Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
5.
Zh Nevrol Psikhiatr Im S S Korsakova ; 124(4. Vyp. 2): 33-40, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38696149

RESUMEN

OBJECTIVE: To study the severity and localization of dilated perivascular spaces (DPVS), the levels of protein markers of amyloidosis and neurodegeneration in the cerebrospinal fluid (CSF) at different daily blood pressure (BP) profiles in patients with Alzheimer's disease (AD) and other types of cognitive impairment. MATERIAL AND METHODS: A total of 119 people, aged 53 to 92 years, including 55 patients with AD, 27 patients with vascular cognitive disorders (VCD), 19 patients with frontotemporal degeneration (FTD). All patients underwent BP monitoring for 24 hours using a standard oscillometric measurement method, lumbar puncture to assess Aß-42 and Aß-40 amyloid protein, total and phosphorylated tau protein in the CSF, magnetic resonance imaging tomography of the brain with subsequent assessment of the severity of expansion and localization of DPVS according to the G.M. Potter scale. RESULTS: In 58.3% of patients with AD, there is no adequate reduction in BP at night in comparison with patients with VCD (p<0.05). A significant degree of expansion of the DPVS turned out to be most typical for patients with AD: grade 3 was detected in 45.7% of patients, and the maximum, grade 4, was detected in 13.4%. At the same time, DPVSs were significantly more often detected in the group of subjects with insufficient reduction in diastolic BP (DBP) at night. A strong inverse correlation was established between the level of Aß-42 in the CSF and the variability of DBP at night (r= -0.92; p<0.05). The decrease in the level of Aß-42 in AD, especially at the prodromal stage, is directly related to the low variability of DBP at night, which is more characteristic of an insufficient decrease or increase in BP during night sleep. CONCLUSION: Patients with AD were characterized by an insufficient decrease in BP at night, which is associated with the severity and degree of maximum expansion of the DPVS. A decrease in the level of Aß-42 amyloid protein in the CSF strongly correlates with the variability of DBP at night.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Hipertensión , Proteínas tau , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Anciano , Femenino , Masculino , Persona de Mediana Edad , Péptidos beta-Amiloides/líquido cefalorraquídeo , Hipertensión/complicaciones , Hipertensión/líquido cefalorraquídeo , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Sistema Glinfático/diagnóstico por imagen , Presión Sanguínea/fisiología , Fragmentos de Péptidos/líquido cefalorraquídeo , Demencia Vascular/líquido cefalorraquídeo , Demencia Vascular/diagnóstico por imagen , Biomarcadores/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
6.
J Alzheimers Dis ; 99(1): 279-290, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669532

RESUMEN

Background: Impaired glymphatic flow on the Alzheimer's disease (AD) spectrum may be evaluated using diffusion tensor image analysis along the perivascular space (DTI-ALPS). Objective: We aimed to validate impaired glymphatic flow and explore its association with gray matter volume, cognitive status, and cerebral amyloid deposition on the AD spectrum. Methods: 80 participants (mean age, 76.9±8.5 years; 57 women) with AD (n = 65) and cognitively normal (CN) (n = 15) who underwent 3T brain MRI including DTI and/or amyloid PET were included. After adjusting for age, sex, apolipoprotein E status, and burden of white matter hyperintensities, the ALPS-index was compared according to the AD spectrum. The association between the ALPS-index and gray matter volume, cognitive status, and quantitative amyloid from PET was assessed. Results: The ALPS-index in the AD was significantly lower (mean, 1.476; 95% CI, 1.395-1.556) than in the CN (1.784;1.615-1.952; p = 0.026). Volumes of the entorhinal cortex, hippocampus, temporal pole, and primary motor cortex showed significant associations with the ALPS-index (all, p < 0.05). There was a positive correlation between the ALPS-index and MMSE score (partial r = 0.435; p < 0.001), but there was no significant correlation between the ALPS-index and amyloid SUVRs (all, p > 0.05). Conclusions: Decreased glymphatic flow measured by DTI-ALPS in AD may serve as a marker of neurodegeneration correlating with structural atrophy and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen de Difusión Tensora , Sistema Glinfático , Sustancia Gris , Tomografía de Emisión de Positrones , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Sustancia Gris/metabolismo , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Sistema Glinfático/metabolismo , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo
7.
J R Soc Interface ; 21(213): 20230659, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38565158

RESUMEN

The flow of cerebrospinal fluid (CSF) along perivascular spaces (PVSs) is an important part of the brain's system for clearing metabolic waste. Astrocyte endfeet bound the PVSs of penetrating arteries, separating them from brain extracellular space. Gaps between astrocyte endfeet might provide a low-resistance pathway for fluid transport across the wall. Recent studies suggest that the astrocyte endfeet function as valves that rectify the CSF flow, producing the net flow observed in pial PVSs by changing the size of the gaps in response to pressure changes. In this study, we quantify this rectification based on three features of the PVSs: the quasi-circular geometry, the deformable endfoot wall, and the pressure oscillation inside. We provide an analytical model, based on the thin-shell hoop-stress approximation, and predict a pumping efficiency of about 0.4, which would contribute significantly to the observed flow. When we add the flow resistance of the extracellular space (ECS) to the model, we find an increased net flow during sleep, due to the known increase in ECS porosity (decreased flow resistance) compared to that in the awake state. We corroborate our analytical model with three-dimensional fluid-solid interaction simulations.


Asunto(s)
Sistema Glinfático , Sistema Glinfático/fisiología , Encéfalo/irrigación sanguínea , Arterias/fisiología , Presión , Transporte Biológico , Líquido Cefalorraquídeo/metabolismo
8.
Cell Mol Life Sci ; 81(1): 192, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652179

RESUMEN

BACKGROUND:  Alzheimer's disease (AD) is pathologically characterized by the abnormal accumulation of Aß and tau proteins. There has long been a keen interest among researchers in understanding how Aß and tau are ultimately cleared in the brain. The discovery of this glymphatic system introduced a novel perspective on protein clearance and it gained recognition as one of the major brain clearance pathways for clearing these pathogenic proteins in AD. This finding has sparked interest in exploring the potential contribution of the glymphatic/meningeal lymphatic system in AD. Furthermore, there is a growing emphasis and discussion regarding the possibility that activating the glymphatic/meningeal lymphatic system could serve as a novel therapeutic strategy against AD. OBJECTIVES:  Given this current research trend, the primary focus of this comprehensive review is to highlight the role of the glymphatic/meningeal lymphatic system in the pathogenesis of AD. The discussion will encompass future research directions and prospects for treatment in relation to the glymphatic/meningeal lymphatic system.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Sistema Linfático , Meninges , Proteostasis , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Sistema Glinfático/metabolismo , Sistema Glinfático/patología , Sistema Linfático/metabolismo , Sistema Linfático/patología , Meninges/metabolismo , Meninges/patología , Proteínas tau/metabolismo
9.
Exp Neurol ; 376: 114770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580155

RESUMEN

BACKGROUND AND OBJECTIVES: Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS: To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aß deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS: Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aß via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION: The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aß via inhibition of TRPV4-induced astrocytic calcium hyperactivity.


Asunto(s)
Astrocitos , Disfunción Cognitiva , Colitis , Sistema Glinfático , Condicionamiento Físico Animal , Canales Catiónicos TRPV , Animales , Femenino , Ratones , Envejecimiento , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Calcio/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Sistema Glinfático/metabolismo , Ratones Endogámicos C57BL , Morfolinas , Condicionamiento Físico Animal/fisiología , Pirroles , Canales Catiónicos TRPV/metabolismo
11.
Neuroreport ; 35(7): 476-485, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38597326

RESUMEN

The objective of this study is to explore the relationship between the glymphatic system and alterations in the structure and function of the brain in white matter hyperintensity (WMH) patients. MRI data were collected from 27 WMH patients and 23 healthy controls. We calculated the along perivascular space (ALPS) indices, the anterior corner distance of the lateral ventricle, and the width of the third ventricle for each subject. The DPABISurf tool was used to calculate the cortical thickness and cortical area. In addition, data processing assistant for resting-state fMRI was used to calculate regional homogeneity, degree centrality, amplitude low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuation (fALFF), and voxel-mirrored homotopic connectivity (VMHC). In addition, each WMH patient was evaluated on the Fazekas scale. Finally, the correlation analysis of structural indicators and functional indicators with bilateral ALPS indices was investigated using Spearman correlation analysis. The ALPS indices of WMH patients were lower than those of healthy controls (left: t = -4.949, P < 0.001; right: t = -3.840, P < 0.001). This study found that ALFF, fALFF, regional homogeneity, degree centrality, and VMHC values in some brain regions of WMH patients were alternated (AlphaSim corrected, P < 0.005, cluster size > 26 voxel, rmm value = 5), and the cortical thickness and cortical area of WMH patients showed trend changes (P < 0.01, cluster size > 20 mm2, uncorrected). Interestingly, we found significantly positive correlations between the left ALPS indices and degree centrality values in the superior temporal gyrus (r = 0.494, P = 0.009, P × 5 < 0.05, Bonferroni correction). Our results suggest that glymphatic system impairment is related to the functional centrality of local connections in patients with WMH. This provides a new perspective for understanding the pathological mechanisms of cognitive impairment in the WMH population.


Asunto(s)
Sistema Glinfático , Sustancia Blanca , Humanos , Sistema Glinfático/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
12.
Hum Brain Mapp ; 45(5): e26680, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590180

RESUMEN

OBJECTIVE: The glymphatic system is a glial-based perivascular network that promotes brain metabolic waste clearance. Glymphatic system dysfunction has been observed in both multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), indicating the role of neuroinflammation in the glymphatic system. However, little is known about how the two diseases differently affect the human glymphatic system. The present study aims to evaluate the diffusion MRI-based measures of the glymphatic system by contrasting MS and NMOSD. METHODS: This prospective study included 63 patients with NMOSD (n = 21) and MS (n = 42) who underwent DTI. The fractional volume of extracellular-free water (FW) and an index of diffusion tensor imaging (DTI) along the perivascular space (DTI-ALPS) were used as indirect indicators of water diffusivity in the interstitial extracellular and perivenous spaces of white matter, respectively. Age and EDSS scores were adjusted. RESULTS: Using Bayesian hypothesis testing, we show that the present data substantially favor the null model of no differences between MS and NMOSD for the diffusion MRI-based measures of the glymphatic system. The inclusion Bayes factor (BF10) of model-averaged probabilities of the group (MS, NMOSD) was 0.280 for FW and 0.236 for the ALPS index. CONCLUSION: Together, these findings suggest that glymphatic alteration associated with MS and NMOSD might be similar and common as an eventual result, albeit the disease etiologies differ. PRACTITIONER POINTS: Previous literature indicates important glymphatic system alteration in MS and NMOSD. We explore the difference between MS and NMOSD using diffusion MRI-based measures of the glymphatic system. We show support for the null hypothesis of no difference between MS and NMOSD. This suggests that glymphatic alteration associated with MS and NMOSD might be similar and common etiology.


Asunto(s)
Sistema Glinfático , Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Imagen de Difusión Tensora/métodos , Esclerosis Múltiple/diagnóstico por imagen , Neuromielitis Óptica/diagnóstico por imagen , Teorema de Bayes , Sistema Glinfático/diagnóstico por imagen , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Agua
13.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654299

RESUMEN

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Asunto(s)
Sistema Glinfático , Daño por Reperfusión , Animales , Sistema Glinfático/metabolismo , Ratones , Daño por Reperfusión/metabolismo , Masculino , Ratones Endogámicos C57BL , Encéfalo/metabolismo , Dexmedetomidina/farmacología , Accidente Cerebrovascular , Anestesia , Isoflurano/farmacología , Nanopartículas/química , Líquido Cefalorraquídeo/metabolismo , Líquido Cefalorraquídeo/química
14.
Alzheimers Res Ther ; 16(1): 71, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576025

RESUMEN

BACKGROUND: The aggregation and spread of misfolded amyloid structured proteins, such as tau and α-synuclein, are key pathological features associated with neurodegenerative disorders, including Alzheimer's and Parkinson's disease. These proteins possess a prion-like property, enabling their transmission from cell to cell leading to propagation throughout the central and peripheral nervous systems. While the mechanisms underlying their intracellular spread are still being elucidated, targeting the extracellular space has emerged as a potential therapeutic approach. The glymphatic system, a brain-wide pathway responsible for clearing extracellular metabolic waste from the central nervous system, has gained attention as a promising target for removing these toxic proteins. METHODS: In this study, we investigated the impact of long-term modulation of glymphatic function on tau aggregation and spread by chronically treating a mouse model of tau propagation with a pharmacological inhibitor of AQP4, TGN-020. Thy1-hTau.P301S mice were intracerebrally inoculated with tau into the hippocampus and overlying cortex, and subsequently treated with TGN-020 (3 doses/week, 50 mg/kg TGN-020, i.p.) for 10-weeks. During this time, animal memory was studied using cognitive behavioural tasks, and structural MR images were acquired of the brain in vivo prior to brain extraction for immunohistochemical characterisation. RESULTS: Our findings demonstrate increased tau aggregation in the brain and transhemispheric propagation in the hippocampus following the inhibition of glymphatic clearance. Moreover, disruption of the glymphatic system aggravated recognition memory in tau inoculated mice and exacerbated regional changes in brain volume detected in the model. When initiation of drug treatment was delayed for several weeks post-inoculation, the alterations were attenuated. CONCLUSIONS: These results indicate that by modulating AQP4 function and, consequently, glymphatic clearance, it is possible to modify the propagation and pathological impact of tau in the brain, particularly during the initial stages of the disease. These findings highlight the critical role of the glymphatic system in preserving healthy brain homeostasis and offer valuable insights into the therapeutic implications of targeting this system for managing neurodegenerative diseases characterized by protein aggregation and spread.


Asunto(s)
Enfermedad de Alzheimer , Sistema Glinfático , Niacinamida/análogos & derivados , Tiadiazoles , Ratones , Animales , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Proteínas tau/metabolismo
15.
Artículo en Ruso | MEDLINE | ID: mdl-38676671

RESUMEN

Modern research raises the question of the potentially significant role of glymphatic dysfunction in the development of neurodegeneration and pathological aging. The exact molecular mechanisms are not yet fully understood, but there is ample evidence of a link between sleep deprivation and decreased clearance of ß-amyloid and other neurotoxin proteins that are associated with the development of neurodegenerative diseases, particularly Alzheimer's disease. The review analyzes current scientific information in this area of research, describes the latest scientific discoveries of the features of the glymphatic system, and also illustrates studies of markers that presumably indicate a deterioration in the glymphatic system. The relationship between sleep deprivation and pathophysiological mechanisms associated with neurodegenerative diseases is considered, and potential targets that can be used to treat or delay the development of these disorders are noted.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Sistema Glinfático , Trastornos del Sueño-Vigilia , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/metabolismo , Sistema Glinfático/fisiopatología , Sistema Glinfático/metabolismo , Trastornos del Sueño-Vigilia/fisiopatología , Trastornos del Sueño-Vigilia/metabolismo , Péptidos beta-Amiloides/metabolismo , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo
16.
CNS Neurosci Ther ; 30(3): e14669, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38459666

RESUMEN

BACKGROUND: Diffuse brain injury (DBI) models are characterized by intense global brain inflammation and edema, which characterize the most severe form of TBI. In a previous experiment, we found that fingolimod promoted recovery after controlled cortical impact injury (CCI) by modulating inflammation around brain lesions. However, it remains unclear whether fingolimod can also attenuate DBI because of its different injury mechanisms. Furthermore, whether fingolimod has additional underlying effects on repairing DBI is unknown. METHODS: The impact acceleration model of DBI was established in adult Sprague-Dawley rats. Fingolimod (0.5 mg/kg) was administered 0.5, 24, and 48 h after injury for 3 consecutive days. Immunohistochemistry, immunofluorescence analysis, cytokine array, and western blotting were used to evaluate inflammatory cells, inflammatory factors, AQP4 polarization, apoptosis in brain cells, and the accumulation of APP after DBI in rats. To evaluate the function of the glymphatic system (GS), a fluorescent tracer was injected into the cistern. The neural function of rats with DBI was evaluated using various tests, including the modified neurological severity score (mNSS), horizontal ladder-crossing test, beam walking test, and tape sensing and removal test. Brain water content was also measured. RESULTS: Fingolimod administration for 3 consecutive days could reduce the levels of inflammatory cytokines, neutrophil recruitment, microglia, and astrocyte activation in the brain following DBI. Moreover, fingolimod reduced apoptotic protein expression, brain cell apoptosis, brain edema, and APP accumulation. Additionally, fingolimod inhibited the loss of AQP4 polarization, improved lymphatic system function, and reduced damage to nervous system function. Notably, inhibiting the GS weakened the therapeutic effect of fingolimod on the neurological function of rats with DBI and increased the accumulation of APP in the brain. CONCLUSIONS: In brief, these findings suggest that fingolimod alleviates whole-brain inflammation and GS system damage after DBI and that inhibiting the GS could weaken the positive effect of fingolimod on nerve function in rats with DBI. Thus, inhibiting inflammation and regulating the GS may be critical for the therapeutic effect of fingolimod on DBI.


Asunto(s)
Edema Encefálico , Traumatismos Difusos del Encéfalo , Lesiones Traumáticas del Encéfalo , Encefalitis , Sistema Glinfático , Ratas , Animales , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Ratas Sprague-Dawley , Sistema Glinfático/metabolismo , Edema Encefálico/etiología , Encefalitis/complicaciones , Citocinas/metabolismo , Inflamación/complicaciones , Modelos Animales de Enfermedad , Lesiones Traumáticas del Encéfalo/patología
17.
J Neurophysiol ; 131(5): 785-788, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38533966

RESUMEN

The etiology of spaceflight-associated neuro-ocular syndrome (SANS) is a developing field of research, with many current hypotheses receiving varying degrees of support. This syndrome affects ∼70% of astronauts both during and after long-duration space missions, resulting in impaired near vision and visual scotomas (blind spots). In this article, three prominent risk factors for SANS including zero gravity conditions, extraterrestrial hypercapnic environments, and individual genetic predisposition are described. These risk factors are then compared and their pathophysiological pathways are divided into five current hypotheses for the development of SANS. Finally, glymphatic system impairment is explored as a potential mutual end point for these pathways in the development of SANS.


Asunto(s)
Sistema Glinfático , Vuelo Espacial , Humanos , Sistema Glinfático/fisiopatología , Trastornos de la Visión/etiología , Trastornos de la Visión/fisiopatología
18.
Neuroradiol J ; 37(3): 342-350, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38490679

RESUMEN

BACKGROUND AND PURPOSE: Recent studies have suggested an association between dysfunction of the choroid plexus and the glymphatic system. However, information is inconclusive. Following a population-based study design, we aimed to assess the association between choroid plexus calcifications (CPCs)-as a surrogate of choroid plexus dysfunction-and severity and progression of putative markers of glymphatic dysfunction, including white matter hyperintensities (WMH) of presumed vascular origin and abnormally enlarged basal ganglia perivascular spaces (BG-PVS). METHODS: This study recruited community-dwellers aged ≥40 years living in neighboring Ecuadorian villages. Participants who had baseline head CTs and brain MRIs were included in cross-sectional analyses and those who additional had follow-up MRIs (after a mean of 6.4 ± 1.5 years) were included in longitudinal analyses. Logistic and Poisson regression models, adjusted for demographics and cardiovascular risk factors, were fitted to assess associations between CPCs and WMH and enlarged BG-PVS severity and progression. RESULTS: A total of 590 individuals were included in the cross-sectional component of the study, and 215 in the longitudinal component. At baseline, 25% of participants had moderate-to-severe WMH and 27% had abnormally enlarged BG-PVS. At follow-up, 36% and 20% of participants had WMH and enlarged BG-PVS progression, respectively. Logistic regression models showed no significant differences between CPCs volumes stratified in quartiles and severity of WMH and enlarged BG-PVS. Poisson regression models showed no association between the exposure and WMH and enlarged BG-PVS progression. Baseline age remained significant in these models. CONCLUSIONS: Choroid plexus calcifications are not associated with putative markers of glymphatic system dysfunction.


Asunto(s)
Calcinosis , Plexo Coroideo , Sistema Glinfático , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Plexo Coroideo/diagnóstico por imagen , Plexo Coroideo/patología , Persona de Mediana Edad , Sistema Glinfático/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética/métodos , Anciano , Calcinosis/diagnóstico por imagen , Estudios Longitudinales , Ecuador , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Adulto , Tomografía Computarizada por Rayos X , Biomarcadores
19.
Ann Neurol ; 95(6): 1080-1092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38481063

RESUMEN

OBJECTIVE: The aim of this study was to investigate whether, compared to pediatric healthy controls (HCs), the glymphatic system is impaired in pediatric multiple sclerosis (MS) patients according to their cognitive status, and to assess its association with clinical disability and MRI measures of brain structural damage. METHODS: Sixty-five pediatric MS patients (females = 62%; median age = 15.5 [interquartile range, IQR = 14.5;17.0] years) and 23 age- and sex-matched HCs (females = 44%; median age = 14.1 [IQR = 11.8;16.2] years) underwent neurological, neuropsychological and 3.0 Tesla MRI assessment, including conventional and diffusion tensor imaging (DTI). We calculated the diffusion along the perivascular space (DTI-ALPS) index, a proxy of glymphatic function. Cognitive impairment (Co-I) was defined as impairment in at least 2 cognitive domains. RESULTS: No significant differences in DTI-ALPS index were found between HCs and cognitively preserved (Co-P) pediatric MS patients (estimated mean difference [EMD] = -0.002 [95% confidence interval = -0.069; 0.065], FDR-p = 0.956). Compared to HCs and Co-P patients, Co-I pediatric MS patients (n = 20) showed significantly lower DTI-ALPS index (EMD = -0.136 [95% confidence interval = -0.214; -0.058], FDR-p ≤ 0.004). In HCs, no associations were observed between DTI-ALPS index and normalized brain, cortical and thalamic volumes, and normal-appearing white matter (NAWM) fractional anisotropy (FA) and mean diffusivity (MD) (FDR-p ≥ 0.348). In pediatric MS patients, higher brain WM lesion volume (LV), higher NAWM MD, lower normalized thalamic volume, and lower NAWM FA were associated with lower DTI-ALPS index (FDR-p ≤ 0.016). Random Forest selected lower DTI-ALPS index (relative importance [RI] = 100%), higher brain WM LV (RI = 59.5%) NAWM MD (RI = 57.1%) and intelligence quotient (RI = 51.3%) as informative predictors of cognitive impairment (out-of-bag area under the curve = 0.762). INTERPRETATION: Glymphatic system dysfunction occurs in pediatric MS, is associated with brain focal lesions, irreversible tissue loss accumulation and cognitive impairment. ANN NEUROL 2024;95:1080-1092.


Asunto(s)
Disfunción Cognitiva , Imagen de Difusión Tensora , Sistema Glinfático , Esclerosis Múltiple , Humanos , Masculino , Femenino , Adolescente , Niño , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/psicología , Esclerosis Múltiple/complicaciones , Sistema Glinfático/diagnóstico por imagen , Sistema Glinfático/patología , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatología , Pruebas Neuropsicológicas
20.
J Affect Disord ; 354: 136-142, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38484877

RESUMEN

BACKGROUND: Depressed patients often suffer from sleep disturbance, which has been recognized to be responsible for glymphatic dysfunction. The purpose of this study was to investigate the coupling strength of global blood­oxygen-level-dependent (gBOLD) signals and cerebrospinal fluid (CSF) inflow dynamics, which is a biomarker for glymphatic function, in depressed patients and to explore its potential relationship with sleep disturbance by using resting-state functional MRI. METHODS: A total of 138 depressed patients (112 females, age: 34.70 ± 13.11 years) and 84 healthy controls (29 females, age: 36.6 ± 11.75 years) participated in this study. The gBOLD-CSF coupling strength was calculated to evaluate glymphatic function. Sleep disturbance was evaluated using the insomnia items (item 4 for insomnia-early, item 5 for insomnia-middle, and item 6 for insomnia-late) of The 17-item Hamilton Depression Rating Scale for depressed patients, which was correlated with the gBOLD-CSF coupling strength. RESULTS: The depressed patients exhibited weaker gBOLD-CSF coupling relative to healthy controls (p = 0.022), possibly due to impairment of the glymphatic system. Moreover, the gBOLD-CSF coupling strength correlated with insomnia-middle (r = 0.097, p = 0.008) in depressed patients. Limitations This study is a cross-sectional study. CONCLUSION: Our findings shed light on the pathophysiology of depression, indicating that cerebral waste clearance system deficits are correlated with poor sleep quality in depressed patients.


Asunto(s)
Trastorno Depresivo , Sistema Glinfático , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Femenino , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Trastornos del Inicio y del Mantenimiento del Sueño/diagnóstico por imagen , Estudios Transversales , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA