RESUMEN
Cholinergic striatal interneurons (ChIs) express the vesicular glutamate transporter 3 (VGLUT3) which allows them to regulate the striatal network with glutamate and acetylcholine (ACh). In addition, VGLUT3-dependent glutamate increases ACh vesicular stores through vesicular synergy. A missense polymorphism, VGLUT3-p.T8I, was identified in patients with substance use disorders (SUDs) and eating disorders (EDs). A mouse line was generated to understand the neurochemical and behavioral impact of the p.T8I variant. In VGLUT3T8I/T8I male mice, glutamate signaling was unchanged but vesicular synergy and ACh release were blunted. Mutant male mice exhibited a reduced DA release in the dorsomedial striatum but not in the dorsolateral striatum, facilitating habit formation and exacerbating maladaptive use of drug or food. Increasing ACh tone with donepezil reversed the self-starvation phenotype observed in VGLUT3T8I/T8I male mice. Our study suggests that unbalanced dopaminergic transmission in the dorsal striatum could be a common mechanism between SUDs and EDs.
Asunto(s)
Cuerpo Estriado , Dopamina , Animales , Masculino , Dopamina/metabolismo , Ratones , Cuerpo Estriado/metabolismo , Humanos , Acetilcolina/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/genética , Transducción de Señal/efectos de los fármacos , Ácido Glutámico/metabolismo , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/fisiopatología , Ratones Endogámicos C57BL , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Mutación , Mutación Missense , Proteínas de Transporte Vesicular de AcetilcolinaRESUMEN
Changes in the amount of daylight (photoperiod) alter physiology and behaviour1,2. Adaptive responses to seasonal photoperiods are vital to all organisms-dysregulation associates with disease, including affective disorders3 and metabolic syndromes4. The circadian rhythm circuitry is implicated in such responses5,6, yet little is known about the precise cellular substrates that underlie phase synchronization to photoperiod change. Here we identify a brain circuit and system of axon branch-specific and reversible neurotransmitter deployment that are critical for behavioural and sleep adaptation to photoperiod. A type of neuron called mrEn1-Pet17 in the mouse brainstem median raphe nucleus segregates serotonin from VGLUT3 (also known as SLC17A8, a proxy for glutamate) to different axonal branches that innervate specific brain regions involved in circadian rhythm and sleep-wake timing8,9. This branch-specific neurotransmitter deployment did not distinguish between daylight and dark phase; however, it reorganized with change in photoperiod. Axonal boutons, but not cell soma, changed neurochemical phenotype upon a shift away from equinox light/dark conditions, and these changes were reversed upon return to equinox conditions. When we genetically disabled Vglut3 in mrEn1-Pet1 neurons, sleep-wake periods, voluntary activity and clock gene expression did not synchronize to the new photoperiod or were delayed. Combining intersectional rabies virus tracing and projection-specific neuronal silencing, we delineated a preoptic area-to-mrEn1Pet1 connection that was responsible for decoding the photoperiodic inputs, driving the neurotransmitter reorganization and promoting behavioural synchronization. Our results reveal a brain circuit and periodic, branch-specific neurotransmitter deployment that regulates organismal adaptation to photoperiod change.
Asunto(s)
Adaptación Fisiológica , Axones , Ritmo Circadiano , Neurotransmisores , Fotoperiodo , Animales , Femenino , Ratones , Adaptación Fisiológica/fisiología , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Axones/metabolismo , Axones/fisiología , Ritmo Circadiano/fisiología , Proteínas CLOCK/genética , Oscuridad , Núcleo Dorsal del Rafe/citología , Núcleo Dorsal del Rafe/metabolismo , Vías Nerviosas/fisiología , Neurotransmisores/metabolismo , Área Preóptica/citología , Área Preóptica/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Virus de la Rabia , Serotonina/metabolismo , Sueño/fisiología , Vigilia/fisiologíaRESUMEN
É£-aminobutyric acid (GABA) is a fourcarbon amino acid acting as the main inhibitory transmitter in the invertebrate and vertebrate nervous systems. The metabolism of GABA is well compartmentalized in the cell and the uptake of cytosolic GABA into the mitochondrial matrix is required for its degradation. A previous study carried out in the fruit fly Drosophila melanogaster indicated that the mitochondrial aspartate/glutamate carrier (AGC) is responsible for mitochondrial GABA accumulation. Here, we investigated the transport of GABA catalysed by the human and D. melanogaster AGC proteins through a well-established method for the study of the substrate specificity and the kinetic parameters of the mitochondrial carriers. In this experimental system, the D. melanogaster spliced AGC isoforms (Aralar1-PA and Aralar1-PE) and the human AGC isoforms (AGC1/aralar1 and AGC2/citrin) are unable to transport GABA both in homo- and in hetero-exchange with either glutamate or aspartate, i.e. the canonical substrates of AGC. Moreover, GABA has no inhibitory effect on the exchange activities catalysed by the investigated AGCs. Our data demonstrate that AGC does not transport GABA and the molecular identity of the GABA transporter in human and D. melanogaster mitochondria remains unknown.
Asunto(s)
Drosophila melanogaster , Mitocondrias , Ácido gamma-Aminobutírico , Ácido gamma-Aminobutírico/metabolismo , Humanos , Drosophila melanogaster/metabolismo , Animales , Mitocondrias/metabolismo , Proteínas de Drosophila/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Transporte Biológico , Ácido Glutámico/metabolismo , Especificidad por Sustrato , Isoformas de Proteínas/metabolismo , Ácido Aspártico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , AntiportadoresRESUMEN
Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24â h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.
Asunto(s)
Ansiedad , Ratones Noqueados , Conducta Social , Animales , Masculino , Humanos , Ansiedad/metabolismo , Núcleos del Rafe/metabolismo , Ratones , Neuronas/metabolismo , Ratones Endogámicos C57BL , Conducta Animal/fisiología , Ratones Transgénicos , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Agresión/fisiologíaRESUMEN
Exposure to stressors has profound effects on sleep that have been linked to serotonin (5-HT) neurons of the dorsal raphe nucleus (DR). However, the DR also comprises glutamatergic neurons expressing vesicular glutamate transporter type 3 (DRVGLUT3), leading us to examine their role. Cell-type-specific tracing revealed that DRVGLUT3 neurons project to brain areas regulating arousal and stress. We found that chemogenetic activation of DRVGLUT3 neurons mimics stress-induced sleep perturbations. Furthermore, deleting VGLUT3 in the DR attenuated stress-induced sleep perturbations, especially after social defeat stress. In the DR, VGLUT3 is found in subsets of 5-HT and non-5-HT neurons. We observed that both populations are activated by acute stress, including those projecting to the ventral tegmental area. However, deleting VGLUT3 in 5-HT neurons minimally affected sleep regulation. These findings suggest that VGLUT3 expression in the DR drives stress-induced sleep perturbations, possibly involving non-5-HT DRVGLUT3 neurons.
Asunto(s)
Núcleo Dorsal del Rafe , Neuronas , Sueño , Estrés Psicológico , Animales , Masculino , Núcleo Dorsal del Rafe/metabolismo , Ratones , Estrés Psicológico/metabolismo , Neuronas/metabolismo , Sueño/fisiología , Serotonina/metabolismo , Ratones Endogámicos C57BL , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genéticaRESUMEN
The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.
Asunto(s)
Ácido Aspártico , Malato