Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 437
Filtrar
1.
J Infect Dis ; 230(1): 188-197, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052722

RESUMEN

The subtilisin-like protease-1 (SspA-1) plays an important role in the pathogenesis of a highly virulent strain of Streptococcus suis 2. However, the mechanism of SspA-1-triggered excessive inflammatory response is still unknown. In this study, we demonstrated that activation of type I IFN signaling is required for SspA-1-induced excessive proinflammatory cytokine production. Further experiments showed that the TLR2 endosomal pathway mediates SspA-1-induced type I IFN signaling and the inflammatory response. Finally, we mapped the major signaling components of the related pathway and found that the TIR adaptor proteins Mal, TRAM, and MyD88 and the downstream activation of IRF1 and IRF7 were involved in this pathway. These results explain the molecular mechanism by which SspA-1 triggers an excessive inflammatory response and reveal a novel effect of type I IFN in S. suis 2 infection, possibly providing further insights into the pathogenesis of this highly virulent S. suis 2 strain.


Asunto(s)
Citocinas , Endosomas , Interferón Tipo I , Transducción de Señal , Streptococcus suis , Receptor Toll-Like 2 , Streptococcus suis/inmunología , Streptococcus suis/patogenicidad , Streptococcus suis/metabolismo , Interferón Tipo I/metabolismo , Receptor Toll-Like 2/metabolismo , Citocinas/metabolismo , Animales , Endosomas/metabolismo , Ratones , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/metabolismo , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Humanos , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Ratones Endogámicos C57BL
2.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38959853

RESUMEN

Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.


Asunto(s)
Proteínas Bacterianas , Lysobacter , Pseudomonas , Sistemas de Secreción Tipo IV , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Regulación Bacteriana de la Expresión Génica , Oligopéptidos/metabolismo , Oligopéptidos/genética , Transactivadores/genética , Transactivadores/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factor sigma/genética , Factor sigma/metabolismo
3.
mBio ; 15(7): e0119824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38832773

RESUMEN

Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).


Asunto(s)
Proteínas Bacterianas , Stenotrophomonas maltophilia , Sistemas de Secreción Tipo IV , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/enzimología , Stenotrophomonas maltophilia/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformación Proteica
4.
mBio ; 15(7): e0072624, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38847540

RESUMEN

The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.


Asunto(s)
Proteínas Bacterianas , Factores de Virulencia , Proteína Neuronal del Síndrome de Wiskott-Aldrich , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Animales , Ratones , Unión Proteica , Brucella/metabolismo , Brucella/genética , Brucella/patogenicidad , Secuencias de Aminoácidos , Actinas/metabolismo , Brucelosis/microbiología , Macrófagos/microbiología , Interacciones Huésped-Patógeno
5.
Nat Commun ; 15(1): 5498, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944647

RESUMEN

IncX3 plasmids carrying the New Delhi metallo-ß-lactamase-encoding gene, blaNDM-5, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying blaNDM-5-IncX3 plasmids still remain unknown. We observe that E. coli carrying blaNDM-5-IncX3 can persist in chicken intestines either under the administration of amoxicillin, one of the largest veterinary ß-lactams used in livestock, or without any antibiotic pressure. We therefore characterise the blaNDM-5-IncX3 plasmid and identify a transcription regulator, VirBR, that binds to the promoter of the regulator gene actX enhancing the transcription of Type IV secretion systems (T4SS); thereby, promoting conjugation of IncX3 plasmids, increasing pili adhesion capacity and enhancing the colonisation of blaNDM-5-IncX3 transconjugants in animal digestive tracts. Our mechanistic and in-vivo studies identify VirBR as a major factor in the successful spread of blaNDM-5-IncX3 across one-health AMR sectors. Furthermore, VirBR enhances the plasmid conjugation and T4SS expression by the presence of copper and zinc ions, thereby having profound ramifications on the use of universal animal feeds.


Asunto(s)
Antibacterianos , Pollos , Conjugación Genética , Escherichia coli , Plásmidos , beta-Lactamasas , Animales , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Pollos/microbiología , Humanos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Amoxicilina/farmacología , Regiones Promotoras Genéticas/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Intestinos/microbiología
6.
mSphere ; 9(7): e0035424, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38940509

RESUMEN

Bacterial conjugation systems pose a major threat to human health through their widespread dissemination of mobile genetic elements (MGEs) carrying cargoes of antibiotic resistance genes. Using the Cre Recombinase Assay for Translocation (CRAfT), we recently reported that the IncFV pED208 conjugation system also translocates at least 16 plasmid-encoded proteins to recipient bacteria. Here, we deployed a high-throughput CRAfT screen to identify the repertoire of chromosomally encoded protein substrates of the pED208 system. We identified 32 substrates encoded by the Escherichia coli W3110 genome with functions associated with (i) DNA/nucleotide metabolism, (ii) stress tolerance/physiology, (iii) transcriptional regulation, or (iv) toxin inhibition. The respective gene deletions did not impact pED208 transfer proficiencies, nor did Group 1 (DNA/nucleotide metabolism) mutations detectably alter the SOS response elicited in new transconjugants upon acquisition of pED208. However, MC4100(pED208) donor cells intrinsically exhibit significantly higher SOS activation than plasmid-free MC4100 cells, and this plasmid carriage-induced stress response is further elevated in donor cells deleted of several Group 1 genes. Among 10 characterized substrates, we gained evidence of C-terminal or internal translocation signals that could function independently or synergistically for optimal protein transfer. Remarkably, nearly all tested proteins were also translocated through the IncN pKM101 and IncP RP4 conjugation systems. This repertoire of E. coli protein substrates, here termed the F plasmid "conjutome," is thus characterized by functions of potential benefit to new transconjugants, diverse TSs, and the capacity for promiscuous transfer through heterologous conjugation systems. IMPORTANCE: Conjugation systems comprise a major subfamily of the type IV secretion systems (T4SSs) and are the progenitors of a second large T4SS subfamily dedicated to translocation of protein effectors. This study examined the capacity of conjugation machines to function as protein translocators. Using a high-throughput reporter screen, we determined that 32 chromosomally encoded proteins are delivered through an F plasmid conjugation system. The translocated proteins potentially enhance the establishment of the co-transferred F plasmid or mitigate mating-induced stresses. Translocation signals located C-terminally or internally conferred substrate recognition by the F system and, remarkably, many substrates also were translocated through heterologous conjugation systems. Our findings highlight the plasticity of conjugation systems in their capacities to co-translocate DNA and many protein substrates.


Asunto(s)
Conjugación Genética , Proteínas de Escherichia coli , Escherichia coli , Sistemas de Secreción Tipo IV , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Transporte de Proteínas , Factor F/genética , Factor F/metabolismo
7.
EMBO J ; 43(15): 3287-3306, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886579

RESUMEN

Conjugative type IV secretion systems (T4SS) mediate bacterial conjugation, a process that enables the unidirectional exchange of genetic materials between a donor and a recipient bacterial cell. Bacterial conjugation is the primary means by which antibiotic resistance genes spread among bacterial populations (Barlow 2009; Virolle et al, 2020). Conjugative T4SSs form pili: long extracellular filaments that connect with recipient cells. Previously, we solved the cryo-electron microscopy (cryo-EM) structure of a conjugative T4SS. In this article, based on additional data, we present a more complete T4SS cryo-EM structure than that published earlier. Novel structural features include details of the mismatch symmetry within the OMCC, the presence of a fourth VirB8 subunit in the asymmetric unit of both the arches and the inner membrane complex (IMC), and a hydrophobic VirB5 tip in the distal end of the stalk. Additionally, we provide previously undescribed structural insights into the protein VirB10 and identify a novel regulation mechanism of T4SS-mediated pilus biogenesis by this protein, that we believe is a key checkpoint for this process.


Asunto(s)
Microscopía por Crioelectrón , Fimbrias Bacterianas , Sistemas de Secreción Tipo IV , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/genética , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/química , Modelos Moleculares , Conjugación Genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Escherichia coli/genética , Conformación Proteica
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811160

RESUMEN

A major pathway for horizontal gene transfer is the transmission of DNA from donor to recipient cells via plasmid-encoded type IV secretion systems (T4SSs). Many conjugative plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS. Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell, but for many, their function remains unclear. Here, we characterize PrgE, a proposed SSB from the Enterococcus faecalis plasmid pCF10. We show that PrgE is not essential for conjugation. Structurally, it has the characteristic OB-fold of SSBs, but it has very unusual DNA-binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a string supported by its N-terminal tail. In vitro studies highlight the plasticity of PrgE oligomerization and confirm the importance of the N-terminus. Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows that PrgE has a quaternary assembly and DNA-binding properties that are very different from the prototypical bacterial SSB, but also different from eukaryotic SSBs.


Asunto(s)
Proteínas Bacterianas , ADN de Cadena Simple , Proteínas de Unión al ADN , Enterococcus faecalis , Plásmidos , Plásmidos/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Unión Proteica , Conjugación Genética/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Modelos Moleculares , Transferencia de Gen Horizontal , ADN Bacteriano/genética , ADN Bacteriano/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709922

RESUMEN

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Asunto(s)
Proteínas Bacterianas , Bartonella , Sistemas de Secreción Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Transporte de Proteínas , Animales
10.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631913

RESUMEN

The Helicobacter pylori Cag type IV secretion system (Cag T4SS) has an important role in the pathogenesis of gastric cancer. The Cag T4SS outer membrane core complex (OMCC) is organized into three regions: a 14-fold symmetric outer membrane cap (OMC) composed of CagY, CagX, CagT, CagM, and Cag3; a 17-fold symmetric periplasmic ring (PR) composed of CagY and CagX; and a stalk with unknown composition. We investigated how CagT, CagM, and a conserved antenna projection (AP) region of CagY contribute to the structural organization of the OMCC. Single-particle cryo-EM analyses showed that complexes purified from ΔcagT or ΔcagM mutants no longer had organized OMCs, but the PRs remained structured. OMCCs purified from a CagY antenna projection mutant (CagY∆AP) were structurally similar to WT OMCCs, except for the absence of the α-helical antenna projection. These results indicate that CagY and CagX are sufficient for maintaining a stable PR, but the organization of the OMC requires CagY, CagX, CagM, and CagT. Our results highlight an unexpected structural independence of two major subdomains of the Cag T4SS OMCC.


Asunto(s)
Helicobacter pylori , Sistemas de Secreción Tipo IV/química , Periplasma
11.
mBio ; 15(5): e0075923, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564675

RESUMEN

Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.


Asunto(s)
Genoma Bacteriano , Metagenoma , Filogenia , Rickettsia , Rickettsia/genética , Rickettsia/clasificación , Evolución Molecular , Rickettsiales/genética , Rickettsiales/clasificación , Variación Genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Transferencia de Gen Horizontal , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
12.
Commun Biol ; 7(1): 499, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664513

RESUMEN

Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.


Asunto(s)
Conjugación Genética , Plásmidos , Sistemas de Secreción Tipo IV , Plásmidos/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
13.
Emerg Microbes Infect ; 13(1): 2320929, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38530969

RESUMEN

The multi-drug resistant pathogen Acinetobacter baumannii has gained global attention as an important clinical challenge. Owing to its ability to survive on surfaces, its capacity for horizontal gene transfer, and its resistance to front-line antibiotics, A. baumannii has established itself as a successful pathogen. Bacterial conjugation is a central mechanism for pathogen evolution. The epidemic multidrug-resistant A. baumannii ACICU harbours a plasmid encoding a Type IV Secretion System (T4SS) with homology to the E. coli F-plasmid, and plasmids with homologous gene clusters have been identified in several A. baumannii sequence types. However the genetic and host strain diversity, global distribution, and functional ability of this group of plasmids is not fully understood. Using systematic analysis, we show that pACICU2 belongs to a group of almost 120 T4SS-encoding plasmids within four different species of Acinetobacter and one strain of Klebsiella pneumoniae from human and environmental origin, and globally distributed across 20 countries spanning 4 continents. Genetic diversity was observed both outside and within the T4SS-encoding cluster, and 47% of plasmids harboured resistance determinants, with two plasmids harbouring eleven. Conjugation studies with an extensively drug-resistant (XDR) strain showed that the XDR plasmid could be successfully transferred to a more divergent A. baumanii, and transconjugants exhibited the resistance phenotype of the plasmid. Collectively, this demonstrates that these T4SS-encoding plasmids are globally distributed and more widespread among Acinetobacter than previously thought, and that they represent an important potential reservoir for future clinical concern.


Asunto(s)
Acinetobacter baumannii , Sistemas de Secreción Tipo IV , Humanos , Escherichia coli/genética , Plásmidos , Antibacterianos/farmacología , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
14.
PLoS Genet ; 20(3): e1011088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437248

RESUMEN

Bacterial type IV secretion systems (T4SSs) are a versatile family of macromolecular translocators, collectively able to recruit diverse DNA and protein substrates and deliver them to a wide range of cell types. Presently, there is little understanding of how T4SSs recognize substrate repertoires and form productive contacts with specific target cells. Although T4SSs are composed of a number of conserved subunits and adopt certain conserved structural features, they also display considerable compositional and structural diversity. Here, we explored the structural bases underlying the functional versatility of T4SSs through systematic deletion and subunit swapping between two conjugation systems encoded by the distantly-related IncF plasmids, pED208 and F. We identified several regions of intrinsic flexibility among the encoded T4SSs, as evidenced by partial or complete functionality of chimeric machines. Swapping of VirD4-like TraD type IV coupling proteins (T4CPs) yielded functional chimeras, indicative of relaxed specificity at the substrate-TraD and TraD-T4SS interfaces. Through mutational analyses, we further delineated domains of the TraD T4CPs contributing to recruitment of cognate vs heterologous DNA substrates. Remarkably, swaps of components comprising the outer membrane core complexes, a few F-specific subunits, or the TraA pilins supported DNA transfer in the absence of detectable pilus production. Among sequenced enterobacterial species in the NCBI database, we identified many strains that harbor two or more F-like plasmids and many F plasmids lacking one or more T4SS components required for self-transfer. We confirmed that host cells carrying co-resident, non-selftransmissible variants of pED208 and F elaborate chimeric T4SSs, as evidenced by transmission of both plasmids. We propose that T4SS plasticity enables the facile assembly of functional chimeras, and this intrinsic flexibility at the structural level can account for functional diversification of this superfamily over evolutionary time and, on a more immediate time-scale, to proliferation of transfer-defective MGEs in nature.


Asunto(s)
Factor F , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Fimbrias/genética , Plásmidos/genética , ADN Bacteriano , Proteínas Bacterianas/metabolismo
15.
Biochem Cell Biol ; 102(3): 226-237, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377487

RESUMEN

We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by the cag pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Helicobacter pylori , Helicobacter pylori/enzimología , Humanos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Diseño de Fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Modelos Moleculares , Sitios de Unión , Relación Estructura-Actividad , Línea Celular Tumoral , Interleucina-8/metabolismo
16.
EMBO Rep ; 25(3): 1436-1452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38332152

RESUMEN

Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.


Asunto(s)
Proteínas Bacterianas , Xanthomonas , Humanos , Proteínas Bacterianas/metabolismo , Xanthomonas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Antibacterianos/metabolismo
17.
Can J Microbiol ; 70(4): 119-127, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176008

RESUMEN

Helicobacter pylori resistance to antibiotics is a growing problem and it increasingly leads to treatment failure. While the bacterium is present worldwide, the severity of clinical outcomes is highly dependent on the geographical origin and genetic characteristics of the strains. One of the major virulence factors identified in H. pylori is the cag pathogenicity island (cagPAI), which encodes a type IV secretion system (T4SS) used to translocate effectors into human cells. Here, we investigated the genetic variability of the cagPAI among 13 antibiotic-resistant H. pylori strains that were isolated from patient biopsies in Québec. Seven of the clinical strains carried the cagPAI, but only four could be readily cultivated under laboratory conditions. We observed variability of the sequences of CagA and CagL proteins that are encoded by the cagPAI. All clinical isolates induce interleukin-8 secretion and morphological changes upon co-incubation with gastric cancer cells and two of them produce extracellular T4SS pili. Finally, we demonstrate that molecule 1G2, a small molecule inhibitor of the Cagα protein from the model strain H. pylori 26695, reduces interleukin-8 secretion in one of the clinical isolates. Co-incubation with 1G2 also inhibits the assembly of T4SS pili, suggesting a mechanism for its action on T4SS function.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Interleucina-8/metabolismo , Infecciones por Helicobacter/microbiología
18.
Nat Rev Microbiol ; 22(3): 170-185, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37814112

RESUMEN

Considerable progress has been made in recent years in the structural and molecular biology of type IV secretion systems in Gram-negative bacteria. The latest advances have substantially improved our understanding of the mechanisms underlying the recruitment and delivery of DNA and protein substrates to the extracellular environment or target cells. In this Review, we aim to summarize these exciting structural and molecular biology findings and to discuss their functional implications for substrate recognition, recruitment and translocation, as well as the biogenesis of extracellular pili. We also describe adaptations necessary for deploying a breadth of processes, such as bacterial survival, host-pathogen interactions and biotic and abiotic adhesion. We highlight the functional and structural diversity that allows this extremely versatile secretion superfamily to function under different environmental conditions and in different bacterial species. Additionally, we emphasize the importance of further understanding the mechanism of type IV secretion, which will support us in combating antimicrobial resistance and treating type IV secretion system-related infections.


Asunto(s)
Fimbrias Bacterianas , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/química , Fimbrias Bacterianas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Bacterias Gramnegativas/metabolismo , ADN , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
19.
Front Cell Infect Microbiol ; 13: 1255852, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089815

RESUMEN

Many pathogens use Type III and Type IV protein secretion systems to secrete virulence factors from the bacterial cytosol into host cells. These systems operate through a one-step mechanism. The secreted substrates (protein or nucleo-protein complexes in the case of Type IV conjugative systems) are guided to the base of the secretion channel, where they are directly delivered into the host cell in an ATP-dependent unfolded state. Despite the numerous disparities between these secretion systems, here we have focused on the structural and functional similarities between both systems. In particular, on the structural similarity shared by one of the main ATPases (EscN and VirD4 in Type III and Type IV secretion systems, respectively). Interestingly, these ATPases also exhibit a structural resemblance to F1-ATPases, which suggests a common mechanism for substrate secretion. The correlation between structure and function of essential components in both systems can provide significant insights into the molecular mechanisms involved. This approach is of great interest in the pursuit of identifying inhibitors that can effectively target these systems.


Asunto(s)
Proteínas Bacterianas , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/metabolismo , Transporte de Proteínas , Adenosina Trifosfatasas , Sistemas de Secreción Tipo III/metabolismo
20.
Infect Immun ; 91(11): e0036523, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37843413

RESUMEN

The host type I interferon (IFN) response protects against Legionella pneumophila infections. Other bacterial pathogens inhibit type I IFN-mediated cell signaling; however, the interaction between this signaling pathway and L. pneumophila has not been well described. Here, we demonstrate that L. pneumophila inhibits the IFN-ß signaling pathway but does not inhibit IFN-γ-mediated cell signaling. The addition of IFN-ß to L. pneumophila-infected macrophages limited bacterial growth independently of NOS2 and reactive nitrogen species. The type IV secretion system of L. pneumophila is required to inhibit IFN-ß-mediated cell signaling. Finally, we show that the inhibition of the IFN-ß signaling pathway occurs downstream of STAT1 and STAT2 phosphorylation. In conclusion, our findings describe a novel host cell signaling pathway inhibited by L. pneumophila via its type IV secretion system.


Asunto(s)
Interferón Tipo I , Legionella pneumophila , Enfermedad de los Legionarios , Humanos , Legionella pneumophila/fisiología , Sistemas de Secreción Tipo IV , Interferón gamma/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...