RESUMEN
There is evidence that in infected cells in vitro the meningococcal HrpA/HrpB two-partner secretion system (TPS) mediates the exit of bacteria from the internalization vacuole and the docking of bacteria to the dynein motor resulting in the induction of pyroptosis. In this study we set out to study the role of the HrpA/HrpB TPS in establishing meningitis and activating pyroptotic pathways in an animal model of meningitis using a reference serogroup C meningococcal strain, 93/4286, and an isogenic hrpB knockout mutant, 93/4286ΩhrpB. Survival experiments confirmed the role of HrpA/HrpB TPS in the invasive meningococcal disease. In fact, the ability of the hrpB mutant to replicate in brain and spread systemically was impaired in mice infected with hrpB mutant. Furthermore, western blot analysis of brain samples during the infection demonstrated that: i. N. meningitidis activated canonical and non-canonical inflammasome pyroptosis pathways in the mouse brain; ii. the activation of caspase-11, caspase-1, and gasdermin-D was markedly reduced in the hrpB mutant; iii. the increase in the amount of IL-1ß and IL-18, which are an important end point of pyroptosis, occurs in the brains of mice infected with the wild-type strain 93/4286 and is strongly reduced in those infected with 93/4286ΩhrpB. In particular, the activation of caspase 11, which is triggered by cytosolic lipopolysaccharide, indicates that during meningococcal infection pyroptosis is induced by intracellular infection after the exit of the bacteria from the internalizing vacuole, a process that is hindered in the hrpB mutant. Overall, these results confirm, in an animal model, that the HrpA/HrpB TPS plays a role in the induction of pyroptosis and suggest a pivotal involvement of pyroptosis in invasive meningococcal disease, paving the way for the use of pyroptosis inhibitors in the adjuvant therapy of the disease.
Asunto(s)
Encéfalo , Caspasa 1 , Modelos Animales de Enfermedad , Meningitis Meningocócica , Neisseria meningitidis , Piroptosis , Animales , Neisseria meningitidis/patogenicidad , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Ratones , Meningitis Meningocócica/microbiología , Caspasa 1/metabolismo , Encéfalo/patología , Encéfalo/microbiología , Encéfalo/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Caspasas/metabolismo , Caspasas Iniciadoras/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Interleucina-1beta/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Sistemas de Secreción Bacterianos/genética , Femenino , Interleucina-18/metabolismo , GasderminasRESUMEN
Bacterial cellulosic polymers constitute a prevalent class of biofilm matrix exopolysaccharides that are synthesized by several types of bacterial cellulose secretion (Bcs) systems, which include conserved cyclic diguanylate (c-di-GMP)-dependent cellulose synthase modules together with diverse accessory subunits. In E. coli, the biogenesis of phosphoethanolamine (pEtN)-modified cellulose relies on the BcsRQABEFG macrocomplex, encompassing inner-membrane and cytosolic subunits, and an outer membrane porin, BcsC. Here, we use cryogenic electron microscopy to shed light on the molecular mechanisms of BcsA-dependent recruitment and stabilization of a trimeric BcsG pEtN-transferase for polymer modification, and a dimeric BcsF-dependent recruitment of an otherwise cytosolic BcsE2R2Q2 regulatory complex. We further demonstrate that BcsE, a secondary c-di-GMP sensor, can remain dinucleotide-bound and retain the essential-for-secretion BcsRQ partners onto the synthase even in the absence of direct c-di-GMP-synthase complexation, likely lowering the threshold for c-di-GMP-dependent synthase activation. Such activation-by-proxy mechanism could allow Bcs secretion system activity even in the absence of substantial intracellular c-di-GMP increase, and is reminiscent of other widespread synthase-dependent polysaccharide secretion systems where dinucleotide sensing and/or synthase stabilization are carried out by key co-polymerase subunits.
Asunto(s)
Celulosa , Microscopía por Crioelectrón , GMP Cíclico , Proteínas de Escherichia coli , Escherichia coli , Glucosiltransferasas , Celulosa/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Etanolaminas/metabolismo , Etanolaminas/química , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genéticaRESUMEN
Typhoidal Salmonella enterica serovars, such as Typhi and Paratyphi A, cause severe systemic infections, thereby posing a significant threat as human-adapted pathogens. This study focuses on cytolysin A (ClyA), a virulence factor essential for bacterial dissemination within the human body. We show that ClyA is exclusively expressed by intracellular S. Paratyphi A within the Salmonella-containing vacuole (SCV), regulated by the PhoP/Q system and SlyA. ClyA localizes in the bacterial periplasm, suggesting potential secretion. Deletion of TtsA, an essential Type 10 Secretion System component, completely abolishes intracellular ClyA detection and its presence in host cell supernatants. Host cells infected with wild-type S. Paratyphi A contain substantial ClyA, with supernatants capable of lysing neighboring cells. Notably, ClyA selectively lyses macrophages and erythrocytes while sparing epithelial cells. These findings identify ClyA as an intracellularly induced cytolysin, dependent on the SCV environment and secreted via a Type 10 Secretion System, with specific cytolytic activity.
Asunto(s)
Proteínas Bacterianas , Salmonella paratyphi A , Vacuolas , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Animales , Ratones , Vacuolas/metabolismo , Salmonella paratyphi A/metabolismo , Macrófagos/microbiología , Macrófagos/metabolismo , Perforina/metabolismo , Perforina/genética , Salmonella typhi/metabolismo , Factores de Virulencia/metabolismo , Eritrocitos/metabolismo , Citotoxinas/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genética , Regulación Bacteriana de la Expresión GénicaRESUMEN
Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.
Asunto(s)
Vibrio , Vibrio/metabolismo , Vibrio/genética , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Aeromonas/metabolismo , Aeromonas/genética , Antibacterianos/farmacología , Animales , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genéticaRESUMEN
Plesiomonas shigelloides, a Gram-negative bacillus, is the only member of the Enterobacteriaceae family able to produce polar and lateral flagella and cause gastrointestinal and extraintestinal illnesses in humans. The flagellar transcriptional hierarchy of P. shigelloides is currently unknown. In this study, we identified FlaK, FlaM, FliA, and FliAL as the four regulators responsible for polar and lateral flagellar regulation in P. shigelloides. To determine the flagellar transcription hierarchy of P. shigelloides, the transcriptomes of the WT and ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were carried out for comparison in this study. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and luminescence screening assays were used to validate the RNA-seq results, and the Electrophoretic Mobility Shift Assay (EMSA) results revealed that FlaK can directly bind to the promoters of fliK, fliE, flhA, and cheY, while the FlaM protein can bind directly to the promoters of flgO, flgT, and flgA. Meanwhile, we also observed type VI secretion system (T6SS) and type II secretion system 2 (T2SS-2) genes downregulated in the transcriptome profiles, and the killing assay revealed lower killing abilities for ΔflaK, ΔflaM, ΔfliA, and ΔfliAL compared to the WT, indicating that there was a cross-talk between the flagellar hierarchy system and bacterial secretion system. Invasion assays also showed that ΔflaK, ΔflaM, ΔfliA, and ΔfliAL were less effective in infecting Caco-2 cells than the WT. Additionally, we also found that the loss of flagellar regulators causes the differential expression of some of the physiological metabolic genes of P. shigelloides. Overall, this study aims to reveal the transcriptional hierarchy that controls flagellar gene expression in P. shigelloides, as well as the cross-talk between motility, virulence, and physiological and metabolic activity, laying the groundwork for future research into P. shigelloides' coordinated survival in the natural environment and the mechanisms that infect the host.
Asunto(s)
Proteínas Bacterianas , Flagelos , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Plesiomonas , Flagelos/metabolismo , Flagelos/genética , Plesiomonas/genética , Plesiomonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Transcriptoma , Regiones Promotoras Genéticas , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Transcripción Genética , HumanosRESUMEN
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 ß-sandwich (ß1-ß7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands ß3 and ß4 ('motif Lß3ß4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lß3ß4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Porphyromonas gingivalis , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/química , Modelos Moleculares , Cristalografía por Rayos X , Secuencia de Aminoácidos , Señales de Clasificación de Proteína , Dominios Proteicos , Bacteroidetes/metabolismo , Bacteroidetes/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/genética , Tannerella forsythia/química , Relación Estructura-Actividad , Conformación ProteicaRESUMEN
The recently discovered Type 9 Secretion System (T9SS) is present in bacteria of the Fibrobacteres-Bacteroidetes-Chlorobi superphylum, which are key constituents of diverse microbiomes. T9SS is instrumental in the extracellular secretion of over 270,000 proteins, including peptidases, sugar hydrolases, metal ion-binding proteins, and metalloenzymes. These proteins are essential for the interaction of bacteria with their environment. This mini-review explores the extensive array of proteins secreted by the T9SS. It highlights the diverse functions of these proteins, emphasizing their roles in pathogenesis, bacterial interactions, host colonization, and the overall health of the ecosystems inhabited by T9SS-containing bacteria.
Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Bacterianos , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacterias/metabolismo , Bacterias/genética , Ecosistema , Interacciones MicrobianasRESUMEN
The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.
Asunto(s)
Pantoea , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Pantoea/genética , Sistemas de Secreción Bacterianos/genética , Virulencia/genética , Antibacterianos , Chaperonas Moleculares , Proteínas Bacterianas/metabolismoRESUMEN
The type IX secretion system (T9SS) is a large multi-protein transenvelope complex distributed into the Bacteroidetes phylum and responsible for the secretion of proteins involved in pathogenesis, carbohydrate utilization or gliding motility. In Porphyromonas gingivalis, the two-component system PorY sensor and response regulator PorX participate to T9SS gene regulation. Here, we present the crystal structure of PorXFj, the Flavobacterium johnsoniae PorX homolog. As for PorX, the PorXFj structure is comprised of a CheY-like N-terminal domain and an alkaline phosphatase-like C-terminal domain separated by a three-helix bundle central domain. While not activated and monomeric in solution, PorXFj crystallized as a dimer identical to active PorX. The CheY-like domain of PorXFj is in an active-like conformation, and PorXFj possesses phosphodiesterase activity, in agreement with the observation that the active site of its phosphatase-like domain is highly conserved with PorX.
Asunto(s)
Proteínas Bacterianas , Flavobacterium , Proteínas Bacterianas/metabolismo , Flavobacterium/metabolismo , Bacteroidetes/metabolismo , Actividad Motora , Sistemas de Secreción Bacterianos/genética , Porphyromonas gingivalis/metabolismoRESUMEN
The Gram-negative anaerobe, Porphyromonas gingivalis, is known to be a pathogen associated with chronic periodontitis. P. gingivalis possesses virulence factors such as fimbriae and gingipain proteinases. Fimbrial proteins are secreted to the cell surface as lipoproteins. In contrast, gingipain proteinases are secreted into the bacterial cell surface via the type IX secretion system (T9SS). The transport mechanisms of lipoproteins and T9SS cargo proteins are entirely different and remain unknown. Therefore, using the Tet-on system developed for the genus Bacteroides, we newly created a conditional gene expression system in P. gingivalis. We succeeded in establishing conditional expression of nanoluciferase and its derivatives for lipoprotein export, of FimA for a representative of lipoprotein export, and of T9SS cargo proteins such as Hbp35 and PorA for representatives of type 9 protein export. Using this system, we showed that the lipoprotein export signal, which has recently been found in other species in the phylum Bacteroidota, is also functional in FimA, and that a proton motive force inhibitor can affect type 9 protein export. Collectively, our conditional protein expression method is useful for screening inhibitors of virulence factors, and may be used to investigate the role of proteins essential to bacterial survival in vivo.
Asunto(s)
Proteínas Bacterianas , Porphyromonas gingivalis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cisteína-Endopeptidasas Gingipaínas/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Péptido Hidrolasas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Expresión Génica , Sistemas de Secreción Bacterianos/genéticaRESUMEN
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Asunto(s)
Sistemas de Secreción Bacterianos , Bacterias Gramnegativas , Sistemas de Secreción Bacterianos/genética , Bacterias Gramnegativas/genética , Virulencia , Bacterias/genética , Factores de Virulencia , Proteínas Bacterianas/genéticaRESUMEN
Bacterial secretion systems mediate the selective exchange of macromolecules between bacteria and their environment, playing a pivotal role in processes such as horizontal gene transfer or virulence. Among the different families of secretion systems, Type III, IV and VI (T3SS, T4SS and T6SS) share the ability to inject their substrates into human cells, opening up the possibility of using them as customized injectors. For this to happen, it is necessary to understand how substrates are recruited and to be able to engineer secretion signals, so that the transmembrane machineries can recognize and translocate the desired substrates in place of their own. Other factors, such as recruiting proteins, chaperones, and the degree of unfolding required to cross through the secretion channel, may also affect transport. Advances in the knowledge of the secretion mechanism have allowed heterologous substrate engineering to accomplish translocation by T3SS, and to a lesser extent, T4SS and T6SS into human cells. In the case of T4SS, transport of nucleoprotein complexes adds a bonus to its biotechnological potential. Here, we review the current knowledge on substrate recognition by these secretion systems, the many examples of heterologous substrate translocation by engineering of secretion signals, and the current and future biotechnological and biomedical applications derived from this approach.
Asunto(s)
Bacterias , Sistemas de Secreción Bacterianos , Humanos , Sistemas de Secreción Bacterianos/genética , Bacterias/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismoRESUMEN
Pathogenic bacteria utilize specialized macromolecular secretion systems to transport virulence factors across membrane(s) and manipulate their infected host. To date, 11 secretion systems have been identified, including the type IX secretion system (T9SS) associated with human, avian and farmed-fish diseases. As a bacterial secretion system, the T9SS also facilitates gliding motility and the degradation of different macromolecules by the secretion of metabolic enzymes in nonpathogenic bacteria. PorX is a highly conserved protein that regulates the transcription of essential T9SS components and additionally mediates the function of T9SS via direct interaction with PorL, the rotary motor protein of the T9SS. PorX is also a member of a two-component system regulatory cascade, where it serves as the response regulator that relays a signal transduced from a conserved sensor histidine kinase, PorY, to a designated sigma factor. Here, the recombinant expression and purification of PorX homologous proteins from the pathogenic bacterium Porphyromonas gingivalis and the nonpathogenic bacterium Flavobacterium johnsoniae are reported. A bioinformatical characterization of the different domains comprising the PorX protein is also provided, and the crystallization and X-ray analysis of PorX from F. johnsoniae are reported.
Asunto(s)
Proteínas Bacterianas , Factor sigma , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Cristalización , Cristalografía por Rayos X , Histidina Quinasa/metabolismo , Humanos , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Factor sigma/metabolismo , Factores de Virulencia/metabolismoRESUMEN
Type VI secretion systems are molecular syringes used by Gram-negative bacteria to kill heterospecific (non-kin) niche competitors. In this issue of Cell, Mashruwala et al. show that colonies of the pathogen Vibrio cholera can also exhibit T6SS-mediated cell killing of kin cells and that this process benefits emerging resistant mutants, thereby increasing genetic diversity.
Asunto(s)
Sistemas de Secreción Tipo VI , Vibrio cholerae , Vibrio cholerae/genética , Sistemas de Secreción Bacterianos/genética , Canibalismo , Proteínas Bacterianas/genética , Sistemas de Secreción Tipo VI/genéticaRESUMEN
Mycobacterium tuberculosis (Mtb) possesses five type VII secretion systems (T7SS), virulence determinants that include the secretion apparatus and associated secretion substrates. Mtb strains deleted for the genes encoding substrates of the ESX-3 T7SS, esxG or esxH, require iron supplementation for in vitro growth and are highly attenuated in vivo. In a subset of infected mice, suppressor mutants of esxG or esxH deletions were isolated, which enabled growth to high titers or restored virulence. Suppression was conferred by mechanisms that cause overexpression of an ESX-3 paralogous region that lacks genes for the secretion apparatus but encodes EsxR and EsxS, apparent ESX-3 orphan substrates that functionally compensate for the lack of EsxG or EsxH. The mechanisms include the disruption of a transcriptional repressor and a massive 38- to 60-fold gene amplification. These data identify an iron acquisition regulon, provide insight into T7SS, and reveal a mechanism of Mtb chromosome evolution involving "accordion-type" amplification.
Asunto(s)
Mycobacterium tuberculosis/genética , Sistemas de Secreción Tipo VII/genética , Animales , Sistemas de Secreción Bacterianos/genética , Evolución Biológica , Evolución Molecular , Amplificación de Genes/genética , Ratones , Mycobacterium tuberculosis/metabolismo , Sistemas de Secreción Tipo VII/fisiología , Virulencia , Factores de Virulencia/genéticaRESUMEN
The type IX secretion system (T9SS) transports cargo proteins through the outer membrane of Bacteroidetes and attaches them to the cell surface for functions including pathogenesis, gliding motility, and degradation of carbon sources. The T9SS comprises at least 20 different proteins and includes several modules: the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, the outer membrane Sov translocon, and the cell attachment complex. However, the spatial organization of these modules is unknown. We have characterized the protein interactome of the Sov translocon in Porphyromonas gingivalis and identified Sov-PorV-PorA as well as Sov-PorW-PorN-PorK to be novel networks. PorW also interacted with PGN_1783 (PorD), which was required for maximum secretion efficiency. The identification of PorW as the missing link completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore. IMPORTANCE The T9SS is a newly identified protein secretion system of the Fibrobacteres-Chlorobi-Bacteroidetes superphylum used by pathogens associated with diseases of humans, fish, and poultry for the secretion and cell surface attachment of virulence factors. The T9SS comprises three known modules: (i) the trans-envelope core module comprising the PorL/M motor and the PorK/N ring, (ii) the outer membrane Sov translocon, and (iii) the cell surface attachment complex. The spatial organization and interaction of these modules have been a mystery. Here, we describe the protein interactome of the Sov translocon in the human pathogen Porphyromonas gingivalis and have identified PorW as the missing link which bridges PorN with Sov and so completes a continuous interaction network from the PorL/M motor to the Sov translocon, providing, for the first time, a pathway for cargo delivery and energy transduction from the inner membrane to the secretion pore.
Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Porphyromonas gingivalis/metabolismo , Secuencia de Aminoácidos , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Porphyromonas gingivalis/química , Porphyromonas gingivalis/genética , Unión Proteica , Transporte de Proteínas , Alineación de SecuenciaRESUMEN
BACKGROUND: Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS: We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS: We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.
Asunto(s)
Bacterias , Proteínas Bacterianas , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Filogenia , Plásmidos/genética , VirulenciaRESUMEN
Pseudomonas aeruginosa uses three type six secretion systems (H1-, H2- and H3-T6SS) to manipulate its environment, subvert host cells and for microbial competition. These T6SS machines are loaded with a variety of effectors/toxins, many being associated with a specific VgrG. How P. aeruginosa transcriptionally coordinates the main T6SS clusters and the multiple vgrG islands spread through the genome is unknown. Here we show an unprecedented level of control with RsmA repressing most known T6SS-related genes. Moreover, each of the H2- and H3-T6SS clusters encodes a sigma factor activator (SFA) protein called, Sfa2 and Sfa3, respectively. SFA proteins are enhancer binding proteins necessary for the sigma factor RpoN. Using a combination of RNA-seq, ChIP-seq and molecular biology approaches, we demonstrate that RpoN coordinates the T6SSs of P. aeruginosa by activating the H2-T6SS but repressing the H1- and H3-T6SS. Furthermore, RpoN and Sfa2 control the expression of the H2-T6SS-linked VgrGs and their effector arsenal to enable very effective interbacterial killing. Sfa2 is specific as Sfa3 from the H3-T6SS cannot complement loss of Sfa2. Our study further delineates the regulatory mechanisms that modulate the deployment of an arsenal of T6SS effectors likely enabling P. aeruginosa to adapt to a range of environmental conditions.
Asunto(s)
Sistemas de Secreción Bacterianos/genética , Pseudomonas aeruginosa/metabolismo , ARN Polimerasa Sigma 54/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , ARN Polimerasa Sigma 54/genéticaRESUMEN
Equipped with a plethora of secreted toxic effectors, protein secretion systems are essential for bacteria to interact with and manipulate their neighboring environment to survive in host microbiota and other highly competitive communities. While effectors have received spotlight attention in secretion system studies, many require accessory chaperone and adaptor proteins for proper folding/unfolding and stability throughout the secretion process. Here, we review the functions of chaperones and adaptors of three protein secretions systems, type 3 secretion system (T3SS), type 4 secretion system (T4SS), and type 6 secretion system (T6SS), which are employed by many Gram-negative bacterial pathogens to deliver toxins to bacterial, plant, and mammalian host cells through direct contact. Since chaperone and adaptor functions of the T3SS and the T4SS are relatively well studied, we discuss in detail the methods of chaperone-facilitated effector secretion by the T6SS and highlight commonalities between the effector chaperone/adaptor proteins of these diverse secretion systems. While the chaperones and adaptors are generally referred to as accessory proteins as they are not directly involved in toxicities to target cells, they are nonetheless vital for the biological functions of the secretion systems. Future research on biochemical and structural properties of these chaperones will not only elucidate the mechanisms of chaperone-effector binding and release process but also facilitate custom design of cargo effectors to be translocated by these widespread secretion systems for biotechnological applications.
Asunto(s)
Proteínas Bacterianas , Sistemas de Translocación de Proteínas , Animales , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Bacterias Gramnegativas/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismoRESUMEN
The strain Janthinobacterium sp. SLB01 was isolated from the diseased freshwater sponge Lubomirskia baicalensis (Pallas, 1776) and the draft genome was published previously. The aim of this work is to analyze the genome of the Janthinobacterium sp. SLB01 to search for pathogenicity factors for Baikal sponges. We performed genomic analysis to determine virulence factors, comparing the genome of the strain SLB01 with genomes of other related J. lividum strains from the environment. The strain Janthinobacterium sp. SLB01 contained genes encoding violacein, alpha-amylases, phospholipases, chitinases, collagenases, hemolysin, and a type VI secretion system. In addition, the presence of conservative clusters of genes for the biosynthesis of secondary metabolites of tropodithietic acid and marinocine was found. We present genes for antibiotic resistance, including five genes encoding various lactamases and eight genes for penicillin-binding proteins, which are conserved in all analyzed strains. Major differences were found between the Janthinobacterium sp. SLB01 and J. lividum strains in the spectra of genes for glycosyltransferases and glycoside hydrolases, serine hydrolases, and trypsin-like peptidase, as well as some TonB-dependent siderophore receptors. Thus, the study of the analysis of the genome of the strain SLB01 allows us to conclude that the strain may be one of the pathogens of freshwater sponges.