Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros












Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 278: 103440, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32353416

RESUMEN

Various putative oxygen chemosensory cells are reported to be present throughout the vertebrate body performing pivotal roles in respiration by initiating responses during acute hypoxia. Since air-breathing fishes often are exposed to the oxygen-deficient milieu, in such conditions various chemosensory cells operate in an orchestrated fashion. The Pseudobranchial neurosecretory system (PSNS) a newly discovered system, is one of these. It has been placed in the category of "Diffuse NE systems (DNES)". It is found in all the catfish species and in some other non-catfish group of teleosts. In catfishes, it is present in close association with the carotid labyrinth- a chemosensory structure, known in fish and amphibians. The presence of this system in Glossogobius giuris, in association with the pseudobranch, a structure considered to be precursor of carotid labyrinth, is a significant finding. In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in a non-catfish species of teleost, the present investigation was undertaken on a goby G. giuris. The histological observations, using a neurosecretion-specific stain, revealed the presence of this system in G. giuris. The findings are discussed in the light of the association of PSNS with pseudobranch and the type of "neurohaemal contact complex" formed between this neurosecretory system and the elements of the circulatory system.


Asunto(s)
Región Branquial/anatomía & histología , Células Quimiorreceptoras/citología , Sistemas Neurosecretores/anatomía & histología , Perciformes , Animales , Región Branquial/fisiología , Células Quimiorreceptoras/fisiología , Peces , Sistemas Neurosecretores/fisiología
2.
Microsc Res Tech ; 83(6): 627-635, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32011058

RESUMEN

Pseudobranchial neurosecretory system (PSNS) is the third Neuroendocrine (NE) system found in the gill region of fishes in close association with pseudobranch/carotid labyrinth/carotid gland and can suitably be placed under the category of "Diffused NE system (DNES)." The cells belonging to this system fall under the category of "Paraneurons," a concept proposed by Fujita and coworkers. It is found uniformly in all the catfish species and some other noncatfish group of teleosts as Atheriniformes, Channiformes, Perciformes, and Clupeiformes. The fishes, in which the PSNS is present, belong to different breathing habits. Most of these have the capacity to tolerate low O2 conditions. Leiodon cutcutia although not an air-breathing fish, is known to retain air in its stomach for varied periods when threatened. In an attempt to verify the veracity of this system in a fish of another peculiar breathing habit, ocellated puffer fish L. cutcutia (order Tetradontiformes) was investigated. The histological observations undertaken on L. cutcutia revealed the presence of a well-developed extrabranchial NE system. The findings are discussed in the light of the association of PSNS with chemosensory system and its evolution in fishes, especially in the view of the transition from aquatic to terrestrial life.


Asunto(s)
Branquias/anatomía & histología , Branquias/fisiología , Sistemas Neurosecretores/anatomía & histología , Consumo de Oxígeno , Tetraodontiformes/anatomía & histología , Animales , Evolución Biológica , Branquias/citología , Sistemas Neurosecretores/fisiología , Tetraodontiformes/fisiología
3.
Cell Tissue Res ; 375(1): 5-22, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30109407

RESUMEN

The paraventricular nucleus (PVN) of the hypothalamus harbors diverse neurosecretory cells with critical physiological roles for the homeostasis. Decades of research in rodents have provided a large amount of information on the anatomy, development, and function of this important hypothalamic nucleus. However, since the hypothalamus lies deep within the brain in mammals and is difficult to access, many questions regarding development and plasticity of this nucleus still remain. In particular, how different environmental conditions, including stress exposure, shape the development of this important nucleus has been difficult to address in animals that develop in utero. To address these open questions, the transparent larval zebrafish with its rapid external development and excellent genetic toolbox offers exciting opportunities. In this review, we summarize recent information on the anatomy and development of the neurosecretory preoptic area (NPO), which represents a similar structure to the mammalian PVN in zebrafish. We will then review recent studies on the development of different cell types in the neurosecretory hypothalamus both in mouse and in fish. Lastly, we discuss stress-induced plasticity of the PVN mainly discussing the data obtained in rodents, but pointing out tools and approaches available in zebrafish for future studies. This review serves as a primer for the currently available information relevant for studying the development and plasticity of this important brain region using zebrafish.


Asunto(s)
Hipotálamo/anatomía & histología , Hipotálamo/crecimiento & desarrollo , Plasticidad Neuronal/fisiología , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/crecimiento & desarrollo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Animales , Área Preóptica/anatomía & histología , Área Preóptica/crecimiento & desarrollo , Estrés Fisiológico
4.
Neuroscientist ; 25(2): 104-112, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29338560

RESUMEN

This article presents the process of relocation of hegemonies and "center-periphery" dynamics in neuroanatomy after World War II through the study of the links between the Spanish anatomical school of José Escolar García and some German institutions. We have analyzed their works on the morphology of the neuroendocrine system as a case study, showing how the first contacts of the Spaniards with the United States started a material transfer process between centers on both sides of the Atlantic Ocean through the mediation-and adaptation-of the periphery. The case also shows how scientific networks in the "new" Europe were reestablished after the Nazi era and how important these systems were for the transfer of knowledge, using them for the circulation of experts, instruments, and even biological samples.


Asunto(s)
Encéfalo/anatomía & histología , Difusión de la Información , Neuroanatomía/historia , Sistemas Neurosecretores/anatomía & histología , Ontologías Biológicas , Alemania , Historia del Siglo XX , Humanos , Neuroanatomía/instrumentación , Filogenia , España , Estados Unidos
5.
Int. j. morphol ; 36(4): 1262-1267, Dec. 2018. graf
Artículo en Inglés | LILACS | ID: biblio-975693

RESUMEN

The anatomy and histology of the nervous system in the mussel Choromytilus chorus were studied. Juvenile specimens of C. chorus and adult broodstock were collected in Laraquete Cove, Chile (37°09'S; 37°11'O). The juveniles were used for histological analysis and the adults for a macroscopic description of anatomical. The histological description was carried out by Gallego´s trichrome technique. The macroscopic analysis showed that nervous system network includes three pairs of ganglia of orange color and little size (20-40 mm) (cerebral, pedal and visceral) located in the anterior, middle and posterior zone of the specimen, respectively. The histological analysis showed many type de cells inside the ganglia (neurosecretory, granulated and glial cells). The ganglia network could be involving in regulating several physiological processes in the mussels through of their neurosecretions.


Se estudió la anatomía e histología del sistema nervioso en el coro Choromytilus del mejillón. Se recolectaron especímenes juveniles de C. coros y reproductores adultos en Laraquete Cove, Chile (37 ° 09'S, 37 ° 11'O). Los especímenes juveniles se utilizaron para el análisis histológico y los adultos para una descripción macroscópica de anatómica. La descripción histológica se realizó mediante la técnica de tricrómico de Gallego. El análisis macroscópico mostró que la red del sistema nervioso incluye tres pares de ganglios de color naranjo y poco tamaño (20-40 mm) (cerebral, pedal y visceral) localizados en la zona anterior, media y posterior de la muestra, respectivamente. El análisis histológico mostró muchos tipos de células dentro de los ganglios (células neurosecretoras, granuladas y gliales). La red de ganglios podría estar involucrada en la regulación de varios procesos fisiológicos en los mejillones a través de sus neurosecreciones.


Asunto(s)
Animales , Bivalvos/anatomía & histología , Sistema Nervioso/anatomía & histología , Sistemas Neurosecretores/anatomía & histología , Chile
6.
Elife ; 62017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29199953

RESUMEN

Neurosecretory centers in animal brains use peptidergic signaling to influence physiology and behavior. Understanding neurosecretory center function requires mapping cell types, synapses, and peptidergic networks. Here we use transmission electron microscopy and gene expression mapping to analyze the synaptic and peptidergic connectome of an entire neurosecretory center. We reconstructed 78 neurosecretory neurons and mapped their synaptic connectivity in the brain of larval Platynereis dumerilii, a marine annelid. These neurons form an anterior neurosecretory center expressing many neuropeptides, including hypothalamic peptide orthologs and their receptors. Analysis of peptide-receptor pairs in spatially mapped single-cell transcriptome data revealed sparsely connected networks linking specific neuronal subsets. We experimentally analyzed one peptide-receptor pair and found that a neuropeptide can couple neurosecretory and synaptic brain signaling. Our study uncovered extensive networks of peptidergic signaling within a neurosecretory center and its connection to the synaptic brain.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Conectoma , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/fisiología , Poliquetos , Animales , Perfilación de la Expresión Génica , Microscopía Electrónica de Transmisión , Neuropéptidos/metabolismo
7.
Curr Opin Gastroenterol ; 31(6): 479-85, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26376477

RESUMEN

PURPOSE OF REVIEW: This review summarizes the past year's literature regarding the neuroendocrine and intracellular regulation of gastric acid secretion, discussing both basic and clinical aspects. RECENT FINDINGS: Gastric acid facilitates the digestion of protein as well as the absorption of iron, calcium, vitamin B12, and certain medications. High acidity kills ingested microorganisms and limits bacterial overgrowth, enteric infection, and possibly spontaneous bacterial peritonitis. The main stimulants of acid secretion are gastrin, released from antral gastrin cells; histamine, released from oxyntic enterochromaffin-like cells; and acetylcholine, released from antral and oxyntic intramural neurons. Ghrelin and coffee also stimulate acid secretion whereas somatostatin, cholecystokinin, glucagon-like peptide-1, and atrial natriuretic peptide inhibit acid secretion. Although 95% of parietal cells are contained within the oxyntic mucosa (fundus and body), 50% of human antral glands contain parietal cells. Proton pump inhibitors are considered well tolerated drugs, but concerns have been raised regarding dysbiosis, atrophic gastritis, hypergastrinemia, hypomagnesemia, and enteritis/colitis. SUMMARY: Our understanding of the functional anatomy and physiology of gastric secretion continues to advance. Such knowledge is crucial for improved management of acid-peptic disorders, prevention and management of neoplasia, and the development of novel medications.


Asunto(s)
Ácido Gástrico/metabolismo , Gastrinas/fisiología , ATPasa Intercambiadora de Hidrógeno-Potásio/fisiología , Histamina/fisiología , Humanos , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/patología , Sistemas Neurosecretores/fisiología , Inhibidores de la Bomba de Protones/efectos adversos , Transducción de Señal/fisiología
8.
Integr Comp Biol ; 55(2): 264-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25896107

RESUMEN

The definition of a hormone has been in part delineated by its journey to distant receptor targets. Following activation of a receptor, a subsequent reaction facilitates the regulation of physiology and, ultimately, behavior. However, a growing number of studies report that hormones can influence these events at a previously underappreciated high speed. With the potential to act as neurotransmitters, the definition of a hormone and its mechanisms of action are evolving. In this symposium, we united scientists who use contemporary molecular, electrophysiological, and biochemical approaches to study aspects of rapid hormone action in a broad array of systems across different levels of biological organization. What emerged was an overwhelming consensus that the use of integrative and comparative approaches fuels discovery and increases our understanding of de novo hormone synthesis, local actions of neurohormones, and subsequent effects on neuroplasticity and behavior.


Asunto(s)
Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/fisiología , Neurotransmisores/metabolismo , Vertebrados/fisiología , Animales
9.
J Comp Neurol ; 522(7): 1542-64, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24127437

RESUMEN

The paraventricular nucleus (PVN) in mammals is the main hypothalamic nucleus controlling hormone release in the pituitary and plays pivotal roles in homeostasis. While the location of a PVN-homologous region has been described in adult fish as the neurosecretory preoptic area (NPO), this region has not been clearly defined in larval zebrafish due to the difficulty in defining cytoarchitectonic nuclear boundaries in the larval brain. Here we identify the precise location of the larval zebrafish NPO using conserved transcription factor and neuropeptide gene expressions. Our results identify the dorsal half of the preoptic-hypothalamic orthopedia a (otpa) domain as the larval NPO and the homologous region to the mammalian PVN. Further, by reconstructing the locations of cells producing zebrafish neuropeptides found in the mammalian PVN (CCK, CRH, ENK, NTS, SS, VIP, OXT, AVP), we provide the first 3D arrangement map of NPO neuropeptides in the larval zebrafish brain. Our results show striking conservation of transcription factor expression (otp, arx, dlx5a, isl1) in and around the NPO/PVN together with neuropeptide expression within it. Finally, we describe the exact anatomical location of cells producing Oxt and Avp in the adult zebrafish. Thus, our results identify the definitive borders and extent of the PVN homologous region in larval zebrafish and serve as an important basis for cross-species comparisons of PVN/NPO structure and function.


Asunto(s)
Larva/anatomía & histología , Larva/metabolismo , Sistemas Neurosecretores/metabolismo , Área Preóptica/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Imagenología Tridimensional , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/crecimiento & desarrollo , Área Preóptica/anatomía & histología , Área Preóptica/crecimiento & desarrollo , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
10.
Neuro Endocrinol Lett ; 34(3): 177-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23685415

RESUMEN

The family Myxinidae embraces all hagfish species, and occupies an evolutionary niche intermediate between ancestral vertebrates and the gnathostomes (jawed vertebrates). Gonadotropin releasing hormone (GnRH) modulates neuroendocrine activity in vertebrates and works in the context of the hypothalamic-pituitary (H-P) axis. The appearance of this neuroendocrine axis marks one of the most crucial developmental achievements in vertebrate evolution, because it enabled further diversification in general growth, metabolism, osmoregulation and reproduction as jawed vertebrates evolved. GnRH studies in hagfish draw attention because such work may be considered as providing proxy data for similar investigations conducted upon long extinct species. Indeed, the fossil record reveals little anatomical difference between those hagfish living 300 million years ago and their modern descendants. Accordingly, the hagfish can offer important evolutionary lessons as they have some highly unusual characteristics not seen in any other vertebrate; they retain many representative features of an ancestral state from which all vertebrates originated. Indeed, because central control of reproduction is perhaps the most basic function of the vertebrate H-P axis, and given the importance of GnRH in this network, research on GnRH in hagfish can help elucidate the early evolution of the H-P system itself. Like all vertebrates, hagfish have a functional hypothalamic area and a pituitary gland, constituting a basic H-P axis. But what role does GnRH play in the reproductive system of this "living fossil"? How can understanding GnRH in hagfish help advance the knowledge of vertebrate neuroendocrinology? Here, information on neuroendocrine function and the role of GnRH specifically in this very basal vertebrate is reviewed.


Asunto(s)
Evolución Biológica , Hormona Liberadora de Gonadotropina/fisiología , Anguila Babosa/anatomía & histología , Anguila Babosa/fisiología , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/fisiología , Animales , Neuroanatomía , Reproducción/fisiología
11.
Proc Biol Sci ; 280(1758): 20123075, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23466985

RESUMEN

Amphibian tadpoles display extensive anti-predator phenotypic plasticity, reducing locomotory activity and, with chronic predator exposure, developing relatively smaller trunks and larger tails. In many vertebrates, predator exposure alters activity of the neuroendocrine stress axis. We investigated predator-induced effects on stress hormone production and the mechanistic link to anti-predator defences in Rana sylvatica tadpoles. Whole-body corticosterone (CORT) content was positively correlated with predator biomass in natural ponds. Exposure to caged predators in mesocosms caused a reduction in CORT by 4 hours, but increased CORT after 4 days. Tadpoles chronically exposed to exogenous CORT developed larger tails relative to their trunks, matching morphological changes induced by predator chemical cue; this predator effect was blocked by the corticosteroid biosynthesis inhibitor metyrapone. Tadpole tail explants treated in vitro with CORT increased tissue weight, suggesting that CORT acts directly on the tail. Short-term treatment of tadpoles with CORT increased predation mortality, likely due to increased locomotory activity. However, long-term CORT treatment enhanced survivorship, likely due to induced morphology. Our findings support the hypothesis that tadpole physiological and behavioural/morphological responses to predation are causally interrelated. Tadpoles initially suppress CORT and behaviour to avoid capture, but increase CORT with longer exposure, inducing adaptive phenotypic changes.


Asunto(s)
Antimetabolitos/metabolismo , Corticosterona/metabolismo , Cadena Alimentaria , Metirapona/metabolismo , Sistemas Neurosecretores/fisiología , Ranidae/fisiología , Animales , Señales (Psicología) , Aptitud Genética , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Larva/fisiología , Longevidad , Michigan , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/crecimiento & desarrollo , Ranidae/anatomía & histología , Ranidae/crecimiento & desarrollo , Factores de Tiempo
12.
J Comp Neurol ; 520(1): 6-33, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21674499

RESUMEN

The paraventricular nucleus of the hypothalamus (PVH) plays a critical role in the regulation of autonomic, neuroendocrine, and behavioral activities. This understanding has come from extensive characterization of the PVH in rats, and for this mammalian species we now have a robust model of basic PVH neuroanatomy and function. However, in mice, whose use as a model research animal has burgeoned with the increasing sophistication of tools for genetic manipulation, a comparable level of PVH characterization has not been achieved. To address this, we employed a variety of fluorescent tract tracing and immunostaining techniques in several different combinations to determine the neuronal connections and cyto- and chemoarchitecture of the PVH in the commonly used C57BL/6J male mouse. Our findings reveal a distinct organization in the mouse PVH that is substantially different from the PVH of male rats. The differences are particularly evident with respect to the spatial relations of two principal neuroendocrine divisions (magnocellular and parvicellular) and three descending preautonomic populations in the PVH. We discuss these data in relation to what is known about PVH function and provide the work as a resource for further studies of the neuronal architecture and function of the mouse PVH.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/anatomía & histología , Sistemas Neurosecretores/anatomía & histología , Núcleo Hipotalámico Paraventricular/anatomía & histología , Animales , Inmunohistoquímica/métodos , Masculino , Ratones , Vías Nerviosas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Sistemas Neurosecretores/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Coloración y Etiquetado/métodos
13.
Braz. j. morphol. sci ; 28(3): 157-160, July-Sept. 2011. ilus
Artículo en Inglés | LILACS | ID: lil-644138

RESUMEN

The pineal gland or pineal body is an endocrine gland that constitutes an important part of the neuroendocrine system, due to the secretion of melatonin, a hormone responsible for the seasonal organization of several physiologic and behavioral events of an individual’s life. Experimental researches using animals such as rats, mice and rabbits are often found in the extensive specific literature but aspects related to the morphology of mice’s pineal gland are few. Concerning its small size, the present paper performed a microscopic analysis of serial median sagittal sections of the pineal gland of 13 (thirteen) Swiss mice. The pineal gland of Swissmice was found to be in the median plane below the splenium of the corpus callosus, superior and dorsal to the habenular commissure, and rostral to the rostral colliculi. The pineal gland is closely related to the third ventricle and presents itself with a characteristic tonsillar shape with a stalk. Two types of different cells were identified in the gland, that is, astrocytes and pinealocytes, spreading randomly all over the glandular tissue. Calcifications of the pineal gland were not found in any of the observed animals.


Asunto(s)
Animales , Masculino , Ratones , Glándulas Endocrinas , Glándula Pineal/anatomía & histología , Glándula Pineal/fisiología , Glándulas Endocrinas/fisiología , Sistemas Neurosecretores/anatomía & histología , Microscopía
15.
Eur J Neurosci ; 32(12): 2011-21, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21143656

RESUMEN

The essential role of parvocellular neuroendocrine cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) is to translate real or perceived challenges into a comprehensive glucocorticoid (GC) hormone response. Synaptic inputs encoding physical and psychological stress engage the hypothalamic-pituitary-adrenal axis (HPA) by increasing PNC activity, and corticotropin-releasing hormone production and release. Following robust recruitment in response to stress, GCs feedback to dampen PNC responses. Here we review the contributions of glutamate and GABA synapses in PVN to the initiation and termination of the stress response. The reliability of HPA responses to a given stress can vary as a function of prior experience. Within this context, we examine possible synaptic correlates that allow this neuroendocrine system to learn and adapt following stress challenges.


Asunto(s)
Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/fisiología , Estrés Fisiológico/fisiología , Estrés Psicológico/fisiopatología , Sinapsis/fisiología , Animales , Cloruros/metabolismo , Glucocorticoides/metabolismo , Ácido Glutámico/metabolismo , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Sistema Hipófiso-Suprarrenal/fisiología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
17.
Prog Brain Res ; 181: 55-77, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20478433

RESUMEN

Reproductive maturation and function are maintained by a complex neurohormonal network that integrates at the so-called hypothalamic-pituitary-gonadal (HPG) axis. This system is hierarchically controlled by the decapeptide, GnRH, which in turn is under the dynamic regulation of multiple stimulatory and inhibitory pathways, including peripheral signals (prominently, sex steroids) and different central modulators. Among the latter, considerable interest has been raised recently by the identification of the major roles and mechanisms of action of kisspeptins, a family of neuropeptides encoded by the Kiss1 gene, which acting via the G protein-coupled receptor, GPR54, have been shown to play essential functions as potent activators and major gatekeepers of the HPG axis. Indeed, kisspeptin neurons, whose mere existence and neuroendocrine dimension had escaped from general attention up to five years ago, have been now universally recognized as key players in the control of critical aspects of reproductive development and function, from sexual differentiation to regulation of GnRH/gonadotropin secretion and the metabolic gating of fertility. In this chapter, we will provide a concise summary of the state of the art in this rapidly evolving area of neuroendocrinology, with special emphasis on recent developments and contentious issues that are likely to attract considerable attention in the coming years.


Asunto(s)
Sistemas Neurosecretores/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Reproducción/fisiología , Proteínas Supresoras de Tumor/metabolismo , Animales , Ambiente , Gonadotropinas/metabolismo , Humanos , Kisspeptinas , Neuronas/metabolismo , Neuropéptidos/metabolismo , Sistemas Neurosecretores/anatomía & histología , Pubertad/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Diferenciación Sexual/fisiología , Proteínas Supresoras de Tumor/genética
18.
Respir Physiol Neurobiol ; 171(2): 135-43, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20206306

RESUMEN

The pseudobranchial neurosecretory system (PNS) is a system of neurosecretion observed in certain groups of teleosts, which are air-breathing or known to tolerate low oxygen tension in the surrounding water. Like other neuroendocrine cells of gill, cells belonging to this system have also been observed to have a role in condition of hypoxia. Uniformly found in all catfish species, the system was reported to be present in few non-catfish groups also, viz.-Atheriniformes, Channiformes (Devi, 1987), Perciformes, and Clupeiformes (Srivastava et al., 1981; Gopesh, 1983). In an attempt to study the structure and organization of the pseudobranchial neurosecretory system in non-catfish species of teleost, present investigation was undertaken in two species of Notopterus, viz. Notopterus chitala and Notopterus notopterus. The histological observations, using neurosecretion specific stains, undertaken on two clupeids are reported and the findings are discussed in the light of association of PNS with Carotid gland-a structure of intermediate stage in the process of transformation of pseudobranch into the carotid labyrinth, in course of evolution and also the air-breathing habit of the fish.


Asunto(s)
Peces/anatomía & histología , Branquias/anatomía & histología , Neuronas/metabolismo , Sistemas Neurosecretores/anatomía & histología , Animales , Especificidad de la Especie
20.
J Neurosci Methods ; 187(1): 41-5, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20036282

RESUMEN

New imaging technologies have increased our capabilities to resolve three-dimensional structures from microscopic samples. Laser-scanning confocal microscopy is particularly amenable to this task because it allows the researcher to optically section biological samples, creating three-dimensional image volumes. However, a number of problems arise when studying neural tissue samples. These include data set size, physical scanning restrictions, volume registration and display. To deal with these issues, we undertook large-scale confocal scanning microscopy in order to visualize neural networks spanning multiple tissue sections. We demonstrate a technique to create and visualize a three-dimensional digital reconstruction of the hypothalamic arginine vasopressin neuroendocrine system in the male mouse. The generated three-dimensional data included a volume of tissue that measures 4.35 mm x 2.6 mm x 1.4mm with a voxel resolution of 1.2 microm. The dataset matrix included 3508 x 2072 x 700 pixels and was a composite of 19,600 optical sections. Once reconstructed into a single volume, the data is suitable for interactive stereoscopic projection. Stereoscopic imaging provides greater insight and understanding of spatial relationships in neural tissues' inherently three-dimensional structure. This technique provides a model approach for the development of data sets that can provide new and informative volume rendered views of brain structures. This study affirms the value of stereoscopic volume-based visualization in neuroscience research and education, and the feasibility of creating large-scale high resolution interactive three-dimensional reconstructions of neural tissue from microscopic imagery.


Asunto(s)
Arginina Vasopresina/metabolismo , Hipotálamo/anatomía & histología , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Neuronas/citología , Animales , Fluorescencia , Hipotálamo/citología , Hipotálamo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Inmunohistoquímica/métodos , Masculino , Ratones , Ratones Endogámicos , Vías Nerviosas/anatomía & histología , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Sistemas Neurosecretores/anatomía & histología , Sistemas Neurosecretores/citología , Sistemas Neurosecretores/metabolismo , Núcleo Supraquiasmático/anatomía & histología , Núcleo Supraquiasmático/citología , Núcleo Supraquiasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...