Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.519
Filtrar
1.
J Vis Exp ; (205)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587373

RESUMEN

cAMP Difference Detector In Situ (cADDis) is a novel biosensor that allows for the continuous measurement of cAMP levels in living cells. The biosensor is created from a circularly permuted fluorescent protein linked to the hinge region of Epac2. This creates a single fluorophore biosensor that displays either increased or decreased fluorescence upon binding of cAMP. The biosensor exists in red and green upward versions, as well as green downward versions, and several red and green versions targeted to subcellular locations. To illustrate the effectiveness of the biosensor, the green downward version, which decreases in fluorescence upon cAMP binding, was used. Two protocols using this sensor are demonstrated: one utilizing a 96-well plate reading spectrophotometer compatible with high-throughput screening and another utilizing single-cell imaging on a fluorescent microscope. On the plate reader, HEK-293 cells cultured in 96-well plates were stimulated with 10 µM forskolin or 10 nM isoproterenol, which induced rapid and large decreases in fluorescence in the green downward version. The biosensor was used to measure cAMP levels in individual human airway smooth muscle (HASM) cells monitored under a fluorescent microscope. The green downward biosensor displayed similar responses to populations of cells when stimulated with forskolin or isoproterenol. This single-cell assay allows visualization of the biosensor location at 20x and 40x magnification. Thus, this cAMP biosensor is sensitive and flexible, allowing real-time measurement of cAMP in both immortalized and primary cells, and with single cells or populations of cells. These attributes make cADDis a valuable tool for studying cAMP signaling dynamics in living cells.


Asunto(s)
AMP Cíclico , Sistema Respiratorio , Humanos , AMP Cíclico/metabolismo , Isoproterenol/farmacología , Colforsina/farmacología , Células HEK293 , Sistema Respiratorio/metabolismo
2.
Toxicology ; 504: 153781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493948

RESUMEN

This comprehensive review focuses on various dimensions of nanoparticle toxicity, emphasizing toxicological characteristics, assessment techniques, and examinations of relevant studies on the effects on biological systems. The primary objective is to comprehend the potential risks associated with nanoparticles and to provide efficient strategies for mitigating them by consolidating current research discoveries. For in-depth insights, the discussions extend to crucial aspects such as toxicity associated with different nanoparticles, human exposure, and nanoparticle deposition in the human respiratory tract. The analysis utilizes the multiple-path particle dosimetry (MPPD) modeling for computational simulation. The SiO2 nanoparticles with a volume concentration of 1% and a particle size of 50 nm are used to depict the MPPD modeling of the Left upper (LU), left lower (LL), right upper (RU), right middle (RM), and right lower (RL) lobes in the respiratory tract. The analysis revealed a substantial 67.5% decrease in the deposition fraction as the particle size increased from 10 nm to 100 nm. Graphical representation emphasizes the significant impact of exposure path selection on nanoparticle deposition, with distinct deposition values observed for nasal, oral, oronasal-mouth breather, oronasal - normal augmenter, and endotracheal paths (0.00291 µg, 0.00332 µg, 0.00297 µg, 0.00291 µg, and 0.00383 µg, respectively). Consistent with the focus of the review, the article also addresses crucial mitigation strategies for managing nanoparticle toxicity.


Asunto(s)
Nanopartículas , Sistema Respiratorio , Humanos , Nanopartículas/toxicidad , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Animales , Factores de Riesgo , Exposición por Inhalación/efectos adversos , Tamaño de la Partícula , Medición de Riesgo
3.
Cells ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534319

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Sistema Respiratorio/metabolismo , Metabolómica/métodos , Biomarcadores/metabolismo , Espectrometría de Masas/métodos
4.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339210

RESUMEN

The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.


Asunto(s)
Asma , Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Trastornos Respiratorios , Humanos , Moco/metabolismo , Trastornos Respiratorios/metabolismo , Sistema Respiratorio/metabolismo , Fibrosis Quística/metabolismo , Asma/metabolismo , Esputo/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Mucinas/metabolismo
5.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176727

RESUMEN

Activating transcription factor 4 (Atf4), which is modulated by the protein kinase RNA-like ER kinase (PERK), is a stress-induced transcription factor responsible for controlling the expression of a wide range of adaptive genes, enabling cells to withstand stressful conditions. However, the impact of the Atf4 signaling pathway on airway regeneration remains poorly understood. In this study, we used mouse airway epithelial cell culture models to investigate the role of PERK/Atf4 in respiratory tract differentiation. Through pharmacological inhibition and silencing of ATF4, we uncovered the crucial involvement of PERK/Atf4 in the differentiation of basal stem cells, leading to a reduction in the number of secretory cells. ChIP-seq analysis revealed direct binding of ATF4 to regulatory elements of genes associated with osteoblast differentiation and secretory cell function. Our findings provide valuable insights into the role of ATF4 in airway epithelial differentiation and its potential involvement in innate immune responses and cellular adaptation to stress.


Asunto(s)
Estrés del Retículo Endoplásmico , eIF-2 Quinasa , Animales , Ratones , eIF-2 Quinasa/genética , Estrés del Retículo Endoplásmico/genética , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Diferenciación Celular/genética , Sistema Respiratorio/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L765-L775, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847709

RESUMEN

Airway mucociliary clearance (MCC) is required for host defense and is often diminished in chronic lung diseases. Effective clearance depends upon coordinated actions of the airway epithelium and a mobile mucus layer. Dysregulation of the primary secreted airway mucin proteins, MUC5B and MUC5AC, is associated with a reduction in the rate of MCC; however, how other secreted proteins impact the integrity of the mucus layer and MCC remains unclear. We previously identified the gene Bpifb1/Lplunc1 as a regulator of airway MUC5B protein levels using genetic approaches. Here, we show that BPIFB1 is required for effective MCC in vivo using Bpifb1 knockout (KO) mice. Reduced MCC in Bpifb1 KO mice occurred in the absence of defects in epithelial ion transport or reduced ciliary beat frequency. Loss of BPIFB1 in vivo and in vitro altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC. Finally, we detected colocalization of BPIFB1 and MUC5B in secretory granules in mice and the protein mesh of secreted mucus in human airway epithelia cultures. Collectively, our findings demonstrate that BPIFB1 is an important component of the mucociliary apparatus in mice and a key component of the mucus protein network.NEW & NOTEWORTHY BPIFB1, also known as LPLUNC1, was found to regulate mucociliary clearance (MCC), a key aspect of host defense in the airway. Loss of this protein was also associated with altered biophysical and biochemical properties of mucus that have been previously linked to impaired MCC.


Asunto(s)
Enfermedades Pulmonares , Depuración Mucociliar , Ratones , Humanos , Animales , Depuración Mucociliar/fisiología , Sistema Respiratorio/metabolismo , Moco/metabolismo , Enfermedades Pulmonares/metabolismo , Ratones Noqueados
7.
Expert Rev Respir Med ; 17(10): 903-917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37905552

RESUMEN

INTRODUCTION: Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED: Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION: Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.


Asunto(s)
Asma , Calcio , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Sistema Respiratorio/metabolismo , Membrana Celular/metabolismo , Asma/metabolismo
8.
J Virol ; 97(10): e0127123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37819131

RESUMEN

IMPORTANCE: The respiratory tract of humans is constantly exposed to potentially harmful agents, such as small particles or pathogens, and thus requires protective measures. Respiratory mucus that lines the airway epithelia plays a major role in the prevention of viral infections by limiting the mobility of viruses, allowing subsequent mucociliary clearance. Understanding the interplay between respiratory mucus and viruses can help elucidate host and virus characteristics that enable the initiation of infection. Here, we tested a panel of primary influenza A viruses of avian or human origin for their sensitivity to mucus derived from primary human airway cultures and found that differences between virus strains can be mapped to viral neuraminidase activity. We also show that binding of influenza A viruses to decoy receptors on highly glycosylated mucus components constitutes the major inhibitory function of mucus against influenza A viruses.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Moco , Neuraminidasa , Animales , Humanos , Aves , Virus de la Influenza A/metabolismo , Moco/metabolismo , Neuraminidasa/metabolismo , Sistema Respiratorio/metabolismo
9.
Radiat Prot Dosimetry ; 199(15-16): 1838-1843, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819295

RESUMEN

The Human Respiratory Tract Model described in Publication 130 of the International Commission on Radiological Protection provides some mechanisms to account for retention of material that can be subject to little to no mechanical transport or absorption into the blood. One of these mechanisms is 'binding', which refers to a process by which a fraction ('bound fraction') of the dissolved material chemically binds to the tissue of the airway wall. The value of the bound fraction can have a significant impact on the radiation doses imparted to different parts of the respiratory tract. To properly evaluate-and quantify-bound fraction for an element, one would need information on long-term retention of the element in individual compartments of the respiratory tract. Such data on regional retention of plutonium in the respiratory tract of four workers-who had inhaled materials with solubility ranging from soluble nitrate to very insoluble high-fired oxides-were obtained at the United States Transuranium and Uranium Registries. An assumption of bound fraction alone was found to be inconsistent with this dataset and also with a review of the literature. Several studies show evidence of retention of a large amount of Pu activity in the scar tissues of humans and experimental animals, and accordingly, a model structure with scar-tissue compartments was proposed. The transfer rates to these compartments were determined using Markov Chain Monte Carlo analysis of the bioassay and post-mortem data, considering the uncertainties associated with deposition, dissolution and particle clearance parameters. The models predicted that a significant amount-between 20 and 100% for the cases analyzed-of plutonium retained in the respiratory tract was sequestered in the scar tissues. Unlike chemically-bound Pu that irradiates sensitive epithelial cells, Pu in scar tissues may not be dosimetrically significant because the scar tissues absorb most, if not all, of the energy from alpha emissions.


Asunto(s)
Plutonio , Animales , Humanos , Estados Unidos , Plutonio/análisis , Dosis de Radiación , Cicatriz/metabolismo , Modelos Biológicos , Sistema Respiratorio/metabolismo
10.
Math Med Biol ; 40(3): 238-265, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37285178

RESUMEN

Excessive activation of the regulatory cytokine transforming growth factor $\beta $ (TGF-$\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.


Asunto(s)
Asma , Sistema Respiratorio , Humanos , Sistema Respiratorio/metabolismo , Asma/genética , Asma/metabolismo , Músculo Liso/metabolismo , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Nature ; 619(7969): 338-347, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37380775

RESUMEN

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Asunto(s)
Aves , Interacciones Microbiota-Huesped , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Zoonosis Virales , Animales , Humanos , Aves/virología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/transmisión , Gripe Aviar/virología , Gripe Humana/prevención & control , Gripe Humana/transmisión , Gripe Humana/virología , Primates , Sistema Respiratorio/metabolismo , Sistema Respiratorio/virología , Medición de Riesgo , Zoonosis Virales/prevención & control , Zoonosis Virales/transmisión , Zoonosis Virales/virología , Replicación Viral
12.
Cannabis Cannabinoid Res ; 8(3): 434-444, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37074668

RESUMEN

Introduction: The endogenous cannabinoid (endocannabinoid) system is an emerging target for the treatment of chronic inflammatory disease with the potential to advance treatment for many respiratory illnesses. The varied effects of endocannabinoids across tissue types makes it imperative that we explore their physiologic impact within unique tissue targets. The aim of this scoping review is to explore the impact of endocannabinoid activity on eicosanoid production as a measure of human airway inflammation. Methods: A scoping literature review was conducted according to PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. Search strategies using MeSH terms related to cannabinoids, eicosanoids, cyclooxygenase (COX), and the respiratory system were used to query Medline, Embase, Cochrane, CINAHL, Web of Science, and Biosis Previews in December 2021. Only studies that investigated the relationship between endocannabinoids and the eicosanoid system in mammalian respiratory tissue after 1992 were included. Results: Sixteen studies were incorporated in the final qualitative review. Endocannabinoid activation increases COX-2 expression, potentially through ceramide-dependent or p38 and p42/44 Mitogen-Activated Protein Kinase pathways and is associated with a concentration-dependent increase in prostaglandin (PG)E2. Inhibitors of endocannabinoid hydrolysis found either an increase or no change in levels of PGE2 and PGD2 and decreased levels of leukotriene (LT)B4, PGI2, and thromboxane A2 (TXA2). Endocannabinoids increase bronchial epithelial cell permeability and have vasorelaxant effects in human pulmonary arteries and cause contraction of bronchi and decreased gas trapping in guinea pigs. Inhibitors of endocannabinoid hydrolysis were found to have anti-inflammatory effects on pulmonary tissue and are primarily mediated by COX-2 and activation of eicosanoid receptors. Direct agonism of endocannabinoid receptors appears to play a minor role. Conclusion: The endocannabinoid system has diverse effects on the mammalian airway. While endocannabinoid-derived PGs can have anti-inflammatory effects, endocannabinoids also produce proinflammatory conditions, such as increased epithelial permeability and bronchial contraction. These conflicting findings suggest that endocannabinoids produce a variety of effects depending on their local metabolism and receptor agonism. Elucidation of the complex interplay between the endocannabinoid and eicosanoid pathways is key to leveraging the endocannabinoid system as a potential therapeutic target for human airway disease.


Asunto(s)
Cannabinoides , Endocannabinoides , Animales , Cobayas , Humanos , Antiinflamatorios , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Ciclooxigenasa 2 , Dinoprostona , Eicosanoides/metabolismo , Eicosanoides/farmacología , Eicosanoides/uso terapéutico , Endocannabinoides/metabolismo , Mamíferos/metabolismo , Sistema Respiratorio/metabolismo
13.
Glycobiology ; 33(6): 476-489, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37115803

RESUMEN

The COVID-19 global pandemic has underscored the need to understand how viruses and other pathogens are able to infect and replicate within the respiratory system. Recent studies have highlighted the role of highly O-glycosylated mucins in the protection of the respiratory system as well as how mucin-type O-glycosylation may be able to modify viral infectivity. Therefore, we set out to identify the specific genes controlling mucin-type O-glycosylation throughout the mouse respiratory system as well as determine how their expression and the expression of respiratory mucins is influenced by infection or injury. Here, we show that certain mucins and members of the Galnt family are abundantly expressed in specific respiratory tissues/cells and demonstrate unique patterns of O-glycosylation across diverse respiratory tissues. Moreover, we find that the expression of certain Galnts and mucins is altered during lung infection and injury in experimental mice challenged with infectious agents, toxins, and allergens. Finally, we examine gene expression changes of Galnts and mucins in a mouse model of SARS-CoV-2 infection. Our work provides foundational knowledge regarding the specific expression of Galnt enzyme family members and mucins throughout the respiratory system, and how their expression is altered upon lung infection and injury.


Asunto(s)
COVID-19 , Mucinas , Animales , Ratones , Mucinas/genética , Mucinas/metabolismo , Glicosilación , COVID-19/genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sistema Respiratorio/metabolismo
14.
Arch Biochem Biophys ; 741: 109597, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37054768

RESUMEN

Mast cells are the major effector cells in allergic diseases. RhoA and its downstream pathway is associated with the pathogenesis of airway allergy. The objective of this study is to test a hypothesis that modulating the RhoA-GEF-H1 axis in mast cells can attenuate airway allergy. An airway allergic disorder (AAD) mouse model was employed. Mast cells were isolated from AAD mouse airway tissues to be analyzed by RNA sequencing. We observed that mast cells isolated from the respiratory tract of AAD mice were resistant to apoptosis. Mast cell mediator levels in nasal lavage fluid were correlated with apoptosis resistance in AAD mice. Activation of RhoA in AAD mast cells was related to resistance to apoptosis. Mast cells isolated from the airway tissues in AAD mouse exhibited strong RhoA-GEF-H1 expression. The RhoA-GEF-H1 axis was associated with the lower FasL expression in AAD mast cells. Activation of the RhoA-GEF-H1 axis promoted the production of mediators in mast cells. Inhibition of GEF-H1 facilitated the SIT-induced mast cell apoptosis and enhanced the therapeutic efficacy of AAD. In conclusion, RhoA-GEF-H1 activities are associated with resistance to apoptosis in mast cells isolated from sites of allergic lesions. The state of apoptosis resistance in mast cells is associated with the state of AAD disease. Inhibition of GEF-H1 restores the sensitivity of mast cells to apoptosis inducers, and alleviates experimental AAD in mice.


