Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(2): 105537, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072042

RESUMEN

The extremophile bacterium D. radiodurans boasts a distinctive cell envelope characterized by the regular arrangement of three protein complexes. Among these, the Type II Secretion System (T2SS) stands out as a pivotal structural component. We used cryo-electron microscopy to reveal unique features, such as an unconventional protein belt (DR_1364) around the main secretin (GspD), and a cap (DR_0940) found to be a separated subunit rather than integrated with GspD. Furthermore, a novel region at the N-terminus of the GspD constitutes an additional second gate, supplementing the one typically found in the outer membrane region. This T2SS was found to contribute to envelope integrity, while also playing a role in nucleic acid and nutrient trafficking. Studies on intact cell envelopes show a consistent T2SS structure repetition, highlighting its significance within the cellular framework.


Asunto(s)
Membrana Celular , Deinococcus , Extremófilos , Sistemas de Secreción Tipo II , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Microscopía por Crioelectrón , Deinococcus/metabolismo , Extremófilos/metabolismo , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Transporte de Proteínas
2.
Sci Adv ; 9(40): eadg6996, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37792935

RESUMEN

Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.


Asunto(s)
Sistemas de Secreción Tipo II , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Secretina/metabolismo , Filogenia , Unión Proteica , Proteínas Bacterianas/metabolismo
3.
Nat Commun ; 14(1): 4025, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419909

RESUMEN

The GspD secretin is the outer membrane channel of the bacterial type II secretion system (T2SS) which secrets diverse toxins that cause severe diseases such as diarrhea and cholera. GspD needs to translocate from the inner to the outer membrane to exert its function, and this process is an essential step for T2SS to assemble. Here, we investigate two types of secretins discovered so far in Escherichia coli, GspDα, and GspDß. By electron cryotomography subtomogram averaging, we determine in situ structures of key intermediate states of GspDα and GspDß in the translocation process, with resolution ranging from 9 Å to 19 Å. In our results, GspDα and GspDß present entirely different membrane interaction patterns and ways of transitioning the peptidoglycan layer. From this, we hypothesize two distinct models for the membrane translocation of GspDα and GspDß, providing a comprehensive perspective on the inner to outer membrane biogenesis of T2SS secretins.


Asunto(s)
Proteínas de Escherichia coli , Sistemas de Secreción Tipo II , Sistemas de Secreción Tipo II/química , Secretina/química , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas Bacterianas/química , Proteínas de la Membrana Bacteriana Externa/química
4.
Structure ; 31(2): 123-125, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736296

RESUMEN

In this issue of Structure, Dazzoni et al. solve the high-resolution homo- and hetero-dimeric structures of the Klebsiella oxytoca PulL and PulM C-terminal domains and unravel an uncharacterized dynamic interaction interface that is required for correct function of the type II secretion system.


Asunto(s)
Klebsiella oxytoca , Sistemas de Secreción Tipo II , Klebsiella oxytoca/química , Sistemas de Secreción Tipo II/química
5.
Biomol NMR Assign ; 16(2): 231-236, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35482172

RESUMEN

The ability to interact and adapt to the surrounding environment is vital for bacteria that colonise various niches and organisms. One strategy developed by Gram-negative bacteria is to secrete exoprotein substrates via the type II secretion system (T2SS). The T2SS is a proteinaceous complex spanning the bacterial envelope that translocates folded proteins such as toxins and enzymes from the periplasm to the extracellular milieu. In the T2SS, a cytoplasmic ATPase elongates in the periplasm the pseudopilus, a non-covalent polymer composed of protein subunits named pseudopilins, and anchored in the inner membrane by a transmembrane helix. The pseudopilus polymerisation is coupled to the secretion of substrates. The T2SS of Dickeya dadantii secretes more than 15 substrates, essentially plant cell wall degrading enzymes. In D. dadantii, the major pseudopilin or the major subunit of the pseudopilus is called OutG. To better understand the mechanism of secretion of these numerous substrates via the pseudopilus, we have been studying the structure of OutG by NMR. Here, as the first part of this study, we report the 1H, 15N and 13C backbone and sidechain chemical shift assignment of the periplasmic domain of OutG and its NMR derived secondary structure.


