patients, SCF expression and secretion were measured. In vitro, cholangiocytes were evaluated for SCF expression and secretion. Biliary proliferation/senescence was measured in cholangiocytes pretreated with 0.1% BSA or the SCF inhibitor, ISK03. Cultured HSCs were stimulated with cholangiocyte supernatant and activation measured. MC migration was determined with cholangiocytes pretreated with BSA or ISK03 loaded into the bottom of Boyden chambers and MCs into top chamber. RESULTS: Biliary SCF expression and SCF serum levels increase in human PSC. Cholangiocytes, but not hepatocytes, from SCF Mismatch Mdr2-/- mice have increased SCF expression and secretion. Inhibition of SCF in Mdr2-/- mice reduced (i) hepatic damage; (ii) MC migration; (iii) histamine and SCF serum levels; and (iv) ductular reaction/biliary senescence/hepatic fibrosis. In vitro, cholangiocytes express and secrete SCF. Blocking biliary SCF decreased MC migration, biliary proliferation/senescence, and HSC activation. CONCLUSION: Cholangiocytes secrete increased levels of SCF inducing MC migration, contributing to biliary damage/hepatic fibrosis. Targeting MC infiltration may be an option to ameliorate PSC progression.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Colangitis Esclerosante/terapia , Cirrosis Hepática/terapia , Mastocitos/patología , Morfolinos/uso terapéutico , Factor de Células Madre/genética , Animales , Sistema Biliar/citología , Sistema Biliar/metabolismo , Sistema Biliar/patología , Movimiento Celular , Senescencia Celular , Colangitis Esclerosante/genética , Colangitis Esclerosante/patología , Regulación hacia Abajo , Femenino , Eliminación de Gen , Humanos , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Masculino , Mastocitos/citología , Mastocitos/metabolismo , Ratones , Morfolinos/genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
18.
Cells ; 8(10)2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31547151

RESUMEN

BACKGROUND: Chronic liver diseases are frequently accompanied with activation of biliary epithelial cells (BECs) that can differentiate into hepatocytes and cholangiocytes, providing an endogenous back-up system. Functional studies on BECs often rely on isolations of an BEC cell population from healthy and/or injured livers. However, a consensus on the characterization of these cells has not yet been reached. The aim of this study was to compare the publicly available transcriptome profiles of human and mouse BECs and to establish gene signatures that can identify quiescent and activated human and mouse BECs. METHODS: We used publicly available transcriptome data sets of human and mouse BECs, compared their profiles and analyzed co-expressed genes and pathways. By merging both human and mouse BEC-enriched genes, we obtained a quiescent and activation gene signature and tested them on BEC-like cells and different liver diseases using gene set enrichment analysis. In addition, we identified several genes from both gene signatures to identify BECs in a scRNA sequencing data set. RESULTS: Comparison of mouse BEC transcriptome data sets showed that the isolation method and array platform strongly influences their general profile, still most populations are highly enriched in most genes currently associated with BECs. Pathway analysis on human and mouse BECs revealed the KRAS signaling as a new potential pathway in BEC activation. We established a quiescent and activated BEC gene signature that can be used to identify BEC-like cells and detect BEC enrichment in alcoholic hepatitis, non-alcoholic steatohepatitis (NASH) and peribiliary sclerotic livers. Finally, we identified a gene set that can distinguish BECs from other liver cells in mouse and human scRNAseq data. CONCLUSIONS: Through a meta-analysis of human and mouse BEC gene profiles we identified new potential pathways in BEC activation and created unique gene signatures for quiescent and activated BECs. These signatures and pathways will help in the further characterization of this progenitor cell type in mouse and human liver development and disease.


Asunto(s)
Sistema Biliar/citología , Sistema Biliar/metabolismo , Células Epiteliales/metabolismo , Transcriptoma/fisiología , Animales , Sistema Biliar/fisiología , División Celular/genética , Transdiferenciación Celular/genética , Perfilación de la Expresión Génica/métodos , Hepatocitos/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/citología , Ratones , Análisis por Micromatrices , Regeneración/genética , Análisis de Secuencia de ARN
19.
Nature ; 574(7776): 112-116, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31554966

RESUMEN

Organogenesis is a complex and interconnected process that is orchestrated by multiple boundary tissue interactions1-7. However, it remains unclear how individual, neighbouring components coordinate to establish an integral multi-organ structure. Here we report the continuous patterning and dynamic morphogenesis of hepatic, biliary and pancreatic structures, invaginating from a three-dimensional culture of human pluripotent stem cells. The boundary interactions between anterior and posterior gut spheroids differentiated from human pluripotent stem cells enables retinoic acid-dependent emergence of hepato-biliary-pancreatic organ domains specified at the foregut-midgut boundary organoids in the absence of extrinsic factors. Whereas transplant-derived tissues are dominated by midgut derivatives, long-term-cultured microdissected hepato-biliary-pancreatic organoids develop into segregated multi-organ anlages, which then recapitulate early morphogenetic events including the invagination and branching of three different and interconnected organ structures, reminiscent of tissues derived from mouse explanted foregut-midgut culture. Mis-segregation of multi-organ domains caused by a genetic mutation in HES1 abolishes the biliary specification potential in culture, as seen in vivo8,9. In sum, we demonstrate that the experimental multi-organ integrated model can be established by the juxtapositioning of foregut and midgut tissues, and potentially serves as a tractable, manipulatable and easily accessible model for the study of complex human endoderm organogenesis.


Asunto(s)
Sistema Biliar/embriología , Intestinos/embriología , Hígado/embriología , Modelos Biológicos , Morfogénesis , Páncreas/embriología , Animales , Sistema Biliar/citología , Biomarcadores/análisis , Biomarcadores/metabolismo , Tipificación del Cuerpo , Endodermo/citología , Endodermo/embriología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Intestinos/citología , Hígado/citología , Masculino , Ratones , Organoides/citología , Organoides/embriología , Páncreas/citología , Esferoides Celulares/citología , Esferoides Celulares/metabolismo , Esferoides Celulares/trasplante , Factor de Transcripción HES-1/análisis , Factor de Transcripción HES-1/metabolismo
20.
Int J Mol Sci ; 20(16)2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31430850

RESUMEN

Phosphatidylcholine (PC) translocation into mucus of the intestine was shown to occur via a paracellular transport across the apical/lateral tight junction (TJ) barrier. In case this could also be operative in biliary epithelial cells, this may have implication for the pathogenesis of primary sclerosing cholangitis (PSC). We here evaluated the transport of PC across polarized cholangiocytes. Therefore, the biliary tumor cell line Mz-ChA-1 was grown to confluency. In transwell culture systems the translocation of PC to the apical compartment was analyzed. After 21 days in culture, polarized Mz-ChA-1 cells revealed a predominant apical translocation of choline containing phospholipids including PC with minimal intracellular accumulation. Transport was suppressed by TJ destruction employing chemical inhibitors and pretreatment with siRNA to TJ forming proteins as well as the apical transmembrane mucin 3 as PC acceptor. Apical translocation was dependent on a negative apical electrical potential created by the cystic fibrosis transmembrane conductance regulator (CFTR) and the anion exchange protein 2 (AE2). It was stimulated by apical application of secretory mucins. The results indicated the existence of a paracellular PC passage across apical/lateral TJ of the polarized biliary epithelial tumor cell line Mz-ChA-1. This has implication for the generation of a protective mucus barrier in the biliary tree.


Asunto(s)
Sistema Biliar/metabolismo , Células Epiteliales/metabolismo , Fosfatidilcolinas/metabolismo , Sistema Biliar/citología , Neoplasias del Sistema Biliar/metabolismo , Línea Celular Tumoral , Polaridad Celular , Células Epiteliales/citología , Humanos , Uniones Estrechas/metabolismo , Transcitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA