Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33921229

RESUMEN

Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.


Asunto(s)
Linfangiogénesis/genética , Sistema Linfático/metabolismo , Mecanotransducción Celular/genética , Morfogénesis/genética , Células Endoteliales/metabolismo , Humanos , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/metabolismo , Estrés Mecánico
2.
Physiol Rev ; 101(4): 1809-1871, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33507128

RESUMEN

Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.


Asunto(s)
Sistema Linfático/crecimiento & desarrollo , Sistema Linfático/fisiología , Linfedema/genética , Animales , Humanos , Linfangiogénesis/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiopatología , Linfedema/fisiopatología
3.
Elife ; 92020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510325

RESUMEN

Mutations in the transcription factor FOXC2 are predominately associated with lymphedema. Herein, we demonstrate a key role for related factor FOXC1, in addition to FOXC2, in regulating cytoskeletal activity in lymphatic valves. FOXC1 is induced by laminar, but not oscillatory, shear and inducible, endothelial-specific deletion impaired postnatal lymphatic valve maturation in mice. However, deletion of Foxc2 induced valve degeneration, which is exacerbated in Foxc1; Foxc2 mutants. FOXC1 knockdown (KD) in human lymphatic endothelial cells increased focal adhesions and actin stress fibers whereas FOXC2-KD increased focal adherens and disrupted cell junctions, mediated by increased ROCK activation. ROCK inhibition rescued cytoskeletal or junctional integrity changes induced by inactivation of FOXC1 and FOXC2 invitro and vivo respectively, but only ameliorated valve degeneration in Foxc2 mutants. These results identify both FOXC1 and FOXC2 as mediators of mechanotransduction in the postnatal lymphatic vasculature and posit cytoskeletal signaling as a therapeutic target in lymphatic pathologies.


Asunto(s)
Células Endoteliales/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Células Cultivadas , Embrión de Mamíferos , Desarrollo Embrionario , Factores de Transcripción Forkhead/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Sistema Linfático/crecimiento & desarrollo , Sistema Linfático/metabolismo , Ratones , Ratones Noqueados
4.
Compr Physiol ; 9(1): 207-299, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30549020

RESUMEN

The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.


Asunto(s)
Sistema Linfático/fisiología , Animales , Homeostasis , Humanos , Sistema Linfático/anatomía & histología , Sistema Linfático/crecimiento & desarrollo
5.
Ann Anat ; 219: 25-34, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29842991

RESUMEN

While both blood and lymphatic vessels transport fluids and thus share many similarities, they also show functional and structural differences, which can be used to differentiate them. Specific visualization of lymphatic vessels has historically been and still is a pivot point in lymphatic research. Many of the proteins that are investigated by molecular biologists in lymphatic research have been defined as marker molecules, i.e. to visualize and distinguish lymphatic endothelial cells (LECs) from other cell types, most notably from blood vascular endothelial cells (BECs) and cells of the hematopoietic lineage. Among the factors that drive the developmental differentiation of lymphatic structures from venous endothelium, Prospero homeobox protein 1 (PROX1) is the master transcriptional regulator. PROX1 maintains lymphatic identity also in the adult organism and thus is a universal LEC marker. Vascular endothelial growth factor receptor-3 (VEGFR-3) is the major tyrosine kinase receptor that drives LEC proliferation and migration. The major activator for VEGFR-3 is vascular endothelial growth factor-C (VEGF-C). However, before VEGF-C can signal, it needs to be proteolytically activated by an extracellular protein complex comprised of Collagen and calcium binding EGF domains 1 (CCBE1) protein and the protease A disintegrin and metallopeptidase with thrombospondin type 1 motif 3 (ADAMTS3). This minireview attempts to give an overview of these and a few other central proteins that scientific inquiry has linked specifically to the lymphatic vasculature. It is limited in scope to a brief description of their main functions, properties and developmental roles.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/fisiología , Sistema Linfático/fisiología , Receptores de Superficie Celular/fisiología , Factores de Transcripción/fisiología , Animales , Factor de Transcripción COUP II/fisiología , Factores de Transcripción Forkhead/fisiología , Proteínas de Homeodominio/fisiología , Humanos , Linfangiogénesis/fisiología , Sistema Linfático/crecimiento & desarrollo , Factores de Transcripción SOXF/fisiología , Transducción de Señal , Proteínas Supresoras de Tumor/fisiología , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología
6.
Development ; 144(11): 2070-2081, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28506987

