Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.609
Filtrar
1.
Nat Commun ; 15(1): 3920, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724508

RESUMEN

Monitoring changes of signaling molecules and metabolites with high temporal resolution is key to understanding dynamic biological systems. Here, we use directed evolution to develop a genetically encoded ratiometric biosensor for c-di-GMP, a ubiquitous bacterial second messenger regulating important biological processes like motility, surface attachment, virulence and persistence. The resulting biosensor, cdGreen2, faithfully tracks c-di-GMP in single cells and with high temporal resolution over extended imaging times, making it possible to resolve regulatory networks driving bimodal developmental programs in different bacterial model organisms. We further adopt cdGreen2 as a simple tool for in vitro studies, facilitating high-throughput screens for compounds interfering with c-di-GMP signaling and biofilm formation. The sensitivity and versatility of cdGreen2 could help reveal c-di-GMP dynamics in a broad range of microorganisms with high temporal resolution. Its design principles could also serve as a blueprint for the development of similar, orthogonal biosensors for other signaling molecules, metabolites and antibiotics.


Asunto(s)
Biopelículas , Técnicas Biosensibles , GMP Cíclico , Técnicas Biosensibles/métodos , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Biopelículas/crecimiento & desarrollo , Transducción de Señal , Escherichia coli/metabolismo , Escherichia coli/genética , Sistemas de Mensajero Secundario
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38612686

RESUMEN

Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.


Asunto(s)
Streptomyces , Toyocamicina , Sistemas de Mensajero Secundario , Ingeniería Genética , Streptomyces/genética
3.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38647527

RESUMEN

Pseudomonas aeruginosa is a cause of chronic respiratory tract infections in people with cystic fibrosis (CF), non-CF bronchiectasis, and chronic obstructive pulmonary disease. Prolonged infection allows the accumulation of mutations and horizontal gene transfer, increasing the likelihood of adaptive phenotypic traits. Adaptation is proposed to arise first in bacterial populations colonizing upper airway environments. Here, we model this process using an experimental evolution approach. Pseudomonas aeruginosa PAO1, which is not airway adapted, was serially passaged, separately, in media chemically reflective of upper or lower airway environments. To explore whether the CF environment selects for unique traits, we separately passaged PAO1 in airway-mimicking media with or without CF-specific factors. Our findings demonstrated that all airway environments-sinus and lungs, under CF and non-CF conditions-selected for loss of twitching motility, increased resistance to multiple antibiotic classes, and a hyper-biofilm phenotype. These traits conferred increased airway colonization potential in an in vivo model. CF-like conditions exerted stronger selective pressures, leading to emergence of more pronounced phenotypes. Loss of twitching was associated with mutations in type IV pili genes. Type IV pili mediate surface attachment, twitching, and induction of cAMP signalling. We additionally identified multiple evolutionary routes to increased biofilm formation involving regulation of cyclic-di-GMP signalling. These included the loss of function mutations in bifA and dipA phosphodiesterase genes and activating mutations in the siaA phosphatase. These data highlight that airway environments select for traits associated with sessile lifestyles and suggest upper airway niches support emergence of phenotypes that promote establishment of lung infection.


Asunto(s)
Adaptación Fisiológica , Biopelículas , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/microbiología , Biopelículas/crecimiento & desarrollo , Animales , Pulmón/microbiología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Sistemas de Mensajero Secundario , Fibrosis Quística/microbiología , Ratones , Humanos , Antibacterianos/farmacología , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Mutación , Fenotipo
4.
Biomolecules ; 14(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540769

RESUMEN

Cyclic dinucleotides (CDNs) are cyclic molecules consisting of two nucleoside monophosphates linked by two phosphodiester bonds, which act as a second messenger and bind to the interferon gene stimulating factor (STING) to activate the downstream signaling pathway and ultimately induce interferon secretion, initiating an anti-infective immune response. Cyclic dinucleotides and their analogs are lead compounds in the immunotherapy of infectious diseases and tumors, as well as immune adjuvants with promising applications. Many agonists of pathogen recognition receptors have been developed as effective adjuvants to optimize vaccine immunogenicity and efficacy. In this work, the binding mechanism of human-derived interferon gene-stimulating protein and its isoforms with cyclic dinucleotides and their analogs was theoretically investigated using computer simulations and combined with experimental results in the hope of providing guidance for the subsequent synthesis of cyclic dinucleotide analogs.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , Humanos , Proteínas de la Membrana/metabolismo , Sistemas de Mensajero Secundario , Interferones , Transducción de Señal , Adyuvantes Inmunológicos
5.
Nucleic Acids Res ; 52(6): 2761-2775, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471818

RESUMEN

CRISPR-Cas provides adaptive immunity in prokaryotes. Type III CRISPR systems detect invading RNA and activate the catalytic Cas10 subunit, which generates a range of nucleotide second messengers to signal infection. These molecules bind and activate a diverse range of effector proteins that provide immunity by degrading viral components and/or by disturbing key aspects of cellular metabolism to slow down viral replication. Here, we focus on the uncharacterised effector Csx23, which is widespread in Vibrio cholerae. Csx23 provides immunity against plasmids and phage when expressed in Escherichia coli along with its cognate type III CRISPR system. The Csx23 protein localises in the membrane using an N-terminal transmembrane α-helical domain and has a cytoplasmic C-terminal domain that binds cyclic tetra-adenylate (cA4), activating its defence function. Structural studies reveal a tetrameric structure with a novel fold that binds cA4 specifically. Using pulse EPR, we demonstrate that cA4 binding to the cytoplasmic domain of Csx23 results in a major perturbation of the transmembrane domain, consistent with the opening of a pore and/or disruption of membrane integrity. This work reveals a new class of cyclic nucleotide binding protein and provides key mechanistic detail on a membrane-associated CRISPR effector.


Many anti-viral defence systems generate a cyclic nucleotide signal that activates cellular defences in response to infection. Type III CRISPR systems use a specialised polymerase to make cyclic oligoadenylate (cOA) molecules from ATP. These can bind and activate a range of effector proteins that slow down viral replication. In this study, we focussed on the Csx23 effector from the human pathogen Vibrio cholerae ­ a trans-membrane protein that binds a cOA molecule, leading to anti-viral immunity. Structural studies revealed a new class of nucleotide recognition domain, where cOA binding is transmitted to changes in the trans-membrane domain, most likely resulting in membrane depolarisation. This study highlights the diversity of mechanisms for anti-viral defence via nucleotide signalling.


Asunto(s)
Proteínas Bacterianas , Proteínas Asociadas a CRISPR , Vibrio cholerae , Nucleótidos de Adenina/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos , Sistemas de Mensajero Secundario , Proteínas Bacterianas/metabolismo , Vibrio cholerae/metabolismo
6.
J Biol Chem ; 300(3): 105741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340793

RESUMEN

Type VI secretion systems (T6SS) are bacterial macromolecular complexes that secrete effectors into target cells or the extracellular environment, leading to the demise of adjacent cells and providing a survival advantage. Although studies have shown that the T6SS in Pseudomonas aeruginosa is regulated by the Quorum Sensing system and second messenger c-di-GMP, the underlying molecular mechanism remains largely unknown. In this study, we discovered that the c-di-GMP-binding adaptor protein PA0012 has a repressive effect on the expression of the T6SS HSI-I genes in P. aeruginosa PAO1. To probe the mechanism by which PA0012 (renamed TssZ, Type Six Secretion System -associated PilZ protein) regulates the expression of HSI-I genes, we conducted yeast two-hybrid screening and identified HinK, a LasR-type transcriptional regulator, as the binding partner of TssZ. The protein-protein interaction between HinK and TssZ was confirmed through co-immunoprecipitation assays. Further analysis suggested that the HinK-TssZ interaction was weakened at high c-di-GMP concentrations, contrary to the current paradigm wherein c-di-GMP enhances the interaction between PilZ proteins and their partners. Electrophoretic mobility shift assays revealed that the non-c-di-GMP-binding mutant TssZR5A/R9A interacts directly with HinK and prevents it from binding to the promoter of the quorum-sensing regulator pqsR. The functional connection between TssZ and HinK is further supported by observations that TssZ and HinK impact the swarming motility, pyocyanin production, and T6SS-mediated bacterial killing activity of P. aeruginosa in a PqsR-dependent manner. Together, these results unveil a novel regulatory mechanism wherein TssZ functions as an inhibitor that interacts with HinK to control gene expression.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Transcripción Genética , Sistemas de Secreción Tipo VI , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Inmunoprecipitación , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Percepción de Quorum , Sistemas de Mensajero Secundario , Técnicas del Sistema de Dos Híbridos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo
7.
Biochem Soc Trans ; 52(1): 191-203, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38334148

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger known to orchestrate a myriad of cellular functions over a wide range of timescales. In the last 20 years, a variety of single-cell sensors have been developed to measure second messenger signals including cAMP, Ca2+, and the balance of kinase and phosphatase activities. These sensors utilize changes in fluorescence emission of an individual fluorophore or Förster resonance energy transfer (FRET) to detect changes in second messenger concentration. cAMP and kinase activity reporter probes have provided powerful tools for the study of localized signals. Studies relying on these and related probes have the potential to further revolutionize our understanding of G protein-coupled receptor signaling systems. Unfortunately, investigators have not been able to take full advantage of the potential of these probes due to the limited signal-to-noise ratio of the probes and the limited ability of standard epifluorescence and confocal microscope systems to simultaneously measure the distributions of multiple signals (e.g. cAMP, Ca2+, and changes in kinase activities) in real time. In this review, we focus on recently implemented strategies to overcome these limitations: hyperspectral imaging and adaptive thresholding approaches to track dynamic regions of interest (ROI). This combination of approaches increases signal-to-noise ratio and contrast, and allows identification of localized signals throughout cells. These in turn lead to the identification and quantification of intracellular signals with higher effective resolution. Hyperspectral imaging and dynamic ROI tracking approaches offer investigators additional tools with which to visualize and quantify multiplexed intracellular signaling systems.


Asunto(s)
Calcio , Imágenes Hiperespectrales , AMP Cíclico , Sistemas de Mensajero Secundario , Transducción de Señal , Transferencia Resonante de Energía de Fluorescencia/métodos
8.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321146

RESUMEN

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Asunto(s)
Proteínas Bacterianas , Nucleótidos Cíclicos , Pseudomonas syringae , Nucleótidos Cíclicos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Modelos Moleculares , Cristalografía por Rayos X , Sistemas de Mensajero Secundario , Multimerización de Proteína , Endonucleasas/metabolismo , Endonucleasas/química , Transducción de Señal , Humanos
9.
Elife ; 122024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407149

RESUMEN

Rapid conversion of force into a biological signal enables living cells to respond to mechanical forces in their environment. The force is believed to initially affect the plasma membrane and then alter the behavior of membrane proteins. Phospholipase D2 (PLD2) is a mechanosensitive enzyme that is regulated by a structured membrane-lipid site comprised of cholesterol and saturated ganglioside (GM1). Here we show stretch activation of TWIK-related K+ channel (TREK-1) is mechanically evoked by PLD2 and spatial patterning involving ordered GM1 and 4,5-bisphosphate (PIP2) clusters in mammalian cells. First, mechanical force deforms the ordered lipids, which disrupts the interaction of PLD2 with the GM1 lipids and allows a complex of TREK-1 and PLD2 to associate with PIP2 clusters. The association with PIP2 activates the enzyme, which produces the second messenger phosphatidic acid (PA) that gates the channel. Co-expression of catalytically inactive PLD2 inhibits TREK-1 stretch currents in a biological membrane. Cellular uptake of cholesterol inhibits TREK-1 currents in culture and depletion of cholesterol from astrocytes releases TREK-1 from GM1 lipids in mouse brain. Depletion of the PLD2 ortholog in flies results in hypersensitivity to mechanical force. We conclude PLD2 mechanosensitivity combines with TREK-1 ion permeability to elicit a mechanically evoked response.


"Ouch!": you have just stabbed your little toe on the sharp corner of a coffee table. That painful sensation stems from nerve cells converting information about external forces into electric signals the brain can interpret. Increasingly, new evidence is suggesting that this process may be starting at fat-based structures within the membrane of these cells. The cell membrane is formed of two interconnected, flexible sheets of lipids in which embedded structures or molecules are free to move. This organisation allows the membrane to physically respond to external forces and, in turn, to set in motion chains of molecular events that help fine-tune how cells relay such information to the brain. For instance, an enzyme known as PLD2 is bound to lipid rafts ­ precisely arranged, rigid fatty 'clumps' in the membrane that are partly formed of cholesterol. PLD2 has also been shown to physically interact with and then activate the ion channel TREK-1, a membrane-based protein that helps to prevent nerve cells from relaying pain signals. However, the exact mechanism underpinning these interactions is difficult to study due to the nature and size of the molecules involved. To address this question, Petersen et al. combined a technology called super-resolution imaging with a new approach that allowed them to observe how membrane lipids respond to pressure and fluid shear. The experiments showed that mechanical forces disrupt the careful arrangement of lipid rafts, causing PLD2 and TREK-1 to be released. They can then move through the surrounding membrane where they reach a switch that turns on TREK-1. Further work revealed that the levels of cholesterol available to mouse cells directly influenced how the clumps could form and bind to PLD2, and in turn, dialled up and down the protective signal mediated by TREK-1. Overall, the study by Petersen et al. shows that the membrane of nerve cells can contain cholesterol-based 'fat sensors' that help to detect external forces and participate in pain regulation. By dissecting these processes, it may be possible to better understand and treat conditions such as diabetes and lupus, which are associated with both pain sensitivity and elevated levels of cholesterol in tissues.


Asunto(s)
Gangliósido G(M1) , Transducción de Señal , Animales , Ratones , Sistemas de Mensajero Secundario , Membrana Celular , Colesterol , Mamíferos
10.
Bioresour Technol ; 398: 130479, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395232

RESUMEN

Efficient quorum sensing (QS) response is the premise for recovering the activities of stored aerobic granular sludge (AGS). This study aims to explore the crosstalk between the secondary messenger and the N-acylated-homoserine lactones (AHLs) to yield protein-rich granules efficiently from stored AGS by enhancing its QS efficiency selectively. 80 nmol/L cyclic diguanylate (c-di-GMP) with 20 nmol/L AHLs could increase the activity of isocitrate lyase activity (ICD) by 89 % and isocitrate dehydrogenase activity (ICDHc) by 113.5 %, to accelerate the tricarboxylic acid (TCA) cycle for yielding excess proteins by 166.4 %. In contrast, 80 nmol/L autoinducer-2 (AI-2) with 20 nmol/L AHLs could increase the activities of ICD and ICDHc by 485 % and 54.5 %, respectively, accelerating the glyoxylate (GCA) cycle to activate fat acid synthesis for stimulating polysaccharides (PS) secretion by 137.9 %. The strategy with c-di-GMP successfully recovers the refrigerated-stored and dried-stored AGS into proteins-rich AGS, with enriched functional strains for the PN secretion.


Asunto(s)
Acil-Butirolactonas , Homoserina/análogos & derivados , Aguas del Alcantarillado , Acil-Butirolactonas/metabolismo , Percepción de Quorum , Lactonas , Sistemas de Mensajero Secundario
11.
Acta Pharmacol Sin ; 45(5): 890-899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38177693

RESUMEN

Cytosolic double-stranded DNA (dsDNA) is frequently accumulated in cancer cells due to chromosomal instability or exogenous stimulation. Cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, which is activated upon binding to dsDNA to synthesize the crucial second messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP) that in turn triggers stimulator of interferon genes (STING) signaling. The canonical role of cGAS-cGAMP-STING pathway is essential for innate immunity and viral defense. Recent emerging evidence indicates that 2'3'-cGAMP plays an important role in cancer progression via cell autonomous and non-autonomous mechanisms. Beyond its role as an intracellular messenger to activate STING signaling in tumor cells, 2'3'-cGAMP also serves as an immunotransmitter produced by cancer cells to modulate the functions of non-tumor cells especially immune cells in the tumor microenvironment by activating STING signaling. In this review, we summarize the synthesis, transmission, and degradation of 2'3'-cGAMP as well as the dual functions of 2'3'-cGAMP in a STING-dependent manner. Additionally, we discuss the potential therapeutic strategies that harness the cGAMP-mediated antitumor response for cancer therapy.


Asunto(s)
Neoplasias , Nucleótidos Cíclicos , Humanos , Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Nucleótidos Cíclicos/metabolismo , Animales , Sistemas de Mensajero Secundario , Proteínas de la Membrana/metabolismo , Transducción de Señal , Progresión de la Enfermedad , Microambiente Tumoral/inmunología , Nucleotidiltransferasas/metabolismo
12.
Methods Mol Biol ; 2766: 177-182, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38270878

RESUMEN

The Ca2+ ion is an important second messenger in lymphocytes, similarly to its function in other mammalian cells. The generation of long-lasting intracellular Ca2+ elevations is essential for Ca2+-dependent gene transcription, proliferation, differentiation, and cytokine production in lymphocytes. Since store-operated Ca2+ entry (SOCE) is considered the predominant mode of Ca2+ influx in lymphocytes, the activation and function of lymphocytes can be generally predicted by monitoring SOCE. A method suitable for dynamic monitoring of Ca2+ influx using fura-2 labeling in lymphocytes is introduced in this chapter. Using this technique, large-scale screening of the activation status of primary or cultured lymphocytes can be realized.


Asunto(s)
Linfocitos , Sistemas de Mensajero Secundario , Animales , Diferenciación Celular , Fura-2 , Mamíferos
13.
Nature ; 625(7996): 797-804, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38200316

RESUMEN

Prokaryotic type III CRISPR-Cas systems provide immunity against viruses and plasmids using CRISPR-associated Rossman fold (CARF) protein effectors1-5. Recognition of transcripts of these invaders with sequences that are complementary to CRISPR RNA guides leads to the production of cyclic oligoadenylate second messengers, which bind CARF domains and trigger the activity of an effector domain6,7. Whereas most effectors degrade host and invader nucleic acids, some are predicted to contain transmembrane helices without an enzymatic function. Whether and how these CARF-transmembrane helix fusion proteins facilitate the type III CRISPR-Cas immune response remains unknown. Here we investigate the role of cyclic oligoadenylate-activated membrane protein 1 (Cam1) during type III CRISPR immunity. Structural and biochemical analyses reveal that the CARF domains of a Cam1 dimer bind cyclic tetra-adenylate second messengers. In vivo, Cam1 localizes to the membrane, is predicted to form a tetrameric transmembrane pore, and provides defence against viral infection through the induction of membrane depolarization and growth arrest. These results reveal that CRISPR immunity does not always operate through the degradation of nucleic acids, but is instead mediated via a wider range of cellular responses.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Potenciales de la Membrana , Staphylococcus aureus , Bacteriófagos/inmunología , Bacteriófagos/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Nucleótidos Cíclicos/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Sistemas de Mensajero Secundario , Staphylococcus aureus/citología , Staphylococcus aureus/genética , Staphylococcus aureus/inmunología , Staphylococcus aureus/virología
14.
BMC Microbiol ; 24(1): 25, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238663

RESUMEN

BACKGROUND: Oligoribonuclease (orn) of P. aeruginosa is a highly conserved exonuclease, which can regulate the global gene expression levels of bacteria through regulation of both the nanoRNA and c-di-GMP. NanoRNA can regulate the expression of the bacterial global genome as a transcription initiator, and c-di-GMP is the most widely second messenger in bacterial cells. OBJECTIVE: This study seeks to elucidate on the regulation by orn on pathogenicity of P. aeruginosa. METHODS: P. aeruginosa with orn deletion was constructed by suicide plasmid homologous recombination method. The possible regulatory process of orn was analyzed by TMT quantitative labeling proteomics. Then experiments were conducted to verify the changes of Δorn on bacterial motility, virulence and biofilm formation. Bacterial pathogenicity was further detected in cell and animal skin trauma models. ELISA detection c-di-GMP concentration and colony aggregation and biofilm formation were observed by scanning electron microscope. RESULTS: orn deletion changed the global metabolism of P. aeruginosa and reduced intracellular energy metabolism. It leads to the disorder of the quorum sensing system, the reduction of bacterial motility and virulence factors pyocyanin and rhamnolipids. But, orn deletion enhanced pathogenicity in vitro and in vivo, a high level of c-di-GMP and biofilm development of P. aeruginosa. CONCLUSION: orn regulates the ability of P. aeruginosa to adapt to the external environment.


Asunto(s)
Proteínas Bacterianas , Exorribonucleasas , Pseudomonas aeruginosa , Humanos , Animales , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Biopelículas , Regulación Bacteriana de la Expresión Génica
15.
J Leukoc Biol ; 115(3): 511-524, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-37952106

RESUMEN

Tissue infiltration by circulating leukocytes via directed migration (also referred to as chemotaxis) is a common pathogenic mechanism of inflammatory diseases. G protein-coupled receptors (GPCRs) are essential for sensing chemokine gradients and directing the movement of leukocytes during immune responses. The tumor necrosis factor α-induced protein 8-like (TIPE or TNFAIP8L) family of proteins are newly described pilot proteins that control directed migration of murine leukocytes. However, how leukocytes integrate site-specific directional cues, such as chemokine gradients, and utilize GPCR and TIPE proteins to make directional decisions are not well understood. Using both gene knockdown and biochemical methods, we demonstrated here that 2 human TIPE family members, TNFAIP8 and TIPE2, were essential for directed migration of human CD4+ T cells. T cells deficient in both of these proteins completely lost their directionality. TNFAIP8 interacted with the Gαi subunit of heterotrimeric (α, ß, γ) G proteins, whereas TIPE2 bound to PIP2 and PIP3 to spatiotemporally control immune cell migration. Using deletion and site-directed mutagenesis, we established that Gαi interacted with TNFAIP8 through its C-terminal amino acids, and that TIPE2 protein interacted with PIP2 and PIP3 through its positively charged amino acids on the α0 helix and at the grip-like entrance. We also discovered that TIPE protein membrane translocation (i.e. crucial for sensing chemokine gradients) was dependent on PIP2. Collectively, our work describes a new mechanistic paradigm for how human T cells integrate GPCR and phospholipid signaling pathways to control directed migration. These findings have implications for therapeutically targeting TIPE proteins in human inflammatory and autoimmune diseases.


Asunto(s)
Sistemas de Mensajero Secundario , Transducción de Señal , Humanos , Animales , Ratones , Quimiocinas , Aminoácidos , Lípidos , Péptidos y Proteínas de Señalización Intracelular
16.
Nat Chem Biol ; 20(1): 62-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37474759

RESUMEN

Cells interpret a variety of signals through G-protein-coupled receptors (GPCRs) and stimulate the generation of second messengers such as cyclic adenosine monophosphate (cAMP). A long-standing puzzle is deciphering how GPCRs elicit different physiological responses despite generating similar levels of cAMP. We previously showed that some GPCRs generate cAMP from both the plasma membrane and the Golgi apparatus. Here we demonstrate that cardiomyocytes distinguish between subcellular cAMP inputs to elicit different physiological outputs. We show that generating cAMP from the Golgi leads to the regulation of a specific protein kinase A (PKA) target that increases the rate of cardiomyocyte relaxation. In contrast, cAMP generation from the plasma membrane activates a different PKA target that increases contractile force. We further validated the physiological consequences of these observations in intact zebrafish and mice. Thus, we demonstrate that the same GPCR acting through the same second messenger regulates cardiac contraction and relaxation dependent on its subcellular location.


Asunto(s)
Transducción de Señal , Pez Cebra , Ratones , Animales , AMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Miocitos Cardíacos , Receptores Acoplados a Proteínas G/metabolismo
17.
Nucleic Acids Res ; 52(1): 462-473, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38033326

RESUMEN

Type III CRISPR-Cas systems provide adaptive immunity against foreign mobile genetic elements through RNA-guided interference. Sequence-specific recognition of RNA targets by the type III effector complex triggers the generation of cyclic oligoadenylate (cOA) second messengers that activate ancillary effector proteins, thus reinforcing the host immune response. The ancillary nuclease Can2 is activated by cyclic tetra-AMP (cA4); however, the mechanisms underlying cA4-mediated activation and substrate selectivity remain elusive. Here we report crystal structures of Thermoanaerobacter brockii Can2 (TbrCan2) in substrate- and product-bound complexes. We show that TbrCan2 is a single strand-selective DNase and RNase that binds substrates via a conserved SxTTS active site motif, and reveal molecular interactions underpinning its sequence preference for CA dinucleotides. Furthermore, we identify a molecular interaction relay linking the cA4 binding site and the nuclease catalytic site to enable divalent metal cation coordination and catalytic activation. These findings provide key insights into the molecular mechanisms of Can2 nucleases in type III CRISPR-Cas immunity and may guide their technological development for nucleic acid detection applications.


Asunto(s)
Proteínas Asociadas a CRISPR , Endorribonucleasas , Thermoanaerobacter , Sitios de Unión , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Endorribonucleasas/metabolismo , ARN/metabolismo , Sistemas de Mensajero Secundario , Thermoanaerobacter/enzimología , Thermoanaerobacter/metabolismo
18.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069339

RESUMEN

3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Sistemas de Mensajero Secundario , AMP Cíclico , Miocitos Cardíacos/metabolismo , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
19.
Molecules ; 28(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38138485

RESUMEN

In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.


Asunto(s)
GMP Cíclico , Sistemas de Mensajero Secundario , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología , Bacterias , AMP Cíclico , Nucleótidos Cíclicos , Proteínas Bacterianas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA