Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Gastroenterology ; 166(6): 1085-1099, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452824

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS), the gut's intrinsic nervous system critical for gastrointestinal function and gut-brain communication, is believed to mainly originate from vagal neural crest cells (vNCCs) and partially from sacral NCCs (sNCCs). Resolving the exact origins of the ENS is critical for understanding congenital ENS diseases but has been confounded by the inability to distinguish between both NCC populations in situ. Here, we aimed to resolve the exact origins of the mammalian ENS. METHODS: We genetically engineered mouse embryos facilitating comparative lineage-tracing of either all (pan-) NCCs including vNCCs or caudal trunk and sNCCs (s/tNCCs) excluding vNCCs. This was combined with dual-lineage tracing and 3-dimensional reconstruction of pelvic plexus and hindgut to precisely pinpoint sNCC and vNCC contributions. We further used coculture assays to determine the specificity of cell migration from different neural tissues into the hindgut. RESULTS: Both pan-NCCs and s/tNCCs contributed to established NCC derivatives but only pan-NCCs contributed to the ENS. Dual-lineage tracing combined with 3-dimensional reconstruction revealed that s/tNCCs settle in complex patterns in pelvic plexus and hindgut-surrounding tissues, explaining previous confusion regarding their contributions. Coculture experiments revealed unspecific cell migration from autonomic, sensory, and neural tube explants into the hindgut. Lineage tracing of ENS precursors lastly provided complimentary evidence for an exclusive vNCC origin of the murine ENS. CONCLUSIONS: sNCCs do not contribute to the murine ENS, suggesting that the mammalian ENS exclusively originates from vNCCs. These results have immediate implications for comprehending (and devising treatments for) congenital ENS disorders, including Hirschsprung's disease.


Asunto(s)
Linaje de la Célula , Movimiento Celular , Sistema Nervioso Entérico , Cresta Neural , Animales , Cresta Neural/citología , Cresta Neural/embriología , Sistema Nervioso Entérico/embriología , Ratones , Técnicas de Cocultivo , Ratones Transgénicos , Nervio Vago/embriología , Sacro/inervación
2.
PLoS Genet ; 19(11): e1011030, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37948459

RESUMEN

Hirschsprung disease (HSCR) is associated with deficiency of the receptor tyrosine kinase RET, resulting in loss of cells of the enteric nervous system (ENS) during fetal gut development. The major contribution to HSCR risk is from common sequence variants in RET enhancers with additional risk from rare coding variants in many genes. Here, we demonstrate that these RET enhancer variants specifically alter the human fetal gut development program through significant decreases in gene expression of RET, members of the RET-EDNRB gene regulatory network (GRN), other HSCR genes, with an altered transcriptome of 2,382 differentially expressed genes across diverse neuronal and mesenchymal functions. A parsimonious hypothesis for these results is that beyond RET's direct effect on its GRN, it also has a major role in enteric neural crest-derived cell (ENCDC) precursor proliferation, its deficiency reducing ENCDCs with relative expansion of non-ENCDC cells. Thus, genes reducing RET proliferative activity can potentially cause HSCR. One such class is the 23 RET-dependent transcription factors enriched in early gut development. We show that their knockdown in human neuroblastoma SK-N-SH cells reduces RET and/or EDNRB gene expression, expanding the RET-EDNRB GRN. The human embryos we studied had major remodeling of the gut transcriptome but were unlikely to have had HSCR: thus, genetic or epigenetic changes in addition to those in RET are required for aganglionosis.


Asunto(s)
Elementos de Facilitación Genéticos , Tracto Gastrointestinal , Proteínas Proto-Oncogénicas c-ret , Haplotipos , Humanos , Proteínas Proto-Oncogénicas c-ret/genética , Neuroblastoma , Línea Celular Tumoral , Enfermedad de Hirschsprung/genética , Feto , Tracto Gastrointestinal/embriología , Cresta Neural/citología , Sistema Nervioso Entérico/embriología , Análisis de Expresión Génica de una Sola Célula , Regulación del Desarrollo de la Expresión Génica
3.
Elife ; 112022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35324425

RESUMEN

Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sistema Nervioso Entérico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Faringe , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Nature ; 597(7875): 250-255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497389

RESUMEN

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Asunto(s)
Envejecimiento , Sistema Nervioso Entérico/citología , Feto/citología , Salud , Intestinos/citología , Intestinos/crecimiento & desarrollo , Ganglios Linfáticos/citología , Ganglios Linfáticos/crecimiento & desarrollo , Adulto , Animales , Niño , Enfermedad de Crohn/patología , Conjuntos de Datos como Asunto , Sistema Nervioso Entérico/anatomía & histología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Células Epiteliales/citología , Femenino , Feto/anatomía & histología , Feto/embriología , Humanos , Intestinos/embriología , Intestinos/inervación , Ganglios Linfáticos/embriología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Organogénesis , Receptores de IgG/metabolismo , Transducción de Señal , Análisis Espacio-Temporal , Factores de Tiempo
5.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-33848271

RESUMEN

Retinoic acid (RA) signaling is essential for enteric nervous system (ENS) development, since vitamin A deficiency or mutations in RA signaling profoundly reduce bowel colonization by ENS precursors. These RA effects could occur because of RA activity within the ENS lineage or via RA activity in other cell types. To define cell-autonomous roles for retinoid signaling within the ENS lineage at distinct developmental time points, we activated a potent floxed dominant-negative RA receptor α (RarαDN) in the ENS using diverse CRE recombinase-expressing mouse lines. This strategy enabled us to block RA signaling at premigratory, migratory, and postmigratory stages for ENS precursors. We found that cell-autonomous loss of RA receptor (RAR) signaling dramatically affected ENS development. CRE activation of RarαDN expression at premigratory or migratory stages caused severe intestinal aganglionosis, but at later stages, RarαDN induced a broad range of phenotypes including hypoganglionosis, submucosal plexus loss, and abnormal neural differentiation. RNA sequencing highlighted distinct RA-regulated gene sets at different developmental stages. These studies show complicated context-dependent RA-mediated regulation of ENS development.


Asunto(s)
Sistema Nervioso Entérico , Receptores de Ácido Retinoico , Transducción de Señal , Animales , Embrión de Mamíferos/inervación , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/metabolismo , Femenino , Masculino , Ratones , Neurogénesis/genética , Neurogénesis/fisiología , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
Nat Commun ; 12(1): 1894, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767165

RESUMEN

Neural crest stem cells arising from caudal hindbrain (often called cardiac and posterior vagal neural crest) migrate long distances to form cell types as diverse as heart muscle and enteric ganglia, abnormalities of which lead to common congenital birth defects. Here, we explore whether individual caudal hindbrain neural crest precursors are multipotent or predetermined toward these particular fates and destinations. To this end, we perform lineage tracing of chick neural crest cells at single-cell resolution using two complementary approaches: retrovirally mediated multiplex clonal analysis and single-cell photoconversion. Both methods show that the majority of these neural crest precursors are multipotent with many clones producing mesenchymal as well as neuronal derivatives. Time-lapse imaging demonstrates that sister cells can migrate in distinct directions, suggesting stochasticity in choice of migration path. Perturbation experiments further identify guidance cues acting on cells in the pharyngeal junction that can influence this choice; loss of CXCR4 signaling results in failure to migrate to the heart but no influence on migration toward the foregut, whereas loss of RET signaling does the opposite. Taken together, the results suggest that environmental influences rather than intrinsic information govern cell fate choice of multipotent caudal hindbrain neural crest cells.


Asunto(s)
Sistema Nervioso Entérico/embriología , Corazón/embriología , Células Madre Multipotentes/citología , Cresta Neural/citología , Células-Madre Neurales/citología , Animales , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Pollos , Proteínas Proto-Oncogénicas c-ret/genética , Receptores CXCR4/genética , Rombencéfalo/citología , Transducción de Señal/genética
7.
Development ; 148(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33558316

RESUMEN

During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.


Asunto(s)
Desarrollo Embrionario/fisiología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Tracto Gastrointestinal/inervación , Animales , Encéfalo/fisiología , Humanos , Neuronas/fisiología , Organogénesis/fisiología , Transducción de Señal
8.
Nat Rev Gastroenterol Hepatol ; 18(6): 393-410, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33514916

RESUMEN

The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.


Asunto(s)
Sistema Nervioso Entérico/fisiopatología , Neoplasias Colorrectales/fisiopatología , Diabetes Mellitus/fisiopatología , Dieta , Sistema Nervioso Entérico/embriología , Acalasia del Esófago/genética , Acalasia del Esófago/fisiopatología , Mucosa Gástrica/fisiología , Microbioma Gastrointestinal/fisiología , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/fisiopatología , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/fisiopatología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/fisiopatología
9.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33260622

RESUMEN

Hirschsprung disease (HSCR) is a neurocristopathy characterized by intestinal aganglionosis which is attributed to a failure in neural crest cell (NCC) development during the embryonic stage. The colonization of the intestine by NCCs is a process finely controlled by a wide and complex gene regulatory system. Several genes have been associated with HSCR, but many aspects still remain poorly understood. The present study is focused on deciphering the PAX6 interaction network during enteric nervous system (ENS) formation. A combined experimental and computational approach was performed to identify PAX6 direct targets, as well as gene networks shared among such targets as potential susceptibility factors for HSCR. As a result, genes related to PAX6 either directly (RABGGTB and BRD3) or indirectly (TGFB1, HRAS, and GRB2) were identified as putative genes associated with HSCR. Interestingly, GRB2 is involved in the RET/GDNF/GFRA1 signaling pathway, one of the main pathways implicated in the disease. Our findings represent a new contribution to advance in the knowledge of the genetic basis of HSCR. The investigation of the role of these genes could help to elucidate their implication in HSCR onset.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Sistema Nervioso Entérico/embriología , Enfermedad de Hirschsprung/embriología , Enfermedad de Hirschsprung/genética , Animales , Secuencia de Bases , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Genoma , Ratones , Motivos de Nucleótidos/genética , Factor de Transcripción PAX6/metabolismo , Esferoides Celulares/patología
10.
Development ; 147(13)2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32661018

RESUMEN

The enteric nervous system (ENS) derives from the neural crest and innervates the gastrointestinal system, in which it is essential for gut function throughout life. A new paper in Development uses zebrafish to investigate the poorly understood process of post-embryonic ENS neurogenesis, in both development and injury contexts. To find out more, we met the paper's two authors, Wael Noor El-Nachef, Assistant Clinical Professor of Medicine at UCLA, and Marianne Bronner, Albert Billings Ruddock Professor of Biology and Biological Engineering at Caltech.


Asunto(s)
Sistema Nervioso Entérico/embriología , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Cresta Neural/embriología , Neurogénesis/fisiología , Pez Cebra
11.
J Anat ; 237(4): 655-671, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32598482

RESUMEN

Compared to the intrinsic enteric nervous system (ENS), development of the extrinsic ENS is poorly documented, even though its presence is easily detectable with histological techniques. We visualised its development in human embryos and foetuses of 4-9.5 weeks post-fertilisation using Amira 3D-reconstruction and Cinema 4D-remodelling software. The extrinsic ENS originated from small, basophilic neural crest cells (NCCs) that migrated to the para-aortic region and then continued ventrally to the pre-aortic region, where they formed autonomic pre-aortic plexuses. From here, nerve fibres extended along the ventral abdominal arteries and finally connected to the intrinsic system. Schwann cell precursors (SCPs), a subgroup of NCCs that migrate on nerve fibres, showed region-specific differences in differentiation. SCPs developed into scattered chromaffin cells of the adrenal medulla dorsolateral to the coeliac artery (CA) and into more tightly packed chromaffin cells of the para-aortic bodies ventrolateral to the inferior mesenteric artery (IMA), with reciprocal topographic gradients between both fates. The extrinsic ENS first extended along the CA and then along the superior mesenteric artery (SMA) and IMA 5 days later. Apart from the branch to the caecum, extrinsic nerves did not extend along SMA branches in the herniated parts of the midgut until the gut loops had returned in the abdominal cavity, suggesting a permissive role of the intraperitoneal environment. Accordingly, extrinsic innervation had not yet reached the distal (colonic) loop of the midgut at 9.5 weeks development. Based on intrinsic ENS-dependent architectural remodelling of the gut layers, extrinsic innervation followed intrinsic innervation 3-4 Carnegie stages later.


Asunto(s)
Desarrollo Embrionario/fisiología , Sistema Nervioso Entérico/embriología , Intestinos/inervación , Organogénesis/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Humanos , Intestinos/embriología , Cresta Neural/citología
12.
Pediatr Dev Pathol ; 23(4): 285-295, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32212960

RESUMEN

INTRODUCTION: The objective of this study is to investigate the role of thyroid hormone (TH) in the pathogenesis of intestinal dysganglionosis (ID). METHODS: A zebrafish model of congenital hypothyroidism (CH) was created by exposing the larvae to the 6-propyl-2-thiouracil (PTU). The enteric neurons were labeled with anti-HuC/D antibodies. The number of enteric neurons was counted. The larval intestine was dissociated and stained with anti-p75 and anti-α4 integrin antibodies. Mitosis and apoptosis of the p75+ α4 integrin+ enteric neural crest cells (ENCCs) were studied using flow cytometry. Intestinal motility was studied by analyzing the transit of fluorescent tracers. RESULTS: PTU (25 mg/L) significantly reduced TH production at 6- and 9-days post fertilization without changing the body length, body weight, and intestinal length of the larvae. Furthermore, PTU inhibited mitosis of ENCCs and reduced the number of enteric neurons throughout the larval zebrafish intestine. Importantly, PTU inhibited intestinal transit of fluorescent tracers. Finally, thyroxine supplementation restored ENCC mitosis, increased the number of enteric neurons, and recovered intestinal motility in the PTU-treated larvae. CONCLUSIONS: PTU inhibited TH production, reduced the number of enteric neurons, impaired intestinal motility, and impeded ENCC mitosis in zebrafish, suggesting a possible role of CH in the pathogenesis of ID.


Asunto(s)
Hipotiroidismo Congénito/complicaciones , Sistema Nervioso Entérico/embriología , Enfermedad de Hirschsprung/embriología , Hormonas Tiroideas/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Hipotiroidismo Congénito/embriología , Hipotiroidismo Congénito/metabolismo , Hipotiroidismo Congénito/patología , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/patología , Citometría de Flujo , Motilidad Gastrointestinal , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/patología , Cresta Neural/embriología , Cresta Neural/metabolismo , Cresta Neural/patología , Pez Cebra
13.
Dev Biol ; 455(2): 473-484, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394080

RESUMEN

Intestinal tract development is a coordinated process involving signaling among the progenitors and developing cells from all three germ layers. Development of endoderm-derived intestinal epithelium has been shown to depend on epigenetic modifications, but whether that is also the case for intestinal tract cell types from other germ layers remains unclear. We found that functional loss of a DNA methylation machinery component, ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1), leads to reduced numbers of ectoderm-derived enteric neurons and severe disruption of mesoderm-derived intestinal smooth muscle. Genetic chimeras revealed that Uhrf1 functions both cell-autonomously in enteric neuron precursors and cell-non-autonomously in surrounding intestinal cells, consistent with what is known about signaling interactions between these cell types that promote one another's development. Uhrf1 recruits the DNA methyltransferase Dnmt1 to unmethylated DNA during replication. Dnmt1 is also expressed in enteric neurons and smooth muscle progenitors. dnmt1 mutants have fewer enteric neurons and disrupted intestinal smooth muscle compared to wildtypes. Because dnmt1;uhrf1 double mutants have a similar phenotype to dnmt1 and uhrf1 single mutants, Dnmt1 and Uhrf1 must function together during enteric neuron and intestinal muscle development. This work shows that genes controlling epigenetic modifications are important to coordinate intestinal tract development, provides the first demonstration that these genes influence development of the ENS, and advances uhrf1 and dnmt1 as potential new Hirschsprung disease candidates.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/fisiología , Sistema Nervioso Entérico/embriología , Epigénesis Genética , Intestinos/embriología , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Quimera , ADN (Citosina-5-)-Metiltransferasa 1/genética , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Intestinos/citología , Intestinos/inervación , Masculino , Músculo Liso/embriología , Mutación , Neuronas , Transactivadores/genética , Pez Cebra , Proteínas de Pez Cebra/genética
14.
Dev Biol ; 455(2): 362-368, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31306639

RESUMEN

BACKGROUND: Cells derived from the neural crest colonize the developing gut and give rise to the enteric nervous system. The rate at which the ENCC population advances along the bowel will be affected by both the speed and directionality of individual ENCCs. The aim of the study was to use time-lapse imaging and pharmacological activators and inhibitors to examine the role of several intracellular signalling pathways in both the speed and the directionality of individual enteric neural crest-derived cells in intact explants of E12.5 mouse gut. Drugs that activate or inhibit intracellular components proposed to be involved in GDNF-RET and EDN3-ETB signalling in ENCCs were used. FINDINGS: Pharmacological inhibition of JNK significantly reduced ENCC speed but did not affect ENCC directionality. MEK inhibition did not affect ENCC speed or directionality. Pharmacological activation of adenylyl cyclase or PKA (a downstream cAMP-dependent kinase) resulted in a significant decrease in ENCC speed and an increase in caudal directionality of ENCCs. In addition, adenylyl cyclase activation also resulted in reduced cell-cell contact between ENCCs, however this was not observed following PKA activation, suggesting that the effects of cAMP on adhesion are not mediated by PKA. CONCLUSIONS: JNK is required for normal ENCC migration speed, but not directionality, while cAMP signalling appears to regulate ENCC migration speed, directionality and adhesion. Collectively, our data demonstrate that intracellular signalling pathways can differentially affect the speed and directionality of migrating ENCCs.


Asunto(s)
Adenilil Ciclasas/metabolismo , Movimiento Celular , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Cresta Neural/citología , Animales , Inducción Embrionaria , Sistema Nervioso Entérico/embriología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Cresta Neural/enzimología , Cresta Neural/metabolismo , Factores de Tiempo
15.
Mol Med Rep ; 20(2): 1297-1305, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31173231

RESUMEN

Certain patients with anorectal malforma-tions (ARMs) continue to suffer from postoperative dysphoria. The enteric nervous system (ENS) is closely associated with defecation. The purinergic receptor P2Y2 (P2Y2) and Hu antigen D (HuD) proteins contain multiple motifs that enable their activation and direct coupling to integrin and growth factor receptor signaling pathways; thus, they may serve as key points in ENS development. The aim of the present study was to investigate the expression pattern of P2Y2 and HuD proteins during anorectal development in ARM embryos. The embryogenesis of ARM in rats was induced by ethylenethiourea (ETU) on the 10th gestational day. The expression patterns of P2Y2 and HuD proteins were evaluated by immunohistochemistry and western blot analysis in normal, ETU and ARM rat embryos on embryonic days E17, E19 and E21; their mRNA levels were assessed via reverse transcription­quantitative polymerase chain reaction (RT­qPCR) of the distal rectum of fetal rats. Immunohistochemistry of the distal rectum demonstrated that on E17, the expression levels of the two proteins were not different between the three groups. On E19, the expression of HuD was significantly decreased in the ARM group. On E21, the two proteins were significantly decreased in the ARM group. Additionally, the expression levels of the two proteins on E17 were significantly lower than on E21 in the ARM group. Western blotting and RT­qPCR also revealed that the P2Y2 and HuD proteins and mRNA expression levels were significantly decreased in the ARM groups when compared with the normal group on E17 and E21 (P<0.01). Thus, the present study demonstrated that downregulation of P2Y2 and HuD may partly be related to the development of the ENS in ARM embryos.


Asunto(s)
Malformaciones Anorrectales/embriología , Malformaciones Anorrectales/genética , Regulación hacia Abajo/genética , Proteína 4 Similar a ELAV/genética , Sistema Nervioso Entérico/embriología , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Receptores Purinérgicos P2Y2/genética , Animales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores Purinérgicos P2Y2/metabolismo
16.
Dev Dyn ; 248(6): 437-448, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30958591

RESUMEN

BACKGROUND: The enteric nervous system (ENS) is derived from enteric neural crest cells (ENCCs) that migrate into the gut. The zebrafish larva is a good model to study ENCC development due to its simplicity and transparency. However, little is known how individual ENCCs divide and become neurons. RESULTS: Here, by applying our new method of local heat-shock mediated Cre-recombination around the dorsal vagal area of zebrafish embryos we produced multicolored clones of ENCCs, and performed in vivo time-lapse imaging from ca. 3.5 to 4 days post-fertilization after arrival of ENCCs in the gut. Individual ENCCs migrated in various directions and were highly intermingled. The cell divisions were not restricted to a specific position in the gut. Antibody staining after imaging with anti-HuC/D and anti-Sox10 showed that an ENCC produced two neurons, or formed a neuron and an additional ENCC that further divided. At division, the daughter cells immediately separated. Afterward, some made soma-soma contact with other ENCCs. CONCLUSIONS: We introduced a new method of visualizing individual ENCCs in the zebrafish gut, describing their behaviors associated with cell division, providing a foundation to study the mechanism of proliferation and neurogenesis in the ENS in vertebrates.


Asunto(s)
Sistema Nervioso Entérico/crecimiento & desarrollo , Cresta Neural/citología , Neurogénesis , Imagen de Lapso de Tiempo/métodos , Pez Cebra/anatomía & histología , Animales , División Celular , Movimiento Celular , Embrión no Mamífero , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Tracto Gastrointestinal , Respuesta al Choque Térmico , Neuronas/citología , Pez Cebra/embriología
17.
Gastroenterology ; 156(5): 1483-1495.e6, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30610864

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS) is the largest branch of the peripheral nervous system, comprising complex networks of neurons and glia, which are present throughout the gastrointestinal tract. Although development of a fully functional ENS is required for gastrointestinal motility, little is known about the ontogeny of ENS function in humans. We studied the development of neuronal subtypes and the emergence of evoked electrical activity in the developing human ENS. METHODS: Human fetal gut samples (obtained via the MRC-Wellcome Trust Human Developmental Biology Resource-UK) were characterized by immunohistochemistry, calcium imaging, RNA sequencing, and quantitative real-time polymerase chain reaction analyses. RESULTS: Human fetal colon samples have dense neuronal networks at the level of the myenteric plexus by embryonic week (EW) 12, with expression of excitatory neurotransmitter and synaptic markers. By contrast, markers of inhibitory neurotransmitters were not observed until EW14. Electrical train stimulation of internodal strands did not evoke activity in the ENS of EW12 or EW14 tissues. However, compound calcium activation was observed at EW16, which was blocked by the addition of 1 µmol/L tetrodotoxin. Expression analyses showed that this activity was coincident with increases in expression of genes encoding proteins involved in neurotransmission and action potential generation. CONCLUSIONS: In analyses of human fetal intestinal samples, we followed development of neuronal diversity, electrical excitability, and network formation in the ENS. These processes are required to establish the functional enteric circuitry. Further studies could increase our understanding of the pathogenesis of a range of congenital enteric neuropathies.


Asunto(s)
Colon/inervación , Sistema Nervioso Entérico/fisiología , Potenciales Evocados , Red Nerviosa/fisiología , Neurogénesis , Neuronas/fisiología , Señalización del Calcio , Colon/embriología , Estimulación Eléctrica , Sistema Nervioso Entérico/efectos de los fármacos , Sistema Nervioso Entérico/embriología , Potenciales Evocados/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/embriología , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/efectos de los fármacos , Neurotransmisores/farmacología , Fenotipo , Embarazo , Segundo Trimestre del Embarazo , Transmisión Sináptica
18.
Dev Biol ; 446(1): 22-33, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30448439

RESUMEN

The enteric nervous system is mostly derived from vagal neural crest (NC) cells adjacent to somites (s)1-7. We used in ovo focal fluorescent vital dyes and focal electroporation of fluorophore-encoding plasmids in quail embryos to investigate NC cell migration to the foregut initially and later throughout the entire gut. NC cells of different somite-level origins were largely separate until reaching the foregut at about QE2.5, when all routes converged. By QE3.5, NC cells of different somite-levels became mixed, although s1-s2 NC cells were mainly confined to rostral foregut. Mid-vagal NC-derived cells (s3 and s4 level) arrived earliest at the foregut, and occurred in greatest number. By QE6.5 ENS was present from foregut to hindgut. Mid-vagal NC-derived cells occurred in greatest numbers from foregut to distal hindgut. NC-derived cells of s2, s5, and s6 levels were fewer and were widely distributed but were never observed in the distal hindgut. Rostro-vagal (s1) and caudo-vagal (s7) levels were few and restricted to the foregut. Single somite levels of quail neural tube/NC from s1 to s8 were combined with chick aneural ChE4.5 midgut and hindgut and the ensemble was grown on the chorio-allantoic membrane for 6 days. This tests ENS-forming competence in the absence of intra-segmental competition between NC cells, of differential influences of segmental paraxial tissues, and of positional advantage. All vagal NC-levels, but not s8 level, furnished enteric plexuses in the recipient gut, but the density of both ENS cells in total and neurons was highest from mid-vagal level donors, as was the length colonised. We conclude that the fate and competence for ENS formation of vagal NC sub-levels is not uniform over the vagal level but is biased to favour mid-vagal levels. Overviewing this and prior studies suggests the vagal region is, as in its traditional sense, a natural unit but with complex sub-divisions.


Asunto(s)
Sistema Nervioso Entérico/embriología , Cresta Neural/embriología , Somitos/embriología , Nervio Vago/embriología , Animales , Tipificación del Cuerpo , Diferenciación Celular , Movimiento Celular , Embrión de Pollo , Pollos , Coturnix , Sistema Digestivo/citología , Sistema Digestivo/embriología , Sistema Digestivo/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Intestinos/citología , Intestinos/embriología , Intestinos/inervación , Cresta Neural/citología , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/metabolismo , Somitos/citología , Somitos/metabolismo , Nervio Vago/citología , Nervio Vago/metabolismo
19.
Dev Biol ; 445(2): 256-270, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30472119

RESUMEN

The enteric nervous system is thought to originate solely from the neural crest. Transgenic lineage tracing revealed a novel population of clonal pancreatic duodenal homeobox-1 (Pdx1)-Cre lineage progenitor cells in the tunica muscularis of the gut that produced pancreatic descendants as well as neurons upon differentiation in vitro. Additionally, an in vivo subpopulation of endoderm lineage enteric neurons, but not glial cells, was seen especially in the proximal gut. Analysis of early transgenic embryos revealed Pdx1-Cre progeny (as well as Sox-17-Cre and Foxa2-Cre progeny) migrating from the developing pancreas and duodenum at E11.5 and contributing to the enteric nervous system. These results show that the mammalian enteric nervous system arises from both the neural crest and the endoderm. Moreover, in adult mice there are separate Wnt1-Cre neural crest stem cells and Pdx1-Cre pancreatic progenitors within the muscle layer of the gut.


Asunto(s)
Sistema Nervioso Entérico/embriología , Animales , Linaje de la Célula/genética , Duodeno/embriología , Duodeno/inervación , Duodeno/metabolismo , Endodermo/citología , Endodermo/embriología , Endodermo/metabolismo , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Transgénicos , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Páncreas/embriología , Páncreas/inervación , Páncreas/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
20.
Cell Mol Life Sci ; 76(5): 921-940, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30470852

RESUMEN

The transcription factor Ptf1a is a crucial helix-loop-helix (bHLH) protein selectively expressed in the pancreas, retina, spinal cord, brain, and enteric nervous system. Ptf1a is preferably assembled into a transcription trimeric complex PTF1 with an E protein and Rbpj (or Rbpjl). In pancreatic development, Ptf1a is indispensable in controlling the expansion of multipotent progenitor cells as well as the specification and maintenance of the acinar cells. In neural tissues, Ptf1a is transiently expressed in the post-mitotic cells and specifies the inhibitory neuronal cell fates, mostly mediated by downstream genes such as Tfap2a/b and Prdm13. Mutations in the coding and non-coding regulatory sequences resulting in Ptf1a gain- or loss-of-function are associated with genetic diseases such as pancreatic and cerebellar agenesis in the rodent and human. Surprisingly, Ptf1a alone is sufficient to reprogram mouse or human fibroblasts into tripotential neural stem cells. Its pleiotropic functions in many biological processes remain to be deciphered in the future.


Asunto(s)
Reprogramación Celular , Factores de Transcripción/fisiología , Animales , Encéfalo/embriología , Transdiferenciación Celular , Sistema Nervioso Entérico/embriología , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/fisiología , Páncreas/embriología , Páncreas/fisiología , Retina/embriología , Médula Espinal/embriología , Factores de Transcripción/química , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA