Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Microbiol ; 115(3): 395-411, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33251695

RESUMEN

The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.


Asunto(s)
Adaptación Fisiológica , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/fisiología , Flagelos/fisiología , Sistemas de Translocación de Proteínas/fisiología , Sistemas de Secreción Tipo III/fisiología , Animales , Evolución Biológica , Humanos , Factores de Virulencia/metabolismo
2.
Cell ; 181(3): 637-652.e15, 2020 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-32272059

RESUMEN

Many cytosolic proteins lacking a signal peptide, called leaderless cargoes, are secreted through unconventional secretion. Vesicle trafficking is a major pathway involved. It is unclear how leaderless cargoes enter into the vesicle. Here, we find a translocation pathway regulating vesicle entry and secretion of leaderless cargoes. We identify TMED10 as a protein channel for the vesicle entry and secretion of many leaderless cargoes. The interaction of TMED10 C-terminal region with a motif in the cargo accounts for the selective release of the cargoes. In an in vitro reconstitution assay, TMED10 directly mediates the membrane translocation of leaderless cargoes into the liposome, which is dependent on protein unfolding and enhanced by HSP90s. In the cell, TMED10 localizes on the endoplasmic reticulum (ER)-Golgi intermediate compartment and directs the entry of cargoes into this compartment. Furthermore, cargo induces the formation of TMED10 homo-oligomers which may act as a protein channel for cargo translocation.


Asunto(s)
Sistemas de Translocación de Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte Biológico , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Señales de Clasificación de Proteína , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología , Proteínas/metabolismo , Vías Secretoras , Proteínas de Transporte Vesicular/fisiología
3.
Biochim Biophys Acta Biomembr ; 1862(1): 183019, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31302079

RESUMEN

Membrane protein folding studies lag behind those of water-soluble proteins due to immense difficulties of experimental study, resulting from the need to provide a hydrophobic lipid-bilayer environment when investigated in vitro. A sound understanding of folding mechanisms is important for membrane proteins as they contribute to a third of the proteome and are frequently associated with disease when mutated and/or misfolded. Membrane proteins largely consist of α-helical, hydrophobic transmembrane domains, which insert into the membrane, often using the SecYEG/Sec61 translocase system. This mini-review highlights recent advances in techniques that can further our understanding of co-translational folding and notably, the structure and insertion of nascent chains as they emerge from translating ribosomes. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.


Asunto(s)
Proteínas de la Membrana/química , Pliegue de Proteína , Sistemas de Translocación de Proteínas/fisiología , Animales , Humanos , Ribosomas/fisiología , Canales de Translocación SEC/metabolismo
4.
Cell Chem Biol ; 26(9): 1306-1314.e5, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31204288

RESUMEN

The proteinaceous extracellular matrix (ECM) is vital for the survival, proliferation, migration, and differentiation of many types of cancer. However, little is known regarding metabolic pathways required for ECM secretion. By using an unbiased computational approach, we searched for enzymes whose suppression may lead to disruptions in protein secretion. Here, we show that 6-phosphogluconate dehydrogenase (PGD), a cytosolic enzyme involved in carbohydrate metabolism, is required for ER structural integrity and protein secretion. Chemical inhibition or genetic suppression of PGD activity led to cell stress accompanied by significantly expanded ER volume and was rescued by compensating endogenous glutathione supplies. Our results also suggest that this characteristic ER-dilation phenotype may be a general marker indicating increased ECM protein congestion inside cells and decreased secretion. Thus, PGD serves as a link between cytosolic carbohydrate metabolism and protein secretion.


Asunto(s)
Metabolismo de los Hidratos de Carbono/fisiología , Glutatión/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Sistemas de Translocación de Proteínas/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Matriz Extracelular/metabolismo , Humanos , Fosfogluconato Deshidrogenasa/fisiología , Sistemas de Translocación de Proteínas/fisiología
5.
Protein J ; 38(3): 236-248, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31187382

RESUMEN

The past several decades have witnessed tremendous growth in the protein targeting, transport and translocation field. Major advances were made during this time period. Now the molecular details of the targeting factors, receptors and the membrane channels that were envisioned in Blobel's Signal Hypothesis in the 1970s have been revealed by powerful structural methods. It is evident that there is a myriad of cytosolic and membrane associated systems that accurately sort and target newly synthesized proteins to their correct membrane translocases for membrane insertion or protein translocation. Here we will describe the common principles for protein transport in prokaryotes and eukaryotes.


Asunto(s)
Chaperonas Moleculares/fisiología , Señales de Clasificación de Proteína , Sistemas de Translocación de Proteínas , Proteínas/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/química , Sistemas de Translocación de Proteínas/química , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas , Canales de Translocación SEC/química , Levaduras/metabolismo
6.
Int Wound J ; 15(5): 807-813, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29897658

RESUMEN

The aim of this study was to compare protein secretion on intact skin of extremities and verify the relationship between the marker proteins on abdominal skin and systemic factors using skin blotting. A cross-sectional study was conducted among elderly patients aged 65 years and older (N = 73) at a long-term medical facility in Japan. Skin blotting was performed on the right and left forearms, right and left lower legs, and abdomen. Pearson's correlations and Bland-Altman plots were utilised for comparing the protein secretion from the skin between the right or left forearms or lower legs. Multiple regression analysis was applied to determine the relationship between intensity levels of 3 proteins on the abdominal skin and the systemic factors. Bland-Altman plots demonstrated that there was no significant difference between right and left secretion levels on the forearms and lower legs among 3 proteins. Multiple regression analysis showed that age and antiplatelet use was positively associated with decreased collagen type IV and increased matrix metalloproteinase 2 levels, respectively. Our findings suggested that collecting samples from either the right or the left skin would be sufficient if skin properties between arms and legs are evaluated using skin blotting.


Asunto(s)
Abdomen/fisiología , Brazo/fisiología , Biomarcadores/análisis , Pierna/fisiología , Sistemas de Translocación de Proteínas/fisiología , Envejecimiento de la Piel/fisiología , Piel/química , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Japón , Masculino , Reproducibilidad de los Resultados
7.
Curr Biol ; 28(8): R406-R410, 2018 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-29689224

RESUMEN

A big surprise in the molecular cell biology of eukaryotes has been the discovery of pathways of protein secretion that are not linked to the endoplasmic reticulum (ER) and the Golgi apparatus. Various kinds of unconventional secretory processes have been described, including two major pathways for two distinct sets of cargoes that are initially synthesized as soluble proteins in the cytoplasm. These two pathways are mechanistically distinct from one another. One is based upon direct protein translocation across lipidic pores in the plasma membrane (type I unconventional secretion). The second pathway involves the recruitment of cytoplasmic proteins into vesicular compartments of the endocytic membrane system that fuse with the plasma membrane to release proteins into the extracellular space (type III unconventional secretion). This primer highlights the mechanisms and molecular machineries of these pathways that were discovered with fibroblast growth factor 2 (FGF2; type I) and acyl-CoA binding protein (Acb1; type III) as the most prominent cargo proteins. Furthermore, the physiological significance of these secretory routes in both health and disease is discussed for a broader range of cargo proteins.


Asunto(s)
Sistemas de Translocación de Proteínas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología , Animales , Transporte Biológico , Membrana Celular/metabolismo , Membrana Celular/fisiología , Citoplasma/metabolismo , Citoplasma/fisiología , Inhibidor de la Unión a Diazepam/metabolismo , Retículo Endoplásmico/metabolismo , Eucariontes/metabolismo , Eucariontes/fisiología , Células Eucariotas/metabolismo , Espacio Extracelular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Humanos
8.
Neuromolecular Med ; 20(1): 18-36, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29423895

RESUMEN

In eukaryotes, the cellular functions are segregated to membrane-bound organelles. This inherently requires sorting of metabolites to membrane-limited locations. Sorting the metabolites from ribosomes to various organelles along the intracellular trafficking pathways involves several integral cellular processes, including an energy-dependent step, in which the sorting of metabolites between organelles is catalyzed by membrane-anchoring protein Rab-GTPases (Rab). They contribute to relaying the switching of the secretory proteins between hydrophobic and hydrophilic environments. The intracellular trafficking routes include exocytic and endocytic pathways. In these pathways, numerous Rab-GTPases are participating in discrete shuttling of cargoes. Long-distance trafficking of cargoes is essential for neuronal functions, and Rabs are critical for these functions, including the transport of membranes and essential proteins for the development of axons and neurites. Rabs are also the key players in exocytosis of neurotransmitters and recycling of neurotransmitter receptors. Thus, Rabs are critical for maintaining neuronal communication, as well as for normal cellular physiology. Therefore, cellular defects of Rab components involved in neural functions, which severely affect normal brain functions, can produce neurological complications, including several neurodegenerative diseases. In this review, we provide a comprehensive overview of the current understanding of the molecular signaling pathways of Rab proteins and the impact of their defects on different neurodegenerative diseases. The insights gathered into the dynamics of Rabs that are described in this review provide new avenues for developing effective treatments for neurodegenerative diseases-associated with Rab defects.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/enzimología , Neuronas/metabolismo , Proteínas de Unión al GTP rab/fisiología , Compartimento Celular , Cilios/enzimología , Endocitosis , Exocitosis , Glicosilfosfatidilinositoles/fisiología , Homeostasis , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Enfermedades del Sistema Nervioso/enzimología , Neuritas/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/ultraestructura , Conformación Proteica , Prenilación de Proteína , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-28611954

RESUMEN

Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Membrana Celular/fisiología , Bacterias Gramnegativas/citología , Sistemas de Translocación de Proteínas/fisiología , Toxinas Bacterianas/metabolismo , Membrana Celular/química , Pared Celular/metabolismo , Lipopolisacáridos , Imagen Óptica/métodos , Biogénesis de Organelos , Transporte de Proteínas/fisiología , Sistemas de Secreción Tipo I , Sistemas de Secreción Tipo II , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo IV , Sistemas de Secreción Tipo V , Sistemas de Secreción Tipo VI , Virulencia
10.
BMB Rep ; 50(5): 257-262, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28256197

RESUMEN

The subcellular localization of Bax plays a crucial role during apoptosis. In response to apoptotic stimuli, Bax translocates from the cytoplasm to the mitochondria, where it promotes the release of cytochrome c to the cytoplasm. In cells infected with HSV-1, apoptosis is triggered or blocked by diverse mechanisms. In this study, we demonstrate how HSV-1 ICP27 induces apoptosis and modulates mitochondrial membrane potential in HEK 293T cells. We found that ICP27 interacts with 14-3-3θ which sequesters Bax to the cytoplasm. In addition, ICP27 promotes the translocation of Bax to the mitochondria by inhibiting the interaction between 14-3-3θ and Bax. Our findings may provide a novel apoptotic regulatory pathway induced by ICP27 during HSV-1 infection. [BMB Reports 2017; 50(5): 257-262].


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas 14-3-3/genética , Apoptosis/genética , Apoptosis/fisiología , Proteínas Portadoras/metabolismo , Caspasas/metabolismo , Citocromos c/metabolismo , Citoplasma , Células HEK293 , Herpesvirus Humano 1 , Humanos , Mitocondrias , Sistemas de Translocación de Proteínas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
11.
J Microbiol Biotechnol ; 27(4): 791-807, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28119513

RESUMEN

The type II secretion system (T2SS), which transports selected periplasmic proteins across the outer membrane, has rarely been studied in nonpathogens or in organisms classified as Betaproteobacteria. Therefore, we studied Cupriavidus metallidurans (Cme), a facultative chemilithoautotroph. Gel analysis of extracellular proteins revealed no remarkable differences between the wild type and the T2SS mutants. However, enzyme assays revealed that native extracellular alkaline phosphatase is a T2SS substrate, because activity was 10-fold greater for the wild type than a T2SS mutant. In Cme engineered to produce three Ralstonia solanacearum (Rso) exoenzymes, at least 95% of their total activities were extracellular, but unexpectedly high percentages of these exoenzymes remained extracellular in T2SS mutants cultured in rich broth. These conditions appear to permit an alternative secretion process, because neither cell lysis nor periplasmic leakage was observed when Cme produced a Pectobacterium carotovorum exoenzyme, and wild-type Cme cultured in minimal medium secreted 98% of Rso polygalacturonase, but 92% of this exoenzyme remained intracellular in T2SS mutants. We concluded that Cme has a functional T2SS despite lacking any abundant native T2SS substrates. The efficient secretion of three foreign exoenzymes by Cme is remarkable, but so too is the indication of an alternative secretion process in rich culture conditions. When not transiting the T2SS, we suggest that Rso exoenzymes are probably selectively packaged into outer membrane vesicles. Phylogenetic analysis of T2SS proteins supports the existence of at least three T2SS subfamilies, and we propose that Cme, as a representative of the Betaproteobacteria, could become a new useful model system for studying T2SS substrate specificity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cupriavidus/enzimología , Cupriavidus/metabolismo , Sistemas de Secreción Tipo II/metabolismo , Sistemas de Secreción Tipo II/fisiología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Transporte Biológico , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Celulasa/genética , Celulasa/metabolismo , Cupriavidus/genética , ADN Bacteriano , Pruebas de Enzimas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Familia de Multigenes/genética , Mutación , Pectobacterium carotovorum/enzimología , Filogenia , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Dominios Proteicos , Estructura Secundaria de Proteína , Sistemas de Translocación de Proteínas/clasificación , Sistemas de Translocación de Proteínas/genética , Sistemas de Translocación de Proteínas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , Ralstonia solanacearum/enzimología , Alineación de Secuencia , Sistemas de Secreción Tipo II/clasificación , Sistemas de Secreción Tipo II/genética
12.
Biochem Biophys Res Commun ; 474(4): 652-659, 2016 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-27144316

RESUMEN

Enterococcus faecalis is a member of human gut microflora causing nosocomial infection involving biofilm formation. Ethyl methyl sulfonate induced mutants were analysed using crystal violet assay, SEM and CLSM microscopy which confirmed AK-E12 as biofilm efficient and AK-F6 as biofilm deficient mutants. Growth curve pattern revealed AK-E12 was fast growing whereas, AK-F6 was found slow growing mutant. 2D-Electrophorosis and MALDI-TOF analysis revealed over and underexpression of many translation-elongation associated proteins in mutants compared to wild type. Protein translation elongation factor G, translation elongation factor Tu and ribosomal subunit interface proteins were underexpressed and UTP-glucose-1-phosphate uridylyl transferase and cell division protein divIVA were overexpressed in AK-E12 as compared to wild type. In AK-F6, except 10 kDa chaperonin which was over-expressed other selected proteins were found to be suppressed. RT-PCR confirmed proteomic data except for the translation elongation factor G which showed contradictory data of proteome expression in AK-E12. Protein-protein interaction networks were constructed using STRING 10.0 which demonstrated strong connection of translation-elongation proteins with other proteins. Hence, it concludes from the data that translation elongation factors are important in transition of planktonic cells to biofilm cells in Enterococcus faecalis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Enterococcus faecalis/fisiología , Sistemas de Translocación de Proteínas/fisiología , Proteoma/metabolismo , Plancton/fisiología , Transporte de Proteínas/fisiología
13.
PLoS One ; 11(2): e0148686, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26862742

RESUMEN

Type 2 diabetes is characterized by peripheral insulin resistance and pancreatic beta cell dysfunction. Elevated free fatty acids (FFAs) may impair beta cell function and mass (lipotoxicity). Altered calcium homeostasis may be involved in defective insulin release. The endoplasmic reticulum (ER) is the major intracellular calcium store. Lipotoxicity induces ER stress and in parallel an ER calcium depletion through unknown ER calcium leak channels. The main purposes of this study is first to identify one of these channels and secondly, to check the opportunity to restore beta cells function (i.e., insulin secretion) after pharmacological inhibition of ER calcium store depletion. We investigated the functionality of translocon, an ER calcium leak channel and its involvement on FFAs-induced alterations in MIN6B1 cells and in human pancreatic islets. We evidenced that translocon acts as a functional ER calcium leak channel in human beta cells using anisomycin and puromycin (antibiotics), respectively blocker and opener of this channel. Puromycin induced a significant ER calcium release, inhibited by anisomycin pretreatment. Palmitate treatment was used as FFA model to induce a mild lipotoxic effect: ER calcium content was reduced, ER stress but not apoptosis were induced and glucose induced insulin secretion was decreased in our beta cells. Interestingly, translocon inhibition by chronic anisomycin treatment prevented dysfunctions induced by palmitate, avoiding reticular calcium depletion, ER stress and restoring insulin secretion. Our results provide for the first time compelling evidence that translocon actively participates to the palmitate-induced ER calcium leak and insulin secretion decrease in beta cells. Its inhibition reduces these lipotoxic effects. Taken together, our data indicate that TLC may be a new potential target for the treatment of type 2 diabetes.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Palmitatos/toxicidad , Sistemas de Translocación de Proteínas/fisiología , Animales , Anisomicina/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Caspasas/metabolismo , Células Cultivadas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Genes Reporteros , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/fisiología , Homeostasis , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Transporte Iónico/efectos de los fármacos , Ratones , Transporte de Proteínas/efectos de los fármacos , Puromicina/farmacología , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección
14.
Sci Rep ; 5: 12470, 2015 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-26212107

RESUMEN

Type 1 secretion systems (T1SS) of Gram-negative bacteria are responsible for the secretion of various proteases, lipases, S-layer proteins or toxins into the extracellular space. The paradigm of these systems is the hemolysin A (HlyA) T1SS of Escherichia coli. This multiple membrane protein complex is able to secrete the toxin HlyA in one step across both E. coli membranes. Common to all secreted T1SS substrates is a C-terminal secretion sequence being necessary as well as sufficient for secretion. However, it is not known whether transport occurs directionally, i.e. the N- or the C-terminus of T1SS substrates is secreted first. We have addressed this question by constructing HlyA fusions with the rapidly folding eGFP resulting in a stalled T1SS. Differential labeling and subsequent fluorescence microscopic detection of C- and N-terminal parts of the fusions allowed us to demonstrate vectorial transport of HlyA through the T1SS with the C-terminus appearing first outside the bacterial cells.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas Hemolisinas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , Transporte de Proteínas/fisiología
15.
Elife ; 42015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25993558

RESUMEN

Upon endoplasmic reticulum (ER) stress, the transmembrane endoribonuclease Ire1α performs mRNA cleavage reactions to increase the ER folding capacity. It is unclear how the low abundant Ire1α efficiently finds and cleaves the majority of mRNAs at the ER membrane. Here, we reveal that Ire1α forms a complex with the Sec61 translocon to cleave its mRNA substrates. We show that Ire1α's key substrate, XBP1u mRNA, is recruited to the Ire1α-Sec61 translocon complex through its nascent chain, which contains a pseudo-transmembrane domain to utilize the signal recognition particle (SRP)-mediated pathway. Depletion of SRP, the SRP receptor or the Sec61 translocon in cells leads to reduced Ire1α-mediated splicing of XBP1u mRNA. Furthermore, mutations in Ire1α that disrupt the Ire1α-Sec61 complex causes reduced Ire1α-mediated cleavage of ER-targeted mRNAs. Thus, our data suggest that the Unfolded Protein Response is coupled with the co-translational protein translocation pathway to maintain protein homeostasis in the ER during stress conditions.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sistemas de Translocación de Proteínas/fisiología , ARN Mensajero/metabolismo , Partícula de Reconocimiento de Señal/fisiología , Respuesta de Proteína Desplegada/fisiología , Sistemas CRISPR-Cas , Células HEK293 , Células HeLa , Homeostasis/fisiología , Humanos , Inmunoprecipitación , Oligonucleótidos/genética , Fosforilación , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales de Translocación SEC
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...