Asunto(s)
Sistemas de Secreción Tipo II , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Dickeya , Resonancia Magnética Nuclear Biomolecular , Periplasma/metabolismo , Polímeros/análisis , Polímeros/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , Sistemas de Secreción Tipo II/química
6.
Structure ; 29(10): 1116-1127.e8, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34139172

RESUMEN

The type IV filament superfamily comprises widespread membrane-associated polymers in prokaryotes. The type II secretion system (T2SS), a virulence pathway in many pathogens, belongs to this superfamily. A knowledge gap in understanding of the T2SS is the molecular role of a small "pseudopilin" protein. Using multiple biophysical techniques, we have deciphered how this missing component of the Xcp T2SS architecture is structurally integrated, and thereby unlocked its function. We demonstrate that low-abundance XcpH is the adapter that bridges a trimeric initiating tip complex, XcpIJK, with a periplasmic filament of XcpG subunits. Each pseudopilin protein caps an XcpG protofilament in an overall pseudopilus compatible with dimensions of the periplasm and the outer membrane-spanning secretin through which substrates pass. Unexpectedly, to fulfill its adapter function, the XcpH N-terminal helix must be unwound, a property shared with XcpG subunits. We provide an experimentally validated three-dimensional structural model of a complete type IV filament.


Asunto(s)
Proteínas Fimbrias/química , Sistemas de Secreción Tipo II/química , Sitios de Unión , Proteínas Fimbrias/metabolismo , Unión Proteica , Multimerización de Proteína , Pseudomonas aeruginosa/química , Sistemas de Secreción Tipo II/metabolismo
7.
J Biol Chem ; 296: 100305, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465378

RESUMEN

The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out. However, the orthologous pectate lyases Pel3 and PelI from these bacteria, which share 67% of sequence identity, are not secreted by the counterpart T2SS of each bacterium, indicating a fine-tuned control of protein recruitment. To identify the related secretion determinants, we first performed a structural characterization and comparison of Pel3 with PelI using X-ray crystallography. Then, to assess the biological relevance of the observed structural variations, we conducted a loop-substitution analysis of Pel3 combined with secretion assays. We showed that there is not one element with a definite secondary structure but several distant and structurally flexible loop regions that are essential for the secretion of Pel3 and that these loop regions act together as a composite secretion signal. Interestingly, depending on the crystal contacts, one of these key secretion determinants undergoes disorder-to-order transitions that could reflect its transient structuration upon the contact with the appropriate T2SS components. We hypothesize that such T2SS-induced structuration of some intrinsically disordered zones of secretion substrates could be part of the recruitment mechanism used by T2SS.


Asunto(s)
Proteínas Bacterianas/química , Dickeya/enzimología , Pectobacterium carotovorum/enzimología , Polisacárido Liasas/química , Sistemas de Secreción Tipo II/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Pared Celular/química , Pared Celular/microbiología , Clonación Molecular , Cristalografía por Rayos X , Dickeya/clasificación , Dickeya/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Pectobacterium carotovorum/clasificación , Pectobacterium carotovorum/genética , Filogenia , Células Vegetales/química , Células Vegetales/microbiología , Plantas/química , Plantas/microbiología , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sistemas de Secreción Tipo II/genética , Sistemas de Secreción Tipo II/metabolismo
8.
Mol Microbiol ; 115(3): 412-424, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33283907

RESUMEN

The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Fimbrias Bacterianas/química , Fimbrias Bacterianas/fisiología , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/fisiología , Fenómenos Fisiológicos Bacterianos , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Conformación Proteica , Secretina/metabolismo , Factores de Virulencia/química , Factores de Virulencia/fisiología
9.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906428

RESUMEN

Although prevalent in the determination of protein structures; crystallography always has the bottleneck of obtaining high-quality protein crystals for characterizing a wide range of proteins; especially large protein complexes. Stable fragments or domains of proteins are more readily to crystallize; which prompts the use of in situ proteolysis to remove flexible or unstable structures for improving crystallization and crystal quality. In this work; we investigated the effects of in situ proteolysis by chymotrypsin on the crystallization of the XcpVWX complex from the Type II secretion system of Pseudomonas aeruginosa. Different proteolysis conditions were found to result in two distinct lattices in the same crystallization solution. With a shorter chymotrypsin digestion at a lower concentration; the crystals exhibited a P3 hexagonal lattice that accommodates three complex molecules in one asymmetric unit. By contrast; a longer digestion with chymotrypsin of a 10-fold higher concentration facilitated the formation of a compact P212121 orthorhombic lattice with only one complex molecule in each asymmetric unit. The molecules in the hexagonal lattice have shown high atomic displacement parameter values compared with the ones in the orthorhombic lattice. Taken together; our results clearly demonstrate that different proteolysis conditions can result in the generation of distinct lattices in the same crystallization solution; which can be exploited in order to obtain different crystal forms of a better quality.


Asunto(s)
Quimotripsina , Cristalización/métodos , Complejos Multiproteicos/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Complejos Multiproteicos/aislamiento & purificación , Conformación Proteica , Proteolisis , Sistemas de Secreción Tipo II/química
10.
Nat Microbiol ; 4(12): 2101-2108, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31754273

RESUMEN

The type II secretion system (T2SS) is a multiprotein envelope-spanning assembly that translocates a wide range of virulence factors, enzymes and effectors through the outer membrane of many Gram-negative bacteria1-3. Here, using electron cryotomography and subtomogram averaging methods, we reveal the in vivo structure of an intact T2SS imaged within the human pathogen Legionella pneumophila. Although the T2SS has only limited sequence and component homology with the evolutionarily related type IV pilus (T4P) system4,5, we show that their overall architectures are remarkably similar. Despite similarities, there are also differences, including, for example, that the T2SS-ATPase complex is usually present but disengaged from the inner membrane, the T2SS has a much longer periplasmic vestibule and it has a short-lived flexible pseudopilus. Placing atomic models of the components into our electron cryotomography map produced a complete architectural model of the intact T2SS that provides insights into the structure and function of its components, its position within the cell envelope and the interactions between its different subcomplexes.


Asunto(s)
Legionella pneumophila/química , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/ultraestructura , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Legionella pneumophila/ultraestructura , Modelos Moleculares , Factores de Virulencia
11.
J Biol Chem ; 294(36): 13344-13354, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320476

RESUMEN

Members of the Acinetobacter baumannii-calcoaceticus complex are nosocomial pathogens frequently causing multidrug-resistant infections that are increasing at alarming rates. A. baumannii has become the Gram-negative bacterium with the highest rate of multidrug resistance. As such, it is categorized by the World Health Organization as a critical priority for the research and development of new antimicrobial therapies. The zinc-dependent metalloendopeptidase CpaA is a predominant substrate of the type II secretion system (T2SS). CpaA is also a virulence factor of medically relevant Acinetobacter strains that specifically degrade the human glycoprotein coagulation factor XII and not its deglycosylated form, but the mechanism for this specificity is unknown. CpaB is a membrane-anchored T2SS chaperone that interacts with CpaA and is required for its stability and secretion. Here, we report the crystal structure of the CpaAB complex at 2.6-Å resolution, revealing four glycan-binding domains in CpaA that were not predicted from its primary sequence and may explain CpaA's glycoprotein-targeting activity. The structure of the complex identified a novel mode for chaperone-protease interactions in which the protease surrounds the chaperone. The CpaAB organization was akin to zymogen inactivation, with CpaB serving as a prodomain that inhibits catalytically active CpaA. CpaB contains a C-terminal tail that appears to block access to the CpaA catalytic site, and functional experiments with truncated variants indicated that this tail is dispensable for CpaA expression and secretion. Our results provide new insight into the mechanism of CpaA secretion and may inform the future development of therapeutic strategies for managing Acinetobacter infections.


Asunto(s)
Acinetobacter/enzimología , Proteínas Bacterianas/metabolismo , Metaloproteasas/metabolismo , Chaperonas Moleculares/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/química , Metaloproteasas/química , Modelos Moleculares , Chaperonas Moleculares/química , Conformación Proteica , Sistemas de Secreción Tipo II/química
12.
PLoS Pathog ; 15(5): e1007731, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083688

RESUMEN

The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 Å resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo , Secretina/química , Sistemas de Secreción Tipo II/química , Vibrio vulnificus/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Lipoproteínas/química , Modelos Moleculares , Conformación Proteica , Secretina/metabolismo , Homología de Secuencia , Sistemas de Secreción Tipo II/metabolismo , Vibrio vulnificus/crecimiento & desarrollo
13.
EcoSal Plus ; 8(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30767847

RESUMEN

The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/metabolismo , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Adenosina Trifosfatasas/metabolismo , Microscopía por Crioelectrón , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Periplasma/metabolismo , Unión Proteica , Secretina/metabolismo
14.
J Biol Chem ; 293(50): 19441-19450, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337370

RESUMEN

In many Gram-negative bacteria, the type 2 secretion system (T2SS) plays an important role in virulence because of its capacity to deliver a large amount of fully folded protein effectors to the extracellular milieu. Despite our knowledge of most T2SS components, the mechanisms underlying effector recruitment and secretion by the T2SS remain enigmatic. Using complementary biophysical and biochemical approaches, we identified here two direct interactions between the secreted effector CbpD and two components, XcpYL and XcpZM, of the T2SS assembly platform (AP) in the opportunistic pathogen Pseudomonas aeruginosa Competition experiments indicated that CbpD binding to XcpYL is XcpZM-dependent, suggesting sequential recruitment of the effector by the periplasmic domains of these AP components. Using a bacterial two-hybrid system, we then tested the influence of the effector on the AP protein-protein interaction network. Our findings revealed that the presence of the effector modifies the AP interactome and, in particular, induces XcpZM homodimerization and increases the affinity between XcpYL and XcpZM The observed direct relationship between effector binding and T2SS dynamics suggests an additional synchronizing step during the type 2 secretion process, where the activation of the AP of the T2SS nanomachine is triggered by effector binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/química , Periplasma/metabolismo , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo II/química
15.
PLoS Pathog ; 14(10): e1007343, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30346996

RESUMEN

Pseudomonas aeruginosa utilizes the Type II secretion system (T2SS) to translocate a wide range of large, structured protein virulence factors through the periplasm to the extracellular environment for infection. In the T2SS, five pseudopilins assemble into the pseudopilus that acts as a piston to extrude exoproteins out of cells. Through structure determination of the pseudopilin complexes of XcpVWX and XcpVW and function analysis, we have confirmed that two minor pseudopilins, XcpV and XcpW, constitute a core complex indispensable to the pseudopilus tip. The absence of either XcpV or -W resulted in the non-functional T2SS. Our small-angle X-ray scattering experiment for the first time revealed the architecture of the entire pseudopilus tip and established the working model. Based on the interaction interface of complexes, we have developed inhibitory peptides. The structure-based peptides not only disrupted of the XcpVW core complex and the entire pseudopilus tip in vitro but also inhibited the T2SS in vivo. More importantly, these peptides effectively reduced the virulence of P. aeruginosa towards Caenorhabditis elegans.


Asunto(s)
Proteínas Bacterianas/química , Caenorhabditis elegans/crecimiento & desarrollo , Fimbrias Bacterianas/metabolismo , Proteínas de la Membrana/química , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo II/química , Animales , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Cristalografía por Rayos X , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Conformación Proteica , Infecciones por Pseudomonas/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Virulencia
16.
Nat Microbiol ; 3(5): 581-587, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632366

RESUMEN

Secretin is a large outer-membrane channel found in secretion systems of Gram-negative bacteria, facilitating the last step for transfer of proteins into the extracellular environment. In the type II secretion system, a lipoprotein called pilotin is essential to bind and target its corresponding secretin to the outer membrane. However, there is only limited structural information available about the interaction and assembly of the pilotin-secretin complex. Here we report the first near-atomic-resolution structure of a full-length Vibrio-type pilotin-secretin (AspS-GspD) complex from enterotoxigenic Escherichia coli by cryo-electron microscopy, which reveals the detailed assembly mode of the full-length pilotin-secretin complex. The AspS subunits attach to the secretin channel surface with a 15:15 stoichiometric ratio to GspD subunits, and insert their amino terminus into the outer membrane. The AspS subunits interact with all three secondary structural elements of the S domain of GspD, including strong interaction with the carboxy-terminal α-helix and weak interactions with another two elements, an α-helix and a loop. These structural and biochemical details provide a deeper insight to pilotin-secretin interaction and their assembly mode.


Asunto(s)
Escherichia coli Enterotoxigénica/metabolismo , Complejos Multiproteicos/química , Sistemas de Secreción Tipo II/química , Proteínas de la Membrana Bacteriana Externa/química , Microscopía por Crioelectrón , Escherichia coli Enterotoxigénica/química , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína
17.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263097

RESUMEN

Bacterial secretins are outer membrane proteins that provide a path for secreted proteins to access the cell exterior/surface. They are one of the core components of secretion machines and are found in type II and type III secretion systems (T2SS and T3SS, respectively). The secretins comprise giant ring-shaped homo-oligomers whose precise atomic organization was only recently deciphered thanks to spectacular developments in cryo-electron microscopy (cryo-EM) imaging techniques.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Sistemas de Secreción Bacterianos/química , Secretina/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/ultraestructura , Microscopía por Crioelectrón/métodos , Klebsiella/química , Modelos Moleculares , Secretina/metabolismo , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/ultraestructura , Vibrio/química
18.
J Bacteriol ; 200(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29084860

RESUMEN

The ß-barrel assembly machinery (BAM) complex is the core machinery for the assembly of ß-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long ß-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive ß-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli Enteropatógena/química , Secretina/química , Sistemas de Secreción Tipo II/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/química , Microscopía Electrónica/métodos , Modelos Moleculares , Polisacárido Liasas/metabolismo , Unión Proteica , Conformación Proteica , Sistemas de Translocación de Proteínas/química , Sistemas de Translocación de Proteínas/metabolismo , Transporte de Proteínas , Secretina/genética , Secretina/aislamiento & purificación , Sistemas de Secreción Tipo II/metabolismo , Vibrio cholerae/química , Vibrio cholerae/metabolismo
19.
Nat Microbiol ; 2(12): 1686-1695, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28993624

RESUMEN

Many Gram-negative bacteria use type 2 secretion systems (T2SSs) to secrete proteins involved in virulence and adaptation. Transport of folded proteins via T2SS nanomachines requires the assembly of inner membrane-anchored fibres called pseudopili. Although efficient pseudopilus assembly is essential for protein secretion, structure-based functional analyses are required to unravel the mechanistic link between these processes. Here, we report an atomic model for a T2SS pseudopilus from Klebsiella oxytoca, obtained by fitting the NMR structure of its calcium-bound subunit PulG into the ~5-Å-resolution cryo-electron microscopy reconstruction of assembled fibres. This structure reveals the comprehensive network of inter-subunit contacts and unexpected features, including a disordered central region of the PulG helical stem, and highly flexible C-terminal residues on the fibre surface. NMR, mutagenesis and functional analyses highlight the key role of calcium in PulG folding and stability. Fibre disassembly in the absence of calcium provides a basis for pseudopilus length control, essential for protein secretion, and supports the Archimedes screw model for the type 2 secretion mechanism.


Asunto(s)
Calcio/fisiología , Bacterias Gramnegativas/metabolismo , Klebsiella oxytoca/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dicroismo Circular , Microscopía por Crioelectrón , Escherichia coli/genética , Fimbrias Bacterianas/química , Fimbrias Bacterianas/ultraestructura , Marcaje Isotópico , Klebsiella oxytoca/ultraestructura , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Estabilidad Proteica , Transporte de Proteínas , Sistemas de Secreción Tipo II/química
20.
mBio ; 8(5)2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042493

RESUMEN

The type II secretion system (T2SS) releases large folded exoproteins across the envelope of many Gram-negative pathogens. This secretion process therefore requires specific gating, interacting, and dynamics properties mainly operated by a bipartite outer membrane channel called secretin. We have a good understanding of the structure-function relationship of the pore-forming C-terminal domain of secretins. In contrast, the high flexibility of their periplasmic N-terminal domain has been an obstacle in obtaining the detailed structural information required to uncover its molecular function. In Pseudomonas aeruginosa, the Xcp T2SS plays an important role in bacterial virulence by its capacity to deliver a large panel of toxins and degradative enzymes into the surrounding environment. Here, we revealed that the N-terminal domain of XcpQ secretin spontaneously self-assembled into a hexamer of dimers independently of its C-terminal domain. Furthermore, and by using multidisciplinary approaches, we elucidate the structural organization of the XcpQ N domain and demonstrate that secretin flexibility at interdimer interfaces is mandatory for its function.IMPORTANCE Bacterial secretins are large homooligomeric proteins constituting the outer membrane pore-forming element of several envelope-embedded nanomachines essential in bacterial survival and pathogenicity. They comprise a well-defined membrane-embedded C-terminal domain and a modular periplasmic N-terminal domain involved in substrate recruitment and connection with inner membrane components. We are studying the XcpQ secretin of the T2SS present in the pathogenic bacterium Pseudomonas aeruginosa Our data highlight the ability of the XcpQ N-terminal domain to spontaneously oligomerize into a hexamer of dimers. Further in vivo experiments revealed that this domain adopts different conformations essential for the T2SS secretion process. These findings provide new insights into the functional understanding of bacterial T2SS secretins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Multimerización de Proteína , Pseudomonas aeruginosa/metabolismo , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Cristalografía por Rayos X , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA