Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 370
Filtrar
1.
Science ; 386(6720): 414-420, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39446952

RESUMEN

DNA transfer is ubiquitous in the human gut microbiota, especially among species of the order Bacteroidales. In silico analyses have revealed hundreds of mobile genetic elements shared between these species, yet little is known about the phenotypes they encode, their effects on fitness, or pleiotropic consequences for the recipient's genome. In this work, we show that acquisition of a ubiquitous integrative conjugative element (ICE) encoding a type VI secretion system (T6SS) shuts down the native T6SS of Bacteroides fragilis. Despite inactivating this T6SS, ICE acquisition increases the fitness of the B. fragilis transconjugant over its progenitor by arming it with the new T6SS. DNA transfer causes the strain to change allegiances so that it no longer targets ecosystem members with the same element yet is armed for communal defense.


Asunto(s)
Bacteroides fragilis , ADN Bacteriano , Microbioma Gastrointestinal , Transferencia de Gen Horizontal , Secuencias Repetitivas Esparcidas , Simbiosis , Sistemas de Secreción Tipo VI , Humanos , Bacteroides fragilis/genética , Conjugación Genética , Microbioma Gastrointestinal/genética , Aptitud Genética , Genoma Bacteriano , Sistemas de Secreción Tipo VI/genética , ADN Bacteriano/genética
2.
PLoS Negl Trop Dis ; 18(10): e0012585, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39405316

RESUMEN

Burkholderia pseudomallei (Bpm) is the causative agent of the disease melioidosis. As a facultative intracellular pathogen, Bpm has a complex lifestyle that culminates in cell-to-cell fusion and multinucleated giant cells (MNGCs) formation. The virulence factor responsible for MNGC formation is the type 6 secretion system (T6SS), a contractile nanomachine. MNGC formation is a cell-to-cell spread strategy that allows the bacteria to avoid the extracellular immune system and our previous data highlighted cell death, apoptosis, and inflammation as pathways significantly impacted by T6SS activity. Thusly, we investigated how the T6SS influences these phenotypes within the macrophage and pulmonary models of infection. Here we report that the T6SS is responsible for exacerbating apoptotic cell death during infection in both macrophages and the lungs of infected mice. We also demonstrate that although the T6SS does not influence differential macrophage polarization, the M2 polarization observed is potentially beneficial for Bpm pathogenesis and replication. Finally, we show that the T6SS contributes to the severity of inflammatory nodule formation in the lungs, which might be potentially connected to the amount of apoptosis that is triggered by the bacteria.


Asunto(s)
Apoptosis , Burkholderia pseudomallei , Macrófagos , Melioidosis , Sistemas de Secreción Tipo VI , Burkholderia pseudomallei/fisiología , Burkholderia pseudomallei/patogenicidad , Animales , Ratones , Macrófagos/microbiología , Macrófagos/inmunología , Melioidosis/microbiología , Melioidosis/patología , Melioidosis/inmunología , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Pulmón/microbiología , Pulmón/patología , Femenino , Factores de Virulencia/metabolismo , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C
3.
Microb Pathog ; 196: 106991, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39369755

RESUMEN

The Type VI secretory system (T6SS) is a key regulatory network in the bacterial system, which plays an important role in host-pathogen interactions and maintains cell homeostasis by regulating the release of effector proteins in specific competition. T6SS causes cell lysis or competitive inhibition by delivering effector molecules, such as toxic proteins and nucleic acids, directly from donor bacterial cells to eukaryotic or prokaryotic targets. Additionally, it orchestrates synthesis of immune effectors that counteract toxins thus preventing self-intoxication or antagonistic actions by competing microbes. Even so, the mechanism of toxin-antitoxin regulation in bacteria remains unclear. In response, this review discusses the bacterial T6SS's structure and function and the mechanism behind toxin-antitoxin secretion and the T6SS's expression in order to guide the further exploration of the pathogenic mechanism of the T6SS and the development of novel preparations for reducing and replacing toxins and antitoxins.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Sistemas de Secreción Tipo VI , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/inmunología , Antitoxinas/inmunología , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas Toxina-Antitoxina/genética , Bacterias/inmunología , Bacterias/metabolismo , Interacciones Huésped-Patógeno/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica
4.
Proc Natl Acad Sci U S A ; 121(44): e2414882121, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39441627

RESUMEN

The Type VI Secretion System (T6SS) is a sophisticated mechanism utilized by gram-negative bacteria to deliver toxic effector proteins into target cells, influencing microbial community dynamics and host interactions. In this study, we investigated the role of T6SSs in Snodgrassella alvi wkB2, a core bacterial symbiont of the honey bee gut microbiota. We generated single- and double-knockout mutants targeting essential genes (tssD and tssE) in both T6SS-1 and T6SS-2 and assessed their colonization and competition capabilities in vivo. Our results indicate that T6SSs are nonessential for colonization of the bee gut, although T6SS-2 mutant strains exhibited significantly lower colonization levels compared to the wild-type (WT) strain. Further, a defined community experiment showed that S. alvi wkB2 T6SSs do not significantly impact interspecific competition among core gut bacteria. However, cocolonization experiments with closely related S. alvi strains demonstrated that T6SS-1 plays a role in mediating intraspecific competition. Transcriptomic analysis of bee guts monocolonized by WT or T6SS mutants revealed differential expression of host immunity-related genes relative to microbiota-deprived bees, such as upregulation of the antimicrobial peptide apidaecin in the presence of WT S. alvi and the antimicrobial peptide defensin in the presence of T6SS-2 mutant S. alvi, suggesting that T6SSs contribute to shaping host immune responses. These findings provide insight into the ecological roles of T6SSs in the honey bee gut microbiota, emphasizing their importance in maintaining competitive dynamics and influencing host-bacterial interactions.


Asunto(s)
Microbioma Gastrointestinal , Simbiosis , Sistemas de Secreción Tipo VI , Animales , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Abejas/microbiología , Abejas/inmunología , Microbioma Gastrointestinal/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología , Interacciones Microbiota-Huesped/fisiología , Péptidos Catiónicos Antimicrobianos
5.
Nat Commun ; 15(1): 8709, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379370

RESUMEN

The type VI secretion system (T6SS) is a molecular machine utilised by many Gram-negative bacteria to deliver antibacterial toxins into adjacent cells. Here we present the structure of Tse15, a T6SS Rhs effector from the nosocomial pathogen Acinetobacter baumannii. Tse15 forms a triple layered ß-cocoon Rhs domain with an N-terminal α-helical clade domain and an unfolded C-terminal toxin domain inside the Rhs cage. Tse15 is cleaved into three domains, through independent auto-cleavage events involving aspartyl protease activity for toxin self-cleavage and a nucleophilic glutamic acid for N-terminal clade cleavage. Proteomic analyses identified that significantly more peptides from the N-terminal clade and toxin domains were secreted than from the Rhs cage, suggesting toxin delivery often occurs without the cage. We propose the clade domain acts as an internal chaperone to mediate toxin tethering to the T6SS machinery. Conservation of the clade domain in other Gram-negative bacteria suggests this may be a common mechanism for delivery.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Toxinas Bacterianas , Dominios Proteicos , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Modelos Moleculares , Proteómica/métodos , Secuencia de Aminoácidos , Cristalografía por Rayos X
6.
PLoS Biol ; 22(9): e3002734, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39226241

RESUMEN

Vibrio coralliilyticus is a pathogen of coral and shellfish, leading to devastating economic and ecological consequences worldwide. Although rising ocean temperatures correlate with increased V. coralliilyticus pathogenicity, the specific molecular mechanisms and determinants contributing to virulence remain poorly understood. Here, we systematically analyzed the type VI secretion system (T6SS), a contact-dependent toxin delivery apparatus, in V. coralliilyticus. We identified 2 omnipresent T6SSs that are activated at temperatures in which V. coralliilyticus becomes virulent; T6SS1 is an antibacterial system mediating interbacterial competition, whereas T6SS2 mediates anti-eukaryotic toxicity and contributes to mortality during infection of an aquatic model organism, Artemia salina. Using comparative proteomics, we identified the T6SS1 and T6SS2 toxin arsenals of 3 V. coralliilyticus strains with distinct disease etiologies. Remarkably, T6SS2 secretes at least 9 novel anti-eukaryotic toxins comprising core and accessory repertoires. We propose that T6SSs differently contribute to V. coralliilyticus's virulence: T6SS2 plays a direct role by targeting the host, while T6SS1 plays an indirect role by eliminating competitors.


Asunto(s)
Antozoos , Sistemas de Secreción Tipo VI , Vibrio , Animales , Vibrio/patogenicidad , Vibrio/genética , Vibrio/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Virulencia , Antozoos/microbiología , Artemia/microbiología , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Vibriosis/microbiología , Proteómica/métodos , Factores de Virulencia/metabolismo
7.
PLoS Biol ; 22(9): e3002788, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39231149

RESUMEN

The bacterial pathogen Vibrio coralliilyticus induces severe coral diseases in warming oceans. A study in PLOS Biology reveals that high temperatures activate 2 type VI secretion systems in V. coralliilyticus, enhancing pathogenicity by deploying toxic effectors against competing bacteria and coral cells.


Asunto(s)
Antozoos , Calor , Sistemas de Secreción Tipo VI , Vibrio , Vibrio/patogenicidad , Vibrio/fisiología , Antozoos/microbiología , Animales , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Virulencia , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
8.
J Bacteriol ; 206(10): e0014224, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39292012

RESUMEN

The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications. IMPORTANCE: Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.


Asunto(s)
Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Vibrio cholerae , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Genética/métodos
9.
Microb Pathog ; 196: 106932, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39303957

RESUMEN

Pseudomonas aeruginosa demonstrates a remarkable capacity for adaptation and survival in diverse environments. Furthermore, its clinical importance is underscored by its intrinsic and acquired resistance to a wide range of antimicrobial agents, posing a substantial challenge in healthcare settings. Amidst this complex landscape of resistance, the Type VI Secretion System (T6SS) in P. aeruginosa adds yet another layer of intricacy and allows bacteria to engage in interbacterial competition, potentially influencing their resilience and pathogenicity. Whole genome sequencing (WGS) was conducted on the five isolates under investigation, enabling the identification of antibiotic resistance genes (ARGs) and mutations associated with resistance. All isolates exhibit class C and D ß-lactamases, displaying variant differences. The Resistance-nodulation-division (RND) antibiotic efflux pumps, crucial for multidrug resistance, have been encoded chromosomally. When exploring the role of the T6SS in urinary tract infections involving other bacteria, it was noted that P. aeruginosa isolates exhibited reduced counts when co-cultivated with other bacteria. The downregulation of the tssJ gene, associated with the T6SS under bacterial stress, and the exclusion of several cluster genes in this study suggest the hypothesis of a basal state rather than an attack/defence mechanism in the initial contact.


Asunto(s)
Antibacterianos , Genoma Bacteriano , Pseudomonas aeruginosa , Sistemas de Secreción Tipo VI , Secuenciación Completa del Genoma , beta-Lactamasas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Antibacterianos/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Genoma Bacteriano/genética , Infecciones por Pseudomonas/microbiología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Farmacorresistencia Bacteriana/genética , Mutación , Pruebas de Sensibilidad Microbiana , Adaptación Fisiológica/genética , Genómica , Infecciones Urinarias/microbiología , Interacciones Microbianas
10.
Infect Immun ; 92(9): e0050023, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39166846

RESUMEN

Type VI secretion systems (T6SSs) are complex molecular machines that allow bacteria to deliver toxic effector proteins to neighboring bacterial and eukaryotic cells. Although initial work focused on the T6SS as a virulence mechanism of human pathogens, the field shifted to examine the use of T6SSs for interbacterial competition in various environments, including in the plant rhizosphere. Genes encoding the T6SS are estimated to be found in a quarter of all Gram-negative bacteria and are especially highly represented in Proteobacteria, a group which includes the most important bacterial phytopathogens. Many of these pathogens encode multiple distinct T6SS gene clusters which can include the core components of the apparatus as well as effector proteins. The T6SS is deployed by pathogens at multiple points as they colonize their hosts and establish an infection. In this review, we describe what is known about the use of T6SS by phytopathogens against plant hosts and non-plant organisms, keeping in mind that the structure of plants requires unique mechanisms of attack that are distinct from the mechanisms used for interbacterial interactions and against animal hosts. While the interactions of specific effectors (such as phospholipases, endonucleases, peptidases, and amidases) with targets have been well described in the context of interbacterial competition and in some eukaryotic interactions, this review highlights the need for future studies to assess the activity of phytobacterial T6SS effectors against plant cells.


Asunto(s)
Enfermedades de las Plantas , Plantas , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
11.
J Agric Food Chem ; 72(34): 19155-19166, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39161106

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common foodborne enteric pathogen that infects humans or mammals and colonizes the intestinal tract primarily by invading the host following ingestion. Meanwhile, ClpV is a core secreted protein of the bacterial type VI secretion system (T6SS). Because elucidating ClpV's role in the pathogenesis of T6SS is pivotal for revealing the virulence mechanism of Salmonella, in our study, clpV gene deletion mutants were constructed using a λ-red-based recombination system, and the effect of clpV mutation on SL1344's pathogenicity was examined in terms of stress resistance, motility, cytokine secretion, gut microbiota, and a BALB/c mouse model. Among the results, ClpV affected SL1344's motility and was also involved in cell invasion, adhesion, and intracellular survival in the MDBK cell model but did not affect invasion or intracellular survival in the RAW264.7 cell model. Moreover, clpV gene deletion significantly reduced the transcription levels of GBP2b, IFNB1, IL-6, NLRP3, NOS2, and TNF-α proinflammatory factor levels but significantly increased transcription levels of IL-4 and IL-10 anti-inflammatory factors. Last, ClpV appeared to closely relate to the pathogenicity of S. Typhimurium in vivo, which can change the gut environment and cause dysbiosis of gut microbiota. Our findings elucidate the functions of ClpV in S. Typhimurium and illustrating interactions between T6SS and gut microbiota help to clarify the mechanisms of the pathogenesis of foodborne diseases.


Asunto(s)
Proteínas Bacterianas , Microbioma Gastrointestinal , Ratones Endogámicos BALB C , Salmonella typhimurium , Animales , Femenino , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células RAW 264.7 , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/inmunología , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/genética , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Virulencia , Bovinos
12.
Microbiol Spectr ; 12(10): e0118124, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39162543

RESUMEN

The marine bacterium Vibrio parahaemolyticus is a major cause of seafood-borne gastroenteritis in humans and of acute hepatopancreatic necrosis disease in shrimp. Bile acids, produced by the host and modified into secondary bile acids by commensal bacteria in the gastrointestinal tract, induce the virulence factors leading to disease in humans and shrimp. Here, we show that secondary bile acids also activate this pathogen's type VI secretion system 1, a toxin delivery apparatus mediating interbacterial competition. This finding implies that Vibrio parahaemolyticus exploits secondary bile acids to activate its virulence factors and identify the presence of commensal bacteria that it needs to outcompete in order to colonize the host.IMPORTANCEBacterial pathogens often manipulate their host and cause disease by secreting toxic proteins. However, to successfully colonize a host, they must also remove commensal bacteria that reside in it and may compete with them over resources. Here, we find that the same host-derived molecules that activate the secreted virulence toxins in a gut bacterial pathogen, Vibrio parahaemolyticus, also activate an antibacterial toxin delivery system that targets such commensal bacteria. These findings suggest that a pathogen can use one cue to launch a coordinated, trans-kingdom attack that enables it to colonize a host.


Asunto(s)
Ácidos y Sales Biliares , Sistemas de Secreción Tipo VI , Vibriosis , Vibrio parahaemolyticus , Factores de Virulencia , Vibrio parahaemolyticus/metabolismo , Vibrio parahaemolyticus/patogenicidad , Vibrio parahaemolyticus/efectos de los fármacos , Vibrio parahaemolyticus/genética , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Factores de Virulencia/metabolismo , Animales , Vibriosis/microbiología , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Penaeidae/microbiología , Tracto Gastrointestinal/microbiología , Microbioma Gastrointestinal , Virulencia
13.
Commun Biol ; 7(1): 958, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117895

RESUMEN

Vibrio species are recognized for their role in food- and water-borne diseases in humans, fish, and aquatic invertebrates. We screened bacterial strains isolated from raw food shrimp for those that are bactericidal to Vibrio strains. Here we identify and characterize Aeromonas dhakensis strain A603 which shows robust bactericidal activity specifically towards Vibrio and related taxa but less potency toward other Gram-negative species. Using the A603 genome and genetic analysis, we show that two antibacterial mechanisms account for its vibriocidal activity -- a highly potent Type Six Secretion System (T6SS) and biosynthesis of a vibriocidal phenazine-like small molecule, named here as Ad-Phen. Further analysis indicates coregulation between Ad-Phen and a pore-forming T6SS effector TseC, which potentiates V. cholerae to killing by Ad-Phen.


Asunto(s)
Vibrio , Vibrio/metabolismo , Vibrio/genética , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Aeromonas/metabolismo , Aeromonas/genética , Antibacterianos/farmacología , Animales , Sistemas de Secreción Bacterianos/metabolismo , Sistemas de Secreción Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
14.
Front Cell Infect Microbiol ; 14: 1379106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193505

RESUMEN

Background: Type VI secretion system (T6SS) is widely present in Gram-negative bacteria and directly mediates antagonistic prokaryote interactions. PAAR (proline-alanine-alanine-arginine repeats) proteins have been proven essential for T6SS-mediated secretion and target cell killing. Although PAAR proteins are commonly found in A. baumannii, their biological functions are not fully disclosed yet. In this study, we investigated the functions of a PAAR protein termed TagP (T6SS-associated-gene PAAR), encoded by the gene ACX60_RS09070 outside the core T6SS locus of A. baumannii strain ATCC 17978. Methods: In this study, tagP null and complement A. baumannii ATCC 17978 strains were constructed. The influence of TagP on T6SS function was investigated through Hcp detection and bacterial competition assay; the influence on environmental fitness was studied through in vitro growth, biofilm formation assay, surface motility assay, survivability in various simulated environmental conditions; the influence on pathogenicity was explored through cell adhesion and invasion assays, intramacrophage survival assay, serum survival assay, and G. melonella Killing assays. Quantitative transcriptomic and proteomic analyses were utilized to observe the global impact of TagP on bacterial status. Results: Compared with the wildtype strain, the tagP null mutant was impaired in several tested phenotypes such as surface motility, biofilm formation, tolerance to adverse environments, adherence to eukaryotic cells, endurance to serum complement killing, and virulence to Galleria melonella. Notably, although RNA-Seq and proteomics analysis revealed that many genes were significantly down-regulated in the tagP null mutant compared to the wildtype strain, there is no significant difference in their antagonistic abilities. We also found that Histone-like nucleoid structuring protein (H-NS) was significantly upregulated in the tagP null mutant at both mRNA and protein levels. Conclusions: This study enriches our understanding of the biofunction of PAAR proteins in A. baumannii. The results indicates that TagP involved in a unique modulation of fitness and virulence control in A. baumannii, it is more than a classic PAAR protein involved in T6SS, while how TagP play roles in the fitness and virulence of A. baumannii needs further investigation to clarify.


Asunto(s)
Acinetobacter baumannii , Proteínas Bacterianas , Biopelículas , Sistemas de Secreción Tipo VI , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidad , Acinetobacter baumannii/metabolismo , Virulencia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Biopelículas/crecimiento & desarrollo , Animales , Regulación Bacteriana de la Expresión Génica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Proteómica , Perfilación de la Expresión Génica , Adhesión Bacteriana/genética , Ratones , Infecciones por Acinetobacter/microbiología , Aptitud Genética , Macrófagos/microbiología , Proteoma
15.
Curr Microbiol ; 81(10): 330, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196442

RESUMEN

The type VI secretion system 2 (T6SS2) gene cluster of Vibrio parahaemolyticus comprises three operons: VPA1027-1024, VPA1043-1028, and VPA1044-1046. AcsS is a LysR-like transcriptional regulator that play a role in activating flagella-driven motility in V. parahaemolyticus. However, its potential roles in other cellular pathways remain poorly understood. In this study, we conducted a series of experiments to investigate the regulatory effects of AcsS on the transcription of VPA1027 (hcp2), VPA1043, and VPA1044. The findings revealed that AcsS indirectly inhibits the transcription of these genes. Additionally, deletion of acsS resulted in enhanced adhesion of V. parahaemolyticus to HeLa cells. However, disruption of T6SS2 alone or in conjunction with AcsS significantly diminished the adhesion capacity of V. parahaemolyticus to HeLa cells. Therefore, it is suggested that AcsS suppresses cell adhesion in V. parahaemolyticus by downregulating the transcription of T6SS2 genes.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Sistemas de Secreción Tipo VI , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo , Células HeLa , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Adhesión Bacteriana/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Familia de Multigenes
16.
Emerg Microbes Infect ; 13(1): 2396872, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39193622

RESUMEN

The type VI secretion system (T6SS) is essential for Gram-negative bacteria to antagonize a wide variety of prokaryotic and eukaryotic competitors and thus gain survival advantages. Two sets of T6SS have been found in Vibrio fluvialis, namely VflT6SS1 and VflT6SS2, among which VflT6SS2 is functionally expressed. The CqsA/LuxS-HapR quorum sensing (QS) system with CAI-1 and AI-2 as signal molecules can regulate VflT6SS2 by regulators LuxO and HapR, with LuxO repressing while HapR activating VflT6SS2. Quorum regulatory small RNAs (Qrr sRNAs) are Hfq-dependent trans-encoded sRNAs that control Vibrio quorum sensing. In V. fluvialis, Qrr sRNAs have not been characterized and their regulatory function is unknown. In this study, we first identified four Qrr sRNAs in V. fluvialis and demonstrated that these Qrr sRNAs are regulated by LuxO and involved in the modulation of VflT6SS2 function. On the one hand, Qrr sRNAs act on HapR, the activator of both the major and the auxiliary clusters of VflT6SS2, and then indirectly repress VflT6SS2. On the other hand, they directly repress VflT6SS2 by acting on tssB2 and tssD2_a, the first gene of the major cluster and the highly transcriptional one among the two units of the first auxiliary cluster, respectively. Our results give insights into the role of Qrr sRNAs in CAI-1/AI-2 based QS and VflT6SS2 modulation in V. fluvialis and further enhance understandings of the network between QS and T6SS regulation in Vibrio species.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , Sistemas de Secreción Tipo VI , Vibrio , Vibrio/genética , Vibrio/metabolismo , Vibrio/fisiología , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo
17.
mBio ; 15(10): e0032324, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39191402

RESUMEN

Soilborne Ralstonia solanacearum species complex (RSSC) pathogens disrupt microbial communities as they invade roots and fatally wilt plants. RSSC pathogens secrete antimicrobial toxins using a type VI secretion system (T6SS). To investigate how evolution and ecology have shaped the T6SS of these bacterial pathogens, we analyzed the T6SS gene content and architecture across the RSSC and their evolutionary relatives. Our analysis reveals that two ecologically similar Burkholderiaceae taxa, xylem-pathogenic RSSC and Paracidovorax, have convergently evolved to wield large arsenals of T6SS toxins. To understand the mechanisms underlying genomic enrichment of T6SS toxins, we compiled an atlas of 1,066 auxiliary T6SS toxin clusters ("aux" clusters) across 99 high-quality RSSC genomes. We classified 25 types of aux clusters with toxins that predominantly target lipids, nucleic acids, or unknown cellular substrates. The aux clusters were located in diverse genetic neighborhoods and had complex phylogenetic distributions, suggesting frequent horizontal gene flow. Phages and other mobile genetic elements account for most of the aux cluster acquisition on the chromosome but very little on the megaplasmid. Nevertheless, RSSC genomes were more enriched in aux clusters on the megaplasmid. Although the single, ancestral T6SS was broadly conserved in the RSSC, the T6SS has been convergently lost in atypical, non-soilborne lineages. Overall, our data suggest dynamic interplay between the lifestyle of RSSC lineages and the evolution of T6SSes with robust arsenals of toxins. This pangenomic atlas poises the RSSC as an emerging, tractable model to understand the role of the T6SS in shaping pathogen populations.IMPORTANCEWe explored the eco-evolutionary dynamics that shape the inter-microbial warfare mechanisms of a globally significant plant pathogen, the Ralstonia solanacearum species complex. We discovered that most Ralstonia wilt pathogens have evolved extensive and diverse repertoires of type VI secretion system-associated antimicrobial toxins. These expansive toxin arsenals potentially enhance the ability of Ralstonia pathogens to invade plant microbiomes, enabling them to rapidly colonize and kill their host plants. We devised a classification system to categorize the Ralstonia toxins. Interestingly, many of the toxin gene clusters are encoded on mobile genetic elements, including prophages, which may be mutualistic symbionts that enhance the inter-microbial competitiveness of Ralstonia wilt pathogens. Moreover, our findings suggest that the convergent loss of this multi-gene trait contributes to genome reduction in two vector-transmitted lineages of Ralstonia pathogens. Our findings demonstrate that the interplay between microbial ecology and pathogen lifestyle shapes the evolution of a genetically complex antimicrobial weapon.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Filogenia , Ralstonia solanacearum , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Enfermedades de las Plantas/microbiología , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , Burkholderiaceae/clasificación , Familia de Multigenes , Ralstonia/genética , Ralstonia/metabolismo , Genómica , Transferencia de Gen Horizontal
18.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39073907

RESUMEN

Many bacteria kill competitors using short-range weapons, such as the Type VI secretion system and contact dependent inhibition (CDI). Although these weapons can deliver powerful toxins, they rely on direct contact between attacker and target cells. We hypothesized that movement enables attackers to contact more targets and thus greatly empower their weapons. To explore this, we developed individual-based and continuum models of contact-dependent combat which show that motility greatly improves toxin delivery through two underlying processes. First, genotypic mixing increases the inter-strain contact probability of attacker and sensitive cells. Second, target switching ensures attackers constantly attack new cells, instead of repeatedly hitting the same cell. We test our predictions with the pathogen Pseudomonas aeruginosa, using genetically engineered strains to study the interaction between CDI and twitching motility. As predicted, we find that motility works synergistically with CDI, in some cases increasing weapon efficacy up to 10,000-fold compared with non-motile scenarios. Moreover, we demonstrate that both mixing processes occur using timelapse single-cell microscopy and quantify their relative importance by combining experimental data with our model. Our work shows how bacteria can combine cell movement with contact-based weapons to launch powerful attacks on their competitors.


Asunto(s)
Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Inhibición de Contacto , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Modelos Biológicos
19.
mBio ; 15(8): e0035524, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38990002

RESUMEN

The Type VI secretion system (T6SS) is a multicomponent apparatus, present in many Gram-negative bacteria, which can inhibit bacterial prey in various ecological niches. Pseudomonas aeruginosa assembles one of its three T6SS (H1-T6SS) to respond to attacks from adjacent competing bacteria. Surprisingly, repeated assemblies of the H1-T6SS, termed dueling, were described in a monoculture in the absence of an attacker strain; however, the underlying mechanism was unknown. Here, we explored the role of H2-T6SS of P. aeruginosa in triggering H1-T6SS assembly. We show that H2-T6SS inactivation in P. aeruginosa causes a significant reduction in H1-T6SS dueling and that H2-T6SS activity directly triggers retaliation by the H1-T6SS. Intraspecific competition experiments revealed that elimination of H2-T6SS in non-immune prey cells conferred protection from H1-T6SS. Moreover, we show that the H1-T6SS response is triggered independently of the characterized lipase effectors of the H2-T6SS, as well as those of Acinetobacter baylyi and Vibrio cholerae. Our results suggest that H1-T6SS response to H2-T6SS in P. aeruginosa can impact intraspecific competition, particularly when the H1-T6SS effector-immunity pairs differ between strains, and could determine the outcome of multistrain colonization.IMPORTANCEThe opportunistic pathogen Pseudomonas aeruginosa harbors three different Type VI secretion systems (H1, H2, and H3-T6SS), which can translocate toxins that can inhibit bacterial competitors or inflict damage to eukaryotic host cells. Unlike the unregulated T6SS assembly in other Gram-negative bacteria, the H1-T6SS in P. aeruginosa is precisely assembled as a response to various cell damaging attacks from neighboring bacterial cells. Surprisingly, it was observed that neighboring P. aeruginosa cells repeatedly assemble their H1-T6SS toward each other. Mechanisms triggering this "dueling" behavior between sister cells were unknown. In this report, we used a combination of microscopy, genetic and intraspecific competition experiments to show that H2-T6SS initiates H1-T6SS dueling. Our study highlights the interplay between different T6SS clusters in P. aeruginosa, which may influence the outcomes of multistrain competition in various ecological settings such as biofilm formation and colonization of cystic fibrosis lungs.


Asunto(s)
Pseudomonas aeruginosa , Sistemas de Secreción Tipo VI , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Acinetobacter/genética , Acinetobacter/metabolismo , Acinetobacter/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Vibrio cholerae/genética , Vibrio cholerae/fisiología , Vibrio cholerae/metabolismo , Interacciones Microbianas
20.
mBio ; 15(7): e0146824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38916378

RESUMEN

Pathogenic bacteria of the Acinetobacter genus pose a severe threat to human health worldwide due to their strong adaptability, tolerance, and antibiotic resistance. Most isolates of these bacteria harbor a type VI secretion system (T6SS) that allows them to outcompete co-residing microorganisms, but whether this system is involved in acquiring nutrients from preys remains less studied. In this study, we found that Ab25, a clinical isolate of Acinetobacter nosocomialis, utilizes a T6SS to kill taxonomically diverse microorganisms, including bacteria and fungi. The T6SS of Ab25 is constitutively expressed, and among the three predicted effectors, T6e1, a member of the RHS effector family, contributes the most for its antimicrobial activity. T6e1 undergoes self-cleavage, and a short carboxyl fragment with nuclease activity is sufficient to kill target cells via T6SS injection. Interestingly, strain Ab25 encodes an orphan VgrG protein, which when overexpressed blocks the firing of its T6SS. In niches such as dry plastic surfaces, the T6SS promotes prey microorganism-dependent survival of Ab25. These results reveal that A. nosocomialis employs T6SSs that are highly diverse in their regulation and effector composition to gain a competitive advantage in environments with scarce nutrient supply and competing microbes.IMPORTANCEThe type VI secretion system (T6SS) plays an important role in bacterial adaptation to environmental challenges. Members of the Acinetobacter genus, particularly A. baumannii and A. nosocomialis, are notorious for their multidrug resistance and their ability to survive in harsh environments. In contrast to A. baumannii, whose T6SS has been well-studied, few research works have focused on A. nosocomialis. In this study, we found that an A. nosocomialis strain utilizes a contitutively active T6SS to kill diverse microorganisms, including bacteria and fungi. Although T6SS structural proteins of A. nosocomialis are similar to those of A. baumannii, the effector repertoire differs greatly. Interestingly, the T6SS of the A. nosocomialis strain codes for an ophan VgrG protein, which blocks the firing of the system when overexpressed, suggesting the existence of a new regulatory mechanism for the T6SS. Importantly, although the T6SS does not provide an advantage when the bacterium is grown in nutrient-rich medium, it allows A. nosocomialis to survive better in dry surfaces that contain co-existing bacteria. Our results suggest that killing of co-residing microorganisms may increase the effectiveness of strategies designed to reduce the fitness of Acinetobacter bacteria by targeting their T6SS.


Asunto(s)
Acinetobacter , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Sistemas de Secreción Tipo VI/genética , Acinetobacter/genética , Acinetobacter/metabolismo , Acinetobacter/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Acinetobacter/microbiología , Humanos , Viabilidad Microbiana , Hongos/genética , Hongos/metabolismo , Hongos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...