Asunto(s)
Mastocitos , Hipersensibilidad Respiratoria , Animales , Ratones , Mastocitos/metabolismo , Fosforilación , Sistema Respiratorio/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Proteína de Unión al GTP rhoA/metabolismo , Hipersensibilidad Respiratoria/terapia
15.
Redox Biol ; 61: 102646, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36867944

RESUMEN

While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC). We used high-resolution live cell imaging of HAEC expressing the genetically encoded ratiometric biosensors Grx1-roGFP2, iNAP1, or HyPer, to assess changes in the cytoplasmic ratio of oxidized glutathione to reduced glutathione (GSSG:GSH), and the flux of NADPH and H2O2, respectively. Non-cytotoxic exposure to ISOPOOH resulted in a dose-dependent increase of GSSG:GSH in HAEC that was markedly potentiated by prior glucose deprivation. ISOPOOH-induced increase in glutathione oxidation were accompanied by concomitant decreases in intracellular NADPH. Following ISOPOOH exposure, the introduction of glucose resulted in a rapid restoration of GSH and NADPH, while the glucose analog 2-deoxyglucose resulted in inefficient restoration of baseline GSH and NADPH. To elucidate bioenergetic adaptations involved in combatting ISOPOOH-induced oxidative stress we investigated the regulatory role of glucose-6-phosphate dehydrogenase (G6PD). A knockout of G6PD markedly impaired glucose-mediated recovery of GSSG:GSH but not NADPH. These findings reveal rapid redox adaptations involved in the cellular response to ISOPOOH and provide a live view of the dynamic regulation of redox homeostasis in human airway cells as they are exposed to environmental oxidants.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Disulfuro de Glutatión/metabolismo , Oxidación-Reducción , Glutatión/metabolismo , Células Epiteliales/metabolismo , Estrés Oxidativo , Sistema Respiratorio/metabolismo , Glucosa/farmacología , NADP/metabolismo
16.
Sci Rep ; 13(1): 4876, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966166

RESUMEN

Oxidoreductases are major enzymes of xenobiotic metabolism. Consequently, they are essential in the chemoprotection of the human body. Many xenobiotic metabolism enzymes have been shown to be involved in chemosensory tissue protection. Among them, some were additionally shown to be involved in chemosensory perception, acting in signal termination as well as in the generation of metabolites that change the activation pattern of chemosensory receptors. Oxidoreductases, especially aldehyde dehydrogenases and aldo-keto reductases, are the first barrier against aldehyde compounds, which include numerous odorants. Using a mass spectrometry approach, we characterized the most highly expressed members of these families in the human nasal mucus sampled in the olfactory vicinity. Their expression was also demonstrated using immunohistochemistry in human epitheliums sampled in the olfactory vicinity. Recombinant enzymes corresponding to three highly expressed human oxidoreductases (ALDH1A1, ALDH3A1, AKR1B10) were used to demonstrate the high enzymatic activity of these enzymes toward aldehyde odorants. The structure‒function relationship set based on the enzymatic parameters characterization of a series of aldehyde odorant compounds was supported by the X-ray structure resolution of human ALDH3A1 in complex with octanal.


Asunto(s)
Oxidorreductasas , Receptores Odorantes , Humanos , Oxidorreductasas/metabolismo , Odorantes/análisis , Xenobióticos/metabolismo , Olfato/fisiología , Sistema Respiratorio/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
17.
Environ Sci Pollut Res Int ; 30(19): 55200-55213, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36884173

RESUMEN

Abamectin is a commonly used pesticide in agriculture and fisheries and poses a risk to aquatic species. However, the mechanism of its toxic effects on fish remains to be discovered. In this study, we explored the effects of abamectin exposure at different concentrations on the respiratory system of carp. Carp were divided into three groups, namely the control group, low-dose abamectin treatment group, and high-dose abamectin treatment group. Gill tissue was collected after abamectin exposure for histopathological, biochemical, tunnel, mRNA, and protein expression analysis. Histopathological analysis indicated that abamectin damaged the gill structure. Biochemical analysis showed that abamectin triggered oxidative stress with lowered antioxidant enzyme activities and increased MDA content. Moreover, abamectin led to enhanced INOS levels and pro-inflammatory transcription, activating inflammation. Tunnel results demonstrated that exposure to abamectin induced gill cell apoptosis through an exogenous pathway. In addition, exposure to abamectin activated the PI3K/AKT/mTOR pathway, leading to inhibition of autophagy. Overall, abamectin caused respiratory system toxicity in carp via triggering oxidative stress, inflammation, and apoptosis and inhibiting autophagy. The study suggests that abamectin has a profound toxicity mechanism in the respiratory system of carp, contributing to a better understanding of pesticide risk assessment in aquatic systems.


Asunto(s)
Carpas , Plaguicidas , Animales , Carpas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Apoptosis , Inflamación/inducido químicamente , Sistema Respiratorio/metabolismo , Plaguicidas/farmacología , Autofagia
18.
Biomed Pharmacother ; 159: 114218, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36638596

RESUMEN

Airway remodeling, as a predominant characteristic of asthma, refers to the structural changes that occurred both in the large and small airways. These pathological changes not only contribute to airway hyperresponsiveness and airway obstruction, but also predict poor outcomes of patients. In vitro models are the alternatives to animal models that facilitate airway remodeling research. Current approaches to mimic airway remodeling in vitro include mono cultures of cell lines and primary cells that are derived from the respiratory tract, and co-culture systems that consist of different cell subpopulations. Moreover, recent advances in microfluid chips and organoids show promise in simulating the complex architecture and functionality of native organs. According, they enable highly physiological-relevant investigations of human diseases in vitro. Here we aim to detail the current human cell-based models regarding their key pros and cons, and to discuss how they may be used to facilitate our understanding of airway remodeling in asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Animales , Humanos , Asma/metabolismo , Sistema Respiratorio/metabolismo
19.
JCI Insight ; 8(3)2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36602863

RESUMEN

Cystic fibrosis (CF) is characterized by chronic bacterial infections leading to progressive bronchiectasis and respiratory failure. Pseudomonas aeruginosa (Pa) is the predominant opportunistic pathogen infecting the CF airways. The guanine nucleotide exchange factor Vav3 plays a critical role in Pa adhesion to the CF airways by inducing luminal fibronectin deposition that favors bacteria trapping. Here we report that Vav3 overexpression in CF is caused by upregulation of the mRNA-stabilizing protein HuR. We found that HuR accumulates in the cytoplasm of CF airway epithelial cells and that it binds to and stabilizes Vav3 mRNA. Interestingly, disruption of the HuR-Vav3 mRNA interaction improved the CF epithelial integrity, inhibited the formation of the fibronectin-made bacterial docking platforms, and prevented Pa adhesion to the CF airway epithelium. These findings indicate that targeting HuR represents a promising antiadhesive approach in CF that can prevent initial stages of Pa infection in a context of emergence of multidrug-resistant pathogens.


Asunto(s)
Fibrosis Quística , Proteínas Proto-Oncogénicas c-vav , Pseudomonas aeruginosa , Sistema Respiratorio , Humanos , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Epitelio/metabolismo , Fibronectinas/metabolismo , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología , Sistema Respiratorio/metabolismo
20.
PLoS Pathog ; 19(1): e1011035, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719895

RESUMEN

Streptococcus pneumoniae (the pneumococcus) is the major cause of bacterial pneumonia in the US and worldwide. Studies have shown that the differing chemical make-up between serotypes of its most important virulence factor, the capsule, can dictate disease severity. Here we demonstrate that control of capsule synthesis is also critical for infection and facilitated by two broadly conserved transcription factors, SpxR and CpsR, through a distal cis-regulatory element we name the 37-CE. Strikingly, changing only three nucleotides within this sequence is sufficient to render pneumococcus avirulent. Using in vivo and in vitro approaches, we present a model where SpxR interacts as a unique trimeric quaternary structure with the 37-CE to enable capsule repression in the airways. Considering its dramatic effect on infection, variation of the 37-CE between serotypes suggests this molecular switch could be a critical contributing factor to this pathogen's serotype-specific disease outcomes.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Infecciones Neumocócicas/microbiología , Factores de Virulencia/metabolismo , Sistema Respiratorio/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Serogrupo , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA