Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.813
Filtrar
1.
PLoS One ; 16(11): e0260665, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34847184

RESUMEN

Durian (Durio zibethinus L.) is a major economic crop native to Southeast Asian countries, including Thailand. Accordingly, understanding durian fruit ripening is an important factor in its market worldwide, owing to the fact that it is a climacteric fruit with a strikingly limited shelf life. However, knowledge regarding the molecular regulation of durian fruit ripening is still limited. Herein, we focused on cytochrome P450, a large enzyme family that regulates many biosynthetic pathways of plant metabolites and phytohormones. Deep mining of the durian genome and transcriptome libraries led to the identification of all P450s that are potentially involved in durian fruit ripening. Gene expression validation by RT-qPCR showed a high correlation with the transcriptome libraries at five fruit ripening stages. In addition to aril-specific and ripening-associated expression patterns, putative P450s that are potentially involved in phytohormone metabolism were selected for further study. Accordingly, the expression of CYP72, CYP83, CYP88, CYP94, CYP707, and CYP714 was significantly modulated by external treatment with ripening regulators, suggesting possible crosstalk between phytohormones during the regulation of fruit ripening. Interestingly, the expression levels of CYP88, CYP94, and CYP707, which are possibly involved in gibberellin, jasmonic acid, and abscisic acid biosynthesis, respectively, were significantly different between fast- and slow-post-harvest ripening cultivars, strongly implying important roles of these hormones in fruit ripening. Taken together, these phytohormone-associated P450s are potentially considered additional molecular regulators controlling ripening processes, besides ethylene and auxin, and are economically important biological traits.


Asunto(s)
Bombacaceae/enzimología , Sistema Enzimático del Citocromo P-450/biosíntesis , Frutas/enzimología , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/biosíntesis , Bombacaceae/genética , Sistema Enzimático del Citocromo P-450/genética , Frutas/genética , Proteínas de Plantas/genética
2.
Hum Exp Toxicol ; 40(12_suppl): S775-S787, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34758665

RESUMEN

Triptolide (TP), the main active compound extracted from medicine-tripterygium wilfordii Hook f. (TWHF). It has anti-tumor and immunomodulatory properties. Our study aimed to investigate the mechanisms of hepatotoxicity treated with TP in vivo and in vitro, as well as their relationship with the NF-κB (p65) signal pathway; and to assess TP-induced hepatotoxicity after CYP2E1 modulation by the known inhibitor, clomethiazole, and the known inducer, pyrazole. Mice were given TP to cause liver injury and IHHA-1 cells were given TP to cause hepatocyte injury. The enzyme activity and hepatotoxicity changed dramatically when the CYP2E1 inhibitor and inducer were added. In comparison to the control group, the enzyme inducer increased the activity of CYP2E1, whereas the enzyme inhibitor had the opposite effect. Our findings suggest that TP is an inducer of CYP2E1 via a time-dependent activation mechanism. In addition, TP can promote oxidative stress, inflammatory and involving the NF-κB (p65) signal pathway. Therefore, we used triptolide to stimulate C57 mice and IHHA-1 cells to determine whether TP can promote oxidative stress and inflammation by activating CYP2E1 in response to exacerbated liver damage and participate in NF-κB (p65) signaling pathway.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Diterpenos/farmacología , Inflamación/prevención & control , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/farmacología , Animales , Inducción Enzimática , Compuestos Epoxi/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Microb Cell Fact ; 20(1): 90, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902608

RESUMEN

BACKGROUND: Currently, the numerous and versatile applications in pharmaceutical and chemical industry make the recombinant production of cytochrome P450 enzymes (CYPs) of great biotechnological interest. Accelerating the drug development process by simple, quick and scalable access of human drug metabolites is key for efficient and targeted drug development in response to new and sometimes unexpected medical challenges and needs. However, due its biochemical complexity, scalable human CYP (hCYP) production and their application in preparative biotransformations was still in its infancy. RESULTS: A scalable bioprocess for fine-tuned co-expression of hCYP2C9 and its essential complementary human cytochrome P450 reductase (hCPR) in the yeast Pichia pastoris (Komagataella phaffii) is presented. High-throughput screening (HTS) of a transformant library employing a set of diverse bidirectional expression systems with different regulation patterns and a fluorimetric assay was used in order to fine-tune hCYP2C9 and hCPR co-expression, and to identify best expressing clonal variants. The bioprocess development for scalable and reliable whole cell biocatalyst production in bioreactors was carried out based on rational optimization criteria. Among the different alternatives studied, a glycerol carbon-limiting strategy at high µ showed highest production rates, while methanol co-addition together with a decrease of µ provided the best results in terms of product to biomass yield and whole cell activity. By implementing the mentioned strategies, up to threefold increases in terms of production rates and/or yield could be achieved in comparison with initial tests. Finally, the performance of the whole cell catalysts was demonstrated successfully in biotransformation using ibuprofen as substrate, demonstrating the expected high selectivity of the human enzyme catalyst for 3'hydroxyibuprofen. CONCLUSIONS: For the first time a scalable bioprocess for the production of hCYP2C9 whole cell catalysts was successfully designed and implemented in bioreactor cultures, and as well, further tested in a preparative-scale biotransformation of interest. The catalyst engineering procedure demonstrated the efficiency of the employment of a set of differently regulated bidirectional promoters to identify transformants with most effective membrane-bound hCYP/hCPR co-expression ratios and implies to become a model case for the generation of other P. pastoris based catalysts relying on co-expressed enzymes such as other P450 catalysts or enzymes relying on co-expressed enzymes for co-factor regeneration.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Ingeniería Metabólica/métodos , Proteínas Recombinantes/biosíntesis , Saccharomycetales/metabolismo , Reactores Biológicos , Catálisis , Humanos
4.
Clin Pharmacol Ther ; 109(6): 1505-1516, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33336382

RESUMEN

Metamizole is an analgesic and antipyretic drug used intensively in certain countries. Previous studies have shown that metamizole induces cytochrome (CYP) 2B6 and possibly CYP3A4. So far, it is unknown whether metamizole induces additional CYPs and by which mechanism. Therefore, we assessed the activity of 6 different CYPs in 12 healthy male subjects before and after treatment with 3 g of metamizole per day for 1 week using a phenotyping cocktail approach. In addition, we investigated whether metamizole induces CYPs by an interaction with the constitutive androstane receptor (CAR) or the pregnane X receptor (PXR) in HepaRG cells. In the clinical study, we confirmed a moderate induction of CYP2B6 (decrease in the efavirenz area under the plasma concentration time curve (AUC) by 79%) and 3A4 (decrease in the midazolam AUC by 68%) by metamizole. In addition, metamizole weakly induced CYP2C9 (decrease in the flurbiprofen AUC by 22%) and moderately CYP2C19 (decrease in the omeprazole AUC by 66%) but did not alter CYP2D6 activity. In addition, metamizole weakly inhibited CYP1A2 activity (1.79-fold increase in the caffeine AUC). We confirmed these results in HepaRG cells, where 4-MAA, the principal metabolite of metamizole, induced the mRNA expression of CYP2B6, 2C9, 2C19, and 3A4. In HepaRG cells with a stable knockout of PXR or CAR, we could demonstrate that CYP induction by 4-MAA depends on CAR and not on PXR. In conclusion, metamizole is a broad CYP inducer by an interaction with CAR and an inhibitor of CYP1A2. Regarding the widespread use of metamizole, these findings are of substantial clinical relevance.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inhibidores del Citocromo P-450 CYP1A2/farmacología , Citocromo P-450 CYP1A2/genética , Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/biosíntesis , Dipirona/farmacología , Inducción Enzimática/efectos de los fármacos , Adulto , Área Bajo la Curva , Línea Celular , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6/biosíntesis , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2C9/biosíntesis , Citocromo P-450 CYP2C9/genética , Sistema Enzimático del Citocromo P-450/genética , Interacciones Farmacológicas , Femenino , Genotipo , Voluntarios Sanos , Humanos , Masculino , Receptor X de Pregnano/antagonistas & inhibidores , Receptor X de Pregnano/genética , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Adulto Joven
5.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 915-927, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33219472

RESUMEN

4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 µM ßNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, ßNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyp1a2 mRNA was activated only by ßNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the ßNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática/efectos de los fármacos , Tiazolidinas/farmacología , Células 3T3-L1 , Animales , Ratones , ARN Mensajero/metabolismo , Tiazolidinas/síntesis química
6.
Drug Metab Dispos ; 49(3): 245-253, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33355212

RESUMEN

Induction of cytochrome P450 can cause drug-drug interactions and efficacy failure. Induction risk in liver and gut is typically inferred from experiments with plated hepatocytes. Organoids are physiologically relevant, multicellular structures originating from stem cells. Intestinal stem cell-derived organoids retain traits of normal gut physiology, such as an epithelial barrier and cellular diversity. Matched human enteroid and colonoid lines, generated from ileal and colon biopsies from two donors, were cultured in extracellular matrix for 3 days, followed by a single 48-hour treatment with rifampin, omeprazole, CITCO, and phenytoin at concentrations that induce target genes in hepatocytes. After treatment, mRNA was analyzed for induction of target genes. Rifampin induced CYP3A4; estimated EC50 and maximal fold induction were 3.75 µM and 8.96-fold, respectively, for ileal organoids and 1.40 µM and 11.3-fold, respectively, for colon organoids. Ileal, but not colon, organoids exhibited nifedipine oxidase activity, which was induced by rifampin up to 14-fold. The test compounds did not increase mRNA expression of CYP1A2, CYP2B6, multidrug resistance transporter 1 (P-glycoprotein), breast cancer resistance protein, and UDP-glucuronosyltransferase 1A1 in ileal organoids. Whereas omeprazole induced CYP3A4 (up to 5.3-fold, geometric mean, n = 4 experiments), constitutive androstane receptor activators phenytoin and CITCO did not. Omeprazole failed to induce CYP1A2 mRNA but did induce CYP1A1 mRNA (up to 7.7-fold and 15-fold in ileal and colon organoids, respectively, n = 4 experiments). Despite relatively high intra- and interexperimental variability, data suggest that the model yields induction responses that are distinct from hepatocytes and holds promise to enable evaluation of CYP1A1 and CYP3A4 induction in gut. SIGNIFICANCE STATEMENT: An adult intestinal stem cell-derived organoid model to test P450 induction in gut was evaluated. Testing several prototypical inducers for mRNA induction of P450 isoforms, UDP-glucuronosyltransferase 1A1, P-glycoprotein, and breast cancer resistance protein with both human colon and ileal organoids resulted in a range of responses, often distinct from those found in hepatocytes, indicating the potential for further development of this model as a physiologically relevant gut induction test system.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/biosíntesis , Intestinos/enzimología , Organoides/enzimología , Células Madre/enzimología , Línea Celular , Relación Dosis-Respuesta a Droga , Inducción Enzimática/efectos de los fármacos , Inducción Enzimática/fisiología , Humanos , Intestinos/citología , Intestinos/efectos de los fármacos , Organoides/efectos de los fármacos , Rifampin/farmacología , Células Madre/efectos de los fármacos
7.
Biotechnol Bioeng ; 118(3): 1050-1065, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33205834

RESUMEN

Cytochrome P450 enzymes (P450s) are a superfamily of heme-thiolate proteins widely existing in various organisms. Due to their key roles in secondary metabolism, degradation of xenobiotics, and carcinogenesis, there is a great demand to heterologously express and obtain a sufficient amount of active eukaryotic P450s. However, most eukaryotic P450s are endoplasmic reticulum-localized membrane proteins, which is the biggest challenge for functional expression to high levels. Furthermore, the functions of P450s require the cooperation of cytochrome P450 reductases for electron transfer. Great efforts have been devoted to the heterologous expression of eukaryotic P450s, and yeasts, particularly Saccharomyces cerevisiae are frequently considered as the first expression systems to be tested for this challenging purpose. This review discusses the strategies for improving the expression and activity of eukaryotic P450s in yeasts, followed by examples of P450s involved in biosynthetic pathway engineering.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Expresión Génica , Saccharomyces cerevisiae , Animales , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Humanos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
8.
Oxid Med Cell Longev ; 2020: 8887251, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33312341

RESUMEN

6,8-Diprenylorobol is a phytochemical derived from the roots of Glycyrrhiza uralensis Fisch. 6,8-Diprenylorobol exhibits several biological activities, but the effects of 6,8-diprenylorobol on cancers have been hardly investigated. This study is aimed at elucidating the anticancer effect and working mechanism of 6,8-diprenylorobol in HepG2 and Huh-7, two kinds of human hepatocellular carcinoma (HCC) cell lines. WST-1, cell counting, and colony formation assays and morphological change analysis showed that 6,8-diprenylorobol treatment decreased the cell viability and proliferation rate. Cell cycle analysis indicated that 6,8-diprenylorobol treatment increased the population of the G1/0 stage. Annexin V/PI double staining and TUNEL analysis showed that 6,8-diprenylorobol treatment increased the apoptotic cell population and DNA fragmentation. Western blot analysis showed that 6,8-diprenylorobol treatment increased the expression of cleaved PARP1, cleaved caspase-3, FOXO3, Bax, Bim, p21, and p27 but decreased the expression of Bcl2 and BclXL. Interestingly, 6,8-diprenylorobol inhibited CYP2J2-mediated astemizole O-demethylation and ebastine hydroxylase activities with K i values of 9.46 and 2.61 µM, respectively. CYP2J2 siRNA transfection enhanced the anticancer effect of 6,8-diprenylorobol in HepG2 and Huh-7 cells through the downregulation of CYP2J2 protein expression and upregulation of FOXO3. Taken together, this study proposes that 6,8-diprenylorobol treatment may be a useful therapeutic option against HCC by targeting CYP2J2 and FOXO3.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Proteína Forkhead Box O3/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Apoptosis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Citocromo P-450 CYP2J2 , Sistema Enzimático del Citocromo P-450/genética , Proteína Forkhead Box O3/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Proteínas de Neoplasias/genética
9.
Biol Pharm Bull ; 43(12): 1839-1846, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33268701

RESUMEN

Polygala tenuifolia Willd. is a traditional Chinese herbal medicine that is widely used in treating nervous system disorders. Triterpene saponins in P. tenuifolia (polygala saponins) have excellent biological activity. As a precursor for the synthesis of presenegin, oleanolic acid (OA) plays an important role in the biosynthesis of polygala saponins. However, the mechanism behind the biosynthesis of polygala saponins remains to be elucidated. In this study, we found that CYP716A249 (GenBank: ASB17946) oxidized the C-28 position of ß-amyrin to produce OA. Using quantitative real-time PCR, we observed that CYP716A249 had the highest expression in the roots of 2-year-old P. tenuifolia, which provided a basis for the selection of samples for gene cloning. To identify the function of CYP716A249, the strain R-BE-20 was constructed by expressing ß-amyrin synthase in yeast. Then, CYP716A249 was co-expressed with ß-amyrin synthase to construct the strain R-BPE-20 by using the lithium acetate method. Finally, we detected ß-amyrin and OA by ultra-HPLC-Q Exactive hybrid quadrupole-Orbitrap high-resolution accurate mass spectrometry and GC-MS. The results of this study provide insights into the biosynthesis pathway of polygala saponins.


Asunto(s)
Clonación Molecular/métodos , Polygala/genética , Polygala/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Triterpenos/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/genética , Ácido Oleanólico/metabolismo , Filogenia , Saccharomyces cerevisiae , Saponinas/biosíntesis , Saponinas/genética
10.
Molecules ; 25(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987831

RESUMEN

The present study aimed to investigate the change of intestinal mucosa proteins, especially the alteration of intestinal drug metabolizing enzymes (IDMEs) following 14-day simulated microgravity. Morey-Holton tail-suspension analog was used to simulate microgravity. Intestinal mucosa proteins of rats were determined by label-free quantitative proteomic strategy. A total of 335 differentially expressed proteins (DEPs) were identified, 190 DEPs were upregulated, and 145 DEPs were downregulated. According to bioinformatic analysis, most of DEPs exhibited hydrolase, oxidoreductase, transferase, ligase, or lyase catalytic activity. DEPs were mainly enriched in metabolic pathways, including metabolism of amino acid, glucose, and carbon. Moreover, 11 of DEPs were involved in exogenous drug and xenobiotics metabolism. Owing to the importance of IDMEs for the efficacy and safety of oral drugs, the expression of cytochrome P450 1A2 (CYP1A2), CYP2D1, CYP3A2, CYP2E1, alcohol dehydrogenase 1 (ADH1), and glutathione S-transferase mu 5 (GSTM5) in rat intestine mucosa was determined by Western-blot. The activity of ADH, aldehyde dehydrogenase (ALDH) and GST was evaluated. Compared with control rats, the expression of CYP1A2, CYP2D1, CYP3A2, and ADH1 in the simulated microgravity (SMG) group of rats were dramatically decreased by 33.16%, 21.93%, 48.49%, and 22.83%, respectively. GSTM5 was significantly upregulated by 53.14% and CYP2E1 expression did not show a dramatical change in SMG group rats. Moreover, 14-day SMG reduced ADH activity, while ALDH and GST activities was not altered remarkably. It could be concluded that SMG dramatically affected the expression and activity of some IDMEs, which might alter the efficacy or safety of their substrate drugs under microgravity. The present study provided some preliminary information on IDMEs under microgravity. It revealed the potential effect of SMG on intestinal metabolism, which may be helpful to understand the intestinal health of astronauts and medication use.


Asunto(s)
Alcohol Deshidrogenasa/biosíntesis , Sistema Enzimático del Citocromo P-450/biosíntesis , Glutatión Transferasa/biosíntesis , Mucosa Intestinal/enzimología , Proteómica , Simulación de Ingravidez , Animales , Regulación Enzimológica de la Expresión Génica , Masculino , Ratas , Ratas Sprague-Dawley
11.
Aquat Toxicol ; 225: 105540, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32569997

RESUMEN

The zebrafish (Danio rerio) embryo has increasingly been used as an alternative model in human and environmental toxicology. Since the cytochrome P450 (CYP) system is of fundamental importance for the understanding and correct interpretation of the outcome of toxicological studies, constitutive and xenobiotic-induced 7-methoxycoumarin-O-demethylase (MCOD), i.e. 'mammalian CYP2-like', activities were monitored in vivo in zebrafish embryos via confocal laser scanning microscopy. In order to elucidate molecular mechanisms underlying the MCOD induction, dose-dependent effects of the prototypical CYP inducers ß-naphthoflavone (aryl hydrocarbon receptor (AhR) agonist), rifampicin (pregnane X receptor (PXR) agonist), carbamazepine and phenobarbital (constitutive androstane receptor (CAR) agonists) were analyzed in zebrafish embryos of varying age. Starting from 36 h of age, all embryonic stages of zebrafish could be shown to have constitutive MCOD activity, albeit with spatial variation and at distinct levels. Whereas carbamazepine, phenobarbital and rifampicin had no effect on in vivo MCOD activity in 96 h old zebrafish embryos, the model aryl hydrocarbon receptor agonist ß-naphthoflavone significantly induced MCOD activity in 96 h old zebrafish embryos at 46-734 nM, however, without a clear concentration-effect relationship. Induction of MCOD activity by ß-naphthoflavone gradually decreased with progression of embryonic development. By in vivo characterization of constitutive and xenobiotic-induced MCOD activity patterns in 36, 60, 84 and 108 h old zebrafish embryos, this decrease could primarily be attributed to an age-related decline in the induction of MCOD activity in the cardiovascular system. Results of this study provide novel insights into the mechanism and extent, by which specific CYP activities in early life-stages of zebrafish can be influenced by exposure to xenobiotics. The study thus lends further support to the view that zebrafish embryos- at least from an age of 36 h - have an elaborate and inducible biotransformation system.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Embrión no Mamífero/efectos de los fármacos , Oxidorreductasas O-Demetilantes/biosíntesis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Animales , Biotransformación , Inductores de las Enzimas del Citocromo P-450/toxicidad , Embrión no Mamífero/enzimología , Desarrollo Embrionario/efectos de los fármacos , Receptores de Hidrocarburo de Aril/metabolismo , Xenobióticos/toxicidad , Proteínas de Pez Cebra/metabolismo , beta-naftoflavona/toxicidad
12.
J Biol Chem ; 295(30): 10307-10330, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32430396

RESUMEN

The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH S-transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Resistencia a los Herbicidas/fisiología , Herbicidas/farmacología , Proteínas de Plantas/biosíntesis , Plantas/enzimología , Aclimatación , Herbicidas/metabolismo
13.
Drug Metab Dispos ; 48(7): 594-602, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32350061

RESUMEN

Despite the availability of liquid chromatography (LC)-mass spectrometry (MS) methods for quantifying cytochrome P450 (P450) proteins, incorporation of P450 protein quantification into induction study workflows has not been widely adopted. To more readily enable P450 protein quantification in induction study workflows, DMPK research groups need a simple, robust, cost-effective, high-throughput method compatible with 96-well-plated human hepatocyte formats. Here, we provide such a methodology. Our method bypasses both microsomal enrichment and antibody-based enrichment to go directly from the plate to LC-MS/MS analysis. We use this "plate-to-peaks" approach for quantifying CYP3A4, CYP2B6, and CYP1A2, the major inducible hepatic P450s representative of pregnane X receptor-, constitutive androstane receptor-, and aryl hydrocarbon receptor-mediated induction, respectively. We leveraged our induction study-aligned assay format to assess induction across mRNA, protein, and enzyme activity using known induction control compounds. As expected, results from the three methods using model inducers were broadly concordant, but the magnitude of the induction response differed. Induction of CYP3A4 using 10 µM rifampicin was 12-fold for RNA, eightfold for protein, and threefold for activity; for CYP1A2 with 50 µM omeprazole, induction was 30-fold for RNA, 13-fold for protein, and 17-fold for activity; for CYP2B6 with 50 µM phenytoin, induction was 23-fold for RNA, twofold for protein, and fivefold for activity. Most importantly, we anticipate the relative ease of this method will enable researchers to routinely adopt P450 protein quantification as part of nonclinical evaluation of P450 induction. SIGNIFICANCE STATEMENT: Current methodologies for quantifying P450 proteins by liquid chromatography (LC)-tandem mass spectrometry are either cumbersome, too costly, or both to be widely adopted into induction study workflows by the ADME research community. We present a simplified LC-MS/MS methodology for quantifying P450 proteins directly from human hepatocytes, without any form of enrichment, in 96-well induction assay plate format that should be readily adoptable by any ADME laboratory with LC-multiple-reaction monitoring capabilities.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/análisis , Pruebas de Enzimas/métodos , Hepatocitos/enzimología , Células Cultivadas , Cromatografía Líquida de Alta Presión/métodos , Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática/efectos de los fármacos , Humanos , Masculino , Cultivo Primario de Células/instrumentación , Cultivo Primario de Células/métodos , Espectrometría de Masas en Tándem/métodos
14.
Arch Toxicol ; 94(8): 2663-2682, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451601

RESUMEN

Xenobiotica-metabolizing enzyme (XME) induction is a relevant biological/biochemical process vital to understanding the toxicological profile of xenobiotics. Early recognition of XME induction potential of compounds under development is therefore important, yet its determination by traditional XME activity measurements is time consuming and cost intensive. A proof-of-principle study was therefore designed due to the advent of faster and less cost-intensive methods for determination of enzyme protein and transcript levels to determine whether two such methods may substitute for traditional measurement of XME activity determinations. The results of the study show that determination of enzyme protein levels by peptide group-specific immunoaffinity enrichment/MS and/or determination of gene expression by NanoString nCounter may serve as substitutes for traditional evaluation methodology and/or as an early predictor of potential changes in liver enzymes. In this study, changes of XME activity by the known standard XME inducers phenobarbital, beta-naphthoflavone and Aroclor 1254 were demonstrated by these two methods. To investigate the applicability of these methods to demonstrate XME-inducing activity of an unknown, TS was also examined and found to be an XME inducer. More specifically, TS was found to be a phenobarbital-type inducer (likely mediated by CAR rather than PXR as nuclear receptor), but not due to Ah receptor-mediated or antioxidant response element-mediated beta-naphthoflavone-type induction. The results for TS were confirmed via enzymatic activity measurements. The results of the present study demonstrate the potential applicability of NanoString nCounter mRNA quantitation and peptide group-specific immunoaffinity enrichment/MS protein quantitation for predicting compounds under development to be inducers of liver XME activity.


Asunto(s)
Inductores de las Enzimas del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Perfilación de la Expresión Génica , Inmunoensayo , Hígado/efectos de los fármacos , Nanotecnología , Transcriptoma , Xenobióticos/metabolismo , Animales , Biotransformación , Inductores de las Enzimas del Citocromo P-450/toxicidad , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/inmunología , Inducción Enzimática , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Hígado/enzimología , Masculino , Prueba de Estudio Conceptual , Ratas Wistar , Reproducibilidad de los Resultados , Especificidad por Sustrato , Toxicocinética , Flujo de Trabajo , Xenobióticos/toxicidad
15.
Gene Expr ; 20(1): 1-18, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32290899

RESUMEN

Human liver models that are three-dimensional (3D) in architecture are indispensable for compound metabolism/toxicity screening, to model liver diseases for drug discovery, and for cell-based therapies; however, further development of such models is needed to maintain high levels of primary human hepatocyte (PHH) functions for weeks to months. Therefore, here we determined how microscale 3D collagen I presentation and fibroblast interaction affect the longevity of PHHs. High-throughput droplet microfluidics was utilized to generate reproducibly sized (∼300-µm diameter) microtissues containing PHHs encapsulated in collagen I ± supportive fibroblasts, namely, 3T3-J2 murine embryonic fibroblasts or primary human hepatic stellate cells (HSCs); self-assembled spheroids and bulk collagen gels (macrogels) containing PHHs served as controls. Hepatic functions and gene expression were subsequently measured for up to 6 weeks. We found that microtissues placed within multiwell plates rescued PHH functions at 2- to 30-fold higher levels than spheroids or macrogels. Further coating of PHH microtissues with 3T3-J2s led to higher hepatic functions than when the two cell types were either coencapsulated together or when HSCs were used for the coating instead. Importantly, the 3T3-J2-coated PHH microtissues displayed 6+ weeks of relatively stable hepatic gene expression and function at levels similar to freshly thawed PHHs. Lastly, microtissues responded in a clinically relevant manner to drug-mediated cytochrome P450 induction or hepatotoxicity. In conclusion, fibroblast-coated collagen microtissues containing PHHs display high hepatic functions for 6+ weeks and are useful for assessing drug-mediated CYP induction and hepatotoxicity. Ultimately, microtissues may find utility for modeling liver diseases and as building blocks for cell-based therapies.


Asunto(s)
Células 3T3/citología , Encapsulación Celular , Técnicas de Cocultivo/métodos , Colágeno Tipo I/química , Células Estrelladas Hepáticas/citología , Hepatocitos/citología , Ingeniería de Tejidos/métodos , Animales , Células Cultivadas , Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática/efectos de los fármacos , Geles , Expresión Génica , Humanos , Dispositivos Laboratorio en un Chip , Ratones , Omeprazol/farmacología , Polimerizacion , Rifampin/farmacología , Esferoides Celulares , Ingeniería de Tejidos/instrumentación
16.
Molecules ; 25(6)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168770

RESUMEN

Macarpine is a minor benzophenanthridine alkaloid with interesting biological activities, which is produced in only a few species of the Papaveraceae family, including Eschscholzia californica. Our present study was focused on the enhancement of macarpine production in E. californica suspension cultures using three elicitation models: salicylic acid (SA) (4; 6; 8 mg/L) elicitation, and simultaneous or sequential combinations of SA and L-tyrosine (1 mmol/L). Sanguinarine production was assessed along with macarpine formation in elicited suspension cultures. Alkaloid production was evaluated after 24, 48 and 72 h of elicitation. Among the tested elicitation models, the SA (4 mg/L), supported by L-tyrosine, stimulated sanguinarine and macarpine production the most efficiently. While sequential treatment led to a peak accumulation of sanguinarine at 24 h and macarpine at 48 h, simultaneous treatment resulted in maximum sanguinarine accumulation at 48 h and macarpine at 72 h. The effect of SA elicitation and precursor supplementation was evaluated also based on the gene expression of 4'-OMT, CYP719A2, and CYP719A3. The gene expression of investigated enzymes was increased at all used elicitation models and their changes correlated with sanguinarine but not macarpine accumulation.


Asunto(s)
Benzofenantridinas/biosíntesis , Eschscholzia/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Tirosina/farmacología , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Relación Dosis-Respuesta a Droga , Eschscholzia/genética , Eschscholzia/crecimiento & desarrollo , Eschscholzia/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidroponía/métodos , Isoquinolinas , Metiltransferasas/biosíntesis , Metiltransferasas/genética , Proteínas de Plantas/agonistas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tirosina/metabolismo
17.
Gastroenterol Hepatol ; 43(5): 266-272, 2020 May.
Artículo en Inglés, Español | MEDLINE | ID: mdl-32094046

RESUMEN

Melanosis coli (MC) is a common condition characterized by a black or brown pigment deposited in the colorectal mucosa. It is a reversible condition that is influenced by many factors, such as living habits and bowel function. However, the epidemiology and etiology of MC are still unclear. Most studies show that there is a significant correlation between the use of anthraquinone laxatives and the occurrence of MC. At present, the mechanism of the apoptosis theory is widely recognized as regards the pathogenesis of MC. There is no specific clinical manifestation of MC, and its diagnosis is mainly based on a complimentary examination, such as endoscopic and histopathological tests. General treatment, such as changing living habits, is preferred, and medical or surgical treatment should not be considered in the absence of serious malignancy. The aim of this review is to systematically present and outline the concepts of the epidemiology, etiology, histopathology, pathogenesis, clinical manifestations, diagnosis and treatment of MC, in order to improve the understanding of this condition.


Asunto(s)
Enfermedades del Colon , Melanosis , Antraquinonas/efectos adversos , Antiinflamatorios no Esteroideos/efectos adversos , Apoptosis , Enfermedades del Colon/diagnóstico , Enfermedades del Colon/epidemiología , Enfermedades del Colon/etiología , Enfermedades del Colon/terapia , Terapia Combinada , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Dieta/efectos adversos , Humanos , Incidencia , Inflamación , Mucosa Intestinal/patología , Laxativos/efectos adversos , Macrófagos/química , Macrófagos/patología , Mastocitos/patología , Melanosis/diagnóstico , Melanosis/epidemiología , Melanosis/etiología , Melanosis/terapia , Estrés Oxidativo , Pigmentos Biológicos/análisis
18.
Toxicol Sci ; 174(2): 266-277, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31977024

RESUMEN

Primary human hepatocyte (PHH) cultures have become indispensable to mitigate the risk of adverse drug reactions in human patients. In contrast to dedifferentiating monocultures, coculture with nonparenchymal cells maintains PHH functions for 2-4 weeks. However, because the functional lifespan of PHHs in vivo is 200-400 days, it is desirable to further prolong PHH functions in vitro toward modeling chronic drug exposure and disease progression. Fasting has benefits on the longevity of organisms and the health of tissues such as the liver. We hypothesized that a culturing protocol that mimics dynamic fasting/starvation could activate starvation pathways and prolong PHH functional lifetime. To mimic starvation, serum and hormones were intermittently removed from the culture medium of micropatterned cocultures (MPCCs) containing PHHs organized onto collagen domains and surrounded by 3T3-J2 murine fibroblasts. A weekly 2-day starvation optimally prolonged PHH functional lifetime for 6+ weeks in MPCCs versus a decline after 3 weeks in nonstarved controls. The 2-day starvation also enhanced the functions of PHH monocultures for 2 weeks, suggesting direct effects on PHHs. In MPCCs, starvation activated 5' adenosine monophosphate-activated protein kinase (AMPK) and restricted fibroblast overgrowth onto PHH islands, thereby maintaining hepatic polarity. The effects of starvation on MPCCs were partially recapitulated by activating AMPK using metformin or growth arresting fibroblasts via mitomycin-C. Lastly, starved MPCCs demonstrated lower false positives for drug toxicity tests and higher drug-induced cytochrome-P450 activities versus nonstarved controls even after 5 weeks. In conclusion, intermittent serum/hormone starvation extends PHH functional lifetime toward enabling clinically relevant drug screening.


Asunto(s)
Metabolismo Energético , Fibroblastos/metabolismo , Hepatocitos/metabolismo , Células 3T3 , Proteínas Quinasas Activadas por AMP/metabolismo , Adulto , Animales , Comunicación Celular , Supervivencia Celular , Microambiente Celular , Técnicas de Cocultivo , Medio de Cultivo Libre de Suero/metabolismo , Inductores de las Enzimas del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/biosíntesis , Desarrollo de Medicamentos , Metabolismo Energético/efectos de los fármacos , Activación Enzimática , Inducción Enzimática , Femenino , Fibroblastos/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hormonas/deficiencia , Humanos , Masculino , Metformina/farmacología , Ratones , Persona de Mediana Edad , Fenotipo , Cultivo Primario de Células , Factores de Tiempo , Pruebas de Toxicidad
19.
J Dairy Sci ; 103(1): 625-637, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31677841

RESUMEN

Periparturient cattle face increased risk of both metabolic and infectious diseases. Factors contributing to this predisposition include oxidized polyunsaturated fatty acids, also known as oxylipids, whose production is altered during the periparturient period and in diseased cattle. Alterations in the production of oxylipids derived from cytochrome P450 (CYP450) enzymes are over-represented during times of increased disease risk and clinical disease, such as mastitis. Many of these same CYP450 enzymes additionally regulate metabolism of fat-soluble vitamins, such as A, D, and E. These vitamins are essential to maintaining immune health, yet circulating concentrations are diminished near calving. Despite this, a relatively small amount of research has focused on the roles of CYP450 enzymes outside of the liver. The aim of this paper is to describe the relative gene expression of 11 CYP450 in bovine tissues and common in vitro bovine cell models. Eight tissue samples were collected from 3 healthy dairy cows after euthanasia. In vitro samples included primary bovine aortic and mammary endothelial cells and immortalized bovine kidney and mammary epithelial cells. Quantitative real-time-PCR was carried out to assess basal transcript expression of CYP450 enzymes. Surprisingly, CYP450 mRNA was widely expressed in all tissue samples, with predominance in the liver. In vitro CYP450 expression was less robust, with several cell types lacking expression of specific CYP450 enzymes altogether. Overall, cell culture models did not reflect expression of tissue CYP450. However, when CYP450 were organized by activity, certain cell types consistently expressed specific functional groups. These data reveal the widespread expression of CYP450 in individual organs of healthy dairy cows. Widespread expression helps to explain previous evidence of significant changes in CYP450-mediated oxylipid production and fat-soluble vitamin metabolism in organ microenvironments during periods of oxidative stress or disease. As such, these data provide a foundation for targeted functional experiments aimed at understanding the activities of specific CYP450 and associated therapeutic potential during times of increased disease risk.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Hígado/metabolismo , Animales , Bovinos , Sistema Enzimático del Citocromo P-450/genética , Células Endoteliales/metabolismo , Femenino , Expresión Génica , Riñón/metabolismo , Glándulas Mamarias Animales/metabolismo , Distribución Tisular
20.
Yeast ; 37(2): 217-226, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31502285

RESUMEN

Cytochrome P450s comprise one of the largest protein superfamilies. They occur in every kingdom of life and catalyse a variety of essential reactions. Their production is of utmost interest regarding biotransformation and structure-function elucidation. However, they have proven hard to express due to their membrane anchor, their complex co-factor requirements and their need for a redox-partner. In our study, we investigated and compared different yeast strains for the production of the plant cytochrome P450 chalcone 3-hydroxylase. To our knowledge, this is the first study evaluating different yeasts for the expression of this abundant and highly significant protein superfamily. Saccharomyces cerevisiae and three different strains of Pichia pastoris expressing chalcone 3-hydroxylase were cultivated in controlled bioreactor runs and evaluated regarding physiological parameters and expression levels of the cytochrome P450. Production differed significantly between the different strains and was found highest in the investigated P. pastoris MutS strain KM71H where 8 mg P450 per gram dry cell weight were detected. We believe that this host could be suitable for the expression of many eukaryotic, especially plant-derived, cytochrome P450s as it combines high specific product yields together with straightforward cultivation techniques for achieving high biomass concentrations. Both factors greatly facilitate subsequent establishment of purification procedures for the cytochrome P450 and make the yeast strain an ideal platform for biotransformation as well.


Asunto(s)
Sistema Enzimático del Citocromo P-450/biosíntesis , Proteínas Fúngicas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Reactores Biológicos , Biotransformación , Técnicas de Cultivo de Célula/métodos , Sistema Enzimático del Citocromo P-450/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Pichia/enzimología , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...