RESUMEN

The lymphatic vascular system is a hierarchically organized complex network essential for tissue fluid homeostasis, immune trafficking and absorption of dietary fats in the human body. Despite its importance, the assembly of the lymphatic network is still not fully understood. The zebrafish is a powerful model organism that enables study of lymphatic vessel development using high-resolution imaging and sophisticated genetic and experimental manipulation. Although several studies have described early lymphatic development in the fish, lymphatic development at later stages has not been completely elucidated. In this study, we generated a new Tg(mrc1a:egfp)y251 transgenic zebrafish that uses a mannose receptor, C type 1 (mrc1a) promoter to drive strong EGFP expression in lymphatic vessels at all stages of development and in adult zebrafish. We used this line to describe the assembly of the major vessels of the trunk lymphatic vascular network, including the later-developing collateral cardinal, spinal, superficial lateral and superficial intersegmental lymphatics. Our results show that major trunk lymphatic vessels are conserved in the zebrafish, and provide a thorough and complete description of trunk lymphatic vessel assembly.


Asunto(s)
Sistema Linfático/crecimiento & desarrollo , Sistema Linfático/metabolismo , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Vasos Linfáticos/metabolismo , Transgenes , Venas/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Clin Sci (Lond) ; 131(1): 87-103, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27941161

RESUMEN

Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)-Tie system is a second endothelial cell specific ligand-receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang-Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang-Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang-Tie system in vascular development and pathogenesis of vascular diseases.


Asunto(s)
Angiopoyetinas/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Linfático/metabolismo , Receptor TIE-1/metabolismo , Receptor TIE-2/metabolismo , Transducción de Señal , Angiopoyetinas/genética , Animales , Sistema Cardiovascular/enzimología , Sistema Cardiovascular/crecimiento & desarrollo , Humanos , Sistema Linfático/enzimología , Sistema Linfático/crecimiento & desarrollo , Receptor TIE-1/genética , Receptor TIE-2/genética
8.
Angiogenesis ; 19(3): 433-45, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26993803

RESUMEN

The lymphatic system is essential in many physiological and pathological processes. Still, much remains to be known about the molecular mechanisms that control its development and function and how to modulate them therapeutically. The study of these mechanisms will benefit from better controlled genetic mouse models targeting specifically lymphatic endothelial cells. Among the genes expressed predominantly in lymphatic endothelium, Vegfr3 was the first one identified and is still considered to be one of the best lymphatic markers and a key regulator of the lymphatic system. Here, we report the generation of a Vegfr3-CreER (T2) knockin mouse by gene targeting in embryonic stem cells. This mouse expresses the tamoxifen-inducible CreER(T2) recombinase under the endogenous transcriptional control of the Vegfr3 gene without altering its physiological expression or regulation. The Vegfr3-CreER (T2) allele drives efficient recombination of floxed sequences upon tamoxifen administration specifically in Vegfr3-expressing cells, both in vitro, in primary lymphatic endothelial cells, and in vivo, at different stages of mouse embryonic development and postnatal life. Thus, our Vegfr3-CreER (T2) mouse constitutes a new powerful genetic tool for lineage tracing analysis and for conditional gene manipulation in the lymphatic endothelium that will contribute to improve our current understanding of this system.


Asunto(s)
Sistema Linfático/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen/métodos , Integrasas/genética , Sistema Linfático/citología , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Tamoxifeno/farmacología
9.
J Clin Invest ; 125(10): 3861-77, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26389677

RESUMEN

Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.


Asunto(s)
Células Endoteliales/citología , Factores de Transcripción Forkhead/fisiología , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/citología , Reología , Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Apoptosis , Ciclo Celular , División Celular , Células Cultivadas , Citoesqueleto/ultraestructura , Células Endoteliales/patología , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/deficiencia , Humanos , Uniones Intercelulares/ultraestructura , Vasos Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfoproteínas/fisiología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Fibras de Estrés/ultraestructura , Estrés Mecánico , Factores de Transcripción/fisiología , Transcripción Genética , Transfección , Proteínas Señalizadoras YAP
10.
Development ; 140(7): 1497-506, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23462469

RESUMEN

Vascular endothelial growth factor C (Vegfc) is a secreted protein that guides lymphatic development in vertebrate embryos. However, its role during developmental angiogenesis is not well characterized. Here, we identify a mutation in zebrafish vegfc that severely affects lymphatic development and leads to angiogenesis defects on sensitized genetic backgrounds. The um18 mutation prematurely truncated Vegfc, blocking its secretion and paracrine activity but not its ability to activate its receptor Flt4. When expressed in endothelial cells, vegfc(um18) could not rescue lymphatic defects in mutant embryos, but induced ectopic blood vessel branching. Furthermore, vegfc-deficient endothelial cells did not efficiently contribute to tip cell positions in developing sprouts. Computational modeling together with assessment of endothelial cell dynamics by time-lapse analysis suggested that an autocrine Vegfc/Flt4 loop plays an important role in migratory persistence and filopodia stability during sprouting. Our results suggest that Vegfc acts in two distinct modes during development: as a paracrine factor secreted from arteries to guide closely associated lymphatic vasculature and as an autocrine factor to drive migratory persistence during angiogenesis.


Asunto(s)
Vasos Sanguíneos/embriología , Sistema Linfático/embriología , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Comunicación Autocrina/genética , Comunicación Autocrina/fisiología , Vasos Sanguíneos/crecimiento & desarrollo , Movimiento Celular/genética , Movimiento Celular/fisiología , Codón sin Sentido/fisiología , Embrión no Mamífero , Femenino , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones Noqueados , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Comunicación Paracrina/genética , Comunicación Paracrina/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/genética
11.
Exp Cell Res ; 319(9): 1271-80, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23500414

RESUMEN

The angiopoietin (Ang) growth factors and the endothelial Tie receptors regulate blood and lymphatic vessel development, and vascular permeability, inflammation, angiogenic remodeling and tumor vascularization in adult tissues. The angiopoietins activate the Tie receptors in unique in trans complexes at endothelial cell-cell and cell-matrix contacts. In addition, integrins have been implicated in the regulation of Ang-Tie signaling. Recent interest has focused on the function of angiopoietin-2 and its inhibition in the tumor vasculature and also in other pathological conditions associated with endothelial dysfunction. Here we review the current understanding of the signaling functions of the Ang-Tie pathway and its potential for future development of targeted vascular therapeutics.


Asunto(s)
Angiopoyetinas/fisiología , Transducción de Señal , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Sistema Cardiovascular/crecimiento & desarrollo , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patología , Endotelio Vascular/metabolismo , Matriz Extracelular/metabolismo , Humanos , Sistema Linfático/crecimiento & desarrollo , Neovascularización Fisiológica , Permeabilidad
12.
Development ; 139(13): 2381-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627281

RESUMEN

We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/fisiología , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Regiones Promotoras Genéticas , Proteínas de Transporte Vesicular/genética , Proteínas de Pez Cebra/genética
13.
Int J Dev Biol ; 55(4-5): 483-94, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858772

RESUMEN

The lymphatic system, also named the second vascular system, plays a critical role in tissue homeostasis and immunosurveillance. The past two decades of intensive research have led to the identification and detailed understanding of many molecular players and mechanisms regulating the formation of the lymphatic vasculature during embryonic development. Furthermore, clinical and experimental data clearly demonstrate that the formation of new lymphatic vessels by sprouting lymphangiogenesis from pre-existing lymphatic vessels, or by the de novo formation of lymphatic capillaries also occurs in various pathological conditions, such as cancer and organ transplant rejection, while lymphangiogenesis is non-functional in primary edema. In cancer, lymphatic vessels are one major gateway for invasive tumor cells to leave the primary tumor site and to establish distant organ metastasis. Therefore, the specific targeting of the lymphatic vasculature at the tumor site could be a promising approach to prevent metastasis formation.


Asunto(s)
Linfangiogénesis/fisiología , Metástasis Linfática/fisiopatología , Sistema Linfático/crecimiento & desarrollo , Animales , Movimiento Celular , Proliferación Celular , Células Endoteliales/citología , Células Endoteliales/fisiología , Humanos , Linfangiogénesis/efectos de los fármacos , Metástasis Linfática/patología , Sistema Linfático/anatomía & histología , Sistema Linfático/fisiología , Modelos Biológicos , Transducción de Señal/fisiología
14.
Dev Genes Evol ; 221(3): 121-31, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21509534

RESUMEN

The Drosophila melanogaster hematopoietic organ, called lymph gland, proliferates and differentiates throughout the larval period. The lymph gland of the late larva is comprised of a large primary lobe and several smaller secondary lobes. Differentiation into two types of hemocytes, plasmatocytes and crystal cells, is confined to the outer layer (cortical zone) of the primary lobe; the center of the primary lobe (medullary zone), as well as the secondary lobes, contain only proliferating prohemocytes. A small cluster of cells located at the posterior tip of the primary lobe serves as a signaling center (PSC) that inhibits precocious differentiation of the medullary zone. The larval lymph gland is stabilized by layers of extracellular matrix (basement membranes) that surround individual hemocytes, groups of hemocytes, as well as the lymph gland as a whole. In this paper, we investigated the events shaping the lymph gland in the early pupa. The lymph gland dissociates and hemocytes disperse during the first 12 h after puparium formation (APF), leaving behind empty husks of basement membrane. Prior to lymph gland dissociation, cells of the medullary zone differentiate, expressing the early differentiation marker Peroxidasin (Pxn), as well as, in part, the late differentiation marker P1. Cells of the PSC spread throughout the pupal lymph gland prior to their dispersal. Cells of the secondary lobes undergo a rapid phase of proliferation that lasts until 8 h APF, followed by expression of Pxn and dispersal. These hemocytes do not express P1, indicating that they disperse prior to full maturation.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Hematopoyesis Extramedular/fisiología , Sistema Linfático/citología , Sistema Linfático/crecimiento & desarrollo , Metamorfosis Biológica , Animales , Proteína con Homeodominio Antennapedia/metabolismo , Membrana Basal/citología , Membrana Basal/metabolismo , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular , Proteínas de Drosophila/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Hemocitos/citología , Hemolinfa/citología , Larva/citología , Peroxidasa/metabolismo , Pupa , Peroxidasina
15.
Tsitologiia ; 52(9): 749-59, 2010.
Artículo en Ruso | MEDLINE | ID: mdl-21105364

RESUMEN

Electron microscopic observations of the lymph hearts of tadpoles and yearling frogs of Rana temporaria showed that mast cells (MCs) were present not only between muscle fibers (population of resident MCs), but in the cavities of lymph heart (population of circulating MCs), too. There were some differences in the ultrastructure of the resident MCs at each studied stage of larval development. The first recognizable MCs were revealed in the lymph hearts at premetamorphosis (stages 39-41). MCs presented as mononuclear relatively small and slightly elongated cells with a few immature secretory granules and numerous free ribosomes, polysomes and short cisternae of rough endoplasmic reticulum (RER) in the cytoplasm. Chromatin of their nuclei was poorly condensed; the Golgi apparatus was moderately developed. At pro-metamorphosis (stages 44-45), we revealed MCs at different levels of their differentiation. Some MCs demonstrated an active process of granulogenesis in their cytoplasm. Among densely packed cytoplasmic organelles, immature secretory granules were closely associated with cisternae of RER and free ribosomes. Other MCs appeared as more differentiated cells. They were characterized by a predominantly heterochromatic nuclei and cytoplasm filled with polymorphic and heterogeneous granules. MCs also showed a reduction in the number of free ribosomes and cisternae of RER in the cytoplasm. On the contrary, the Golgi apparatus was well developed. Stacks of Golgi cisternae, detaching vacuoles, and progranules occupied the perinuclear region. The majority of the outlines above ultrastructural features of differentiated MCs were typical for MCs of yearling frogs. At metamorphic climax (stages 52-53), MCs often tightly contacted with macrophages. We did not reveal apoptotic MCs. However, some MCs exhibited morphological features typical for programmed necrosis-like death, which was characterized by mitochondria swelling, dilatation of cisternae of RER and nuclear envelope, plasma membrane rupture and subsequent loss of intracellular contents. Electron microscopical immunocytochemistry revealed the localization of atrial natriuretic peptide (ANP), substance S (SP) and heat shock protein (Hsp70) in the secretory granules of the resident and circulating MCs at different stages of tadpole development and in yearling frogs.


Asunto(s)
Sistema Linfático/inmunología , Mastocitos/ultraestructura , Rana temporaria/inmunología , Animales , Factor Natriurético Atrial/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Estadios del Ciclo de Vida/inmunología , Estadios del Ciclo de Vida/fisiología , Sistema Linfático/crecimiento & desarrollo , Mastocitos/metabolismo , Microscopía Inmunoelectrónica , Piperazinas/metabolismo , Rana temporaria/crecimiento & desarrollo , Rana temporaria/metabolismo
16.
Mol Cell Biol ; 30(14): 3620-34, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20479124

RESUMEN

The lymphatic vascular system maintains tissue fluid homeostasis, helps mediate afferent immune responses, and promotes cancer metastasis. To address the role microRNAs (miRNAs) play in the development and function of the lymphatic vascular system, we defined the in vitro miRNA expression profiles of primary human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BVECs) and identified four BVEC signature and two LEC signature miRNAs. Their vascular lineage-specific expression patterns were confirmed in vivo by quantitative real-time PCR and in situ hybridization. Functional characterization of the BVEC signature miRNA miR-31 identified a novel BVEC-specific posttranscriptional regulatory mechanism that inhibits the expression of lymphatic lineage-specific transcripts in vitro. We demonstrate that suppression of lymphatic differentiation is partially mediated via direct repression of PROX1, a transcription factor that functions as a master regulator of lymphatic lineage-specific differentiation. Finally, in vivo studies of Xenopus and zebrafish demonstrated that gain of miR-31 function impaired venous sprouting and lymphatic vascular development, thus highlighting the importance of miR-31 as a negative regulator of lymphatic development. Collectively, our findings identify miR-31 is a potent regulator of vascular lineage-specific differentiation and development in vertebrates.


Asunto(s)
Células Endoteliales/citología , Células Endoteliales/metabolismo , Sistema Linfático/citología , Sistema Linfático/crecimiento & desarrollo , MicroARNs/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Vasos Sanguíneos/citología , Vasos Sanguíneos/crecimiento & desarrollo , Vasos Sanguíneos/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Hibridación in Situ , Técnicas In Vitro , Sistema Linfático/metabolismo , Ratones , MicroARNs/metabolismo , Reacción en Cadena de la Polimerasa , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Semin Thromb Hemost ; 36(3): 352-61, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20490985

RESUMEN

Endothelial cells are found in most organs and tissues in our body. Despite their apparent morphological and functional similarities, endothelial cells exhibit remarkable heterogeneity and plasticity. In a strict sense, no two endothelial cells are identical in terms of their biological, immunological, functional, metabolic, morphological, and anatomical aspects. Their heterogeneity and plasticity are now known to be dependent upon and conferred by their microenvironments, arteriovenous-lymphatic cell identity, organ-specific vascular beds, fluid dynamics, vessel sizes, anatomical locations, physiological and pathological states, and more. Although abundant evidence is available to demonstrate endothelial heterogeneity in the blood vascular system, studies of heterogeneity and plasticity of lymphatic endothelial cells are limited because of the short history of lymphatic research. Nonetheless, a growing body of exciting work has begun to discover that lymphatic endothelial cells are as heterogeneous as blood vascular endothelial cells. In this article, we discuss the heterogeneity and plasticity of lymphatic endothelial cells.


Asunto(s)
Endotelio Linfático/citología , Células Endoteliales/química , Células Endoteliales/citología , Células Endoteliales/fisiología , Endotelio Linfático/química , Endotelio Linfático/fisiología , Humanos , Linfangiogénesis , Sistema Linfático/crecimiento & desarrollo , Fenotipo
18.
Birth Defects Res C Embryo Today ; 87(3): 222-31, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19750516

RESUMEN

The lymphatic system is essential for fluid homeostasis, immune responses, and fat absorption, and is involved in many pathological processes, including tumor metastasis and lymphedema. Despite its importance, progress in understanding the origins and early development of this system has been hampered by lack of defining molecular markers and difficulties in observing lymphatic cells in vivo and performing genetic and experimental manipulation of the lymphatic system. Recent identification of new molecular markers, new genes with important functional roles in lymphatic development, and new experimental models for studying lymphangiogenesis has begun to yield important insights into the emergence and assembly of this important tissue. This review focuses on the mechanisms regulating development of the lymphatic vasculature during embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis/fisiología , Sistema Linfático/embriología , Animales , Células Endoteliales/citología , Humanos , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/embriología , Modelos Animales , Transducción de Señal , Urodelos/anatomía & histología , Urodelos/embriología , Vertebrados/anatomía & histología , Vertebrados/embriología , Pez Cebra/anatomía & histología , Pez Cebra/embriología
19.
J Appl Physiol (1985) ; 107(3): 859-63, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19556455

RESUMEN

Recently, we found that the translocation of inhaled nanoparticles from the air space to secondary organs is age dependent and substantially greater in neonates than in adults (J Respir Crit Care Med 177: A48, 2008). One reason for this difference might be age-dependent differences in alveolar barrier integrity. Because the neonate lung is undergoing morphogenetic and fluid balance changes, we hypothesize that the alveolar barrier of developing lungs is more easily compromised and susceptible to foreign material influx than that of adult lungs. On the basis of these hypotheses, we predict that the postnatally developing lung is also more likely to allow the translocation of some materials from the air space to the lymphatic lumens. To test this idea, we intratracheally instilled methyl methacrylate into immature and adult lungs and compared lymphatic filling between these two age groups. Scanning electron microscopy of the resultant corrosion casts revealed peribronchial saccular and conduit lymphatic architecture. Deep pulmonary lymphatic casts were present on the majority (58.5%) of airways in immature lungs, but lymphatic casting in adult lungs, as anticipated, was much more infrequent (21.6%). Thus the neonate lung appears to be more susceptible than the adult lung to the passage of instilled methyl methacrylate from the air space into the lymphatics. We speculate that this could imply greater probability of translocation of other materials, such as nanoparticles, from the immature lung as well.


Asunto(s)
Animales Recién Nacidos/fisiología , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Sistema Linfático/crecimiento & desarrollo , Sistema Linfático/fisiología , Envejecimiento/fisiología , Animales , Tejido Conectivo/fisiología , Femenino , Pulmón/ultraestructura , Sistema Linfático/ultraestructura , Masculino , Metilmetacrilato , Microscopía Electrónica de Rastreo , Nanopartículas , Ratas , Ratas Wistar , Mecánica Respiratoria/fisiología
20.
Dev Biol ; 319(2): 309-20, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18514180

RESUMEN

Molecular mechanisms regulating the remodeling of the lymphatic vasculature from an immature plexus of vessels to a hierarchal network of initial and collecting lymphatics are not well understood. One gene thought to be important for this process is Angiopoietin-2 (Ang-2). Ang2(-/-) mice have previously been reported to exhibit an abnormal lymphatic phenotype but the precise nature of the lymphatic defects and the underlying mechanisms have yet to be defined. Here we demonstrate by whole-mount immunofluorescence staining of ear skin and mesentery that lymphatic vessels in Ang2(-/-) mice fail to mature and do not exhibit a collecting vessel phenotype. Furthermore, dermal lymphatic vessels in Ang2(-/-) pups prematurely recruit smooth muscle cells and do not undergo proper postnatal remodeling. In contrast, Ang2 knock-out Ang1 knock-in mice do develop a hierarchal lymphatic vasculature, suggesting that activation of Tie-2 is required for normal lymphatic development. Taken together, this work pinpoints a specific lymphatic defect of Ang2(-/-) mice and further defines the sequential steps in lymphatic vessel remodeling.


Asunto(s)
Angiopoyetina 2/deficiencia , Sistema Linfático/fisiología , Angiopoyetina 1/genética , Angiopoyetina 2/genética , Animales , Técnica del Anticuerpo Fluorescente , Genotipo , Inmunohistoquímica , Sistema Linfático/citología , Sistema Linfático/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Reacción en Cadena de la Polimerasa , beta-Galactosidasa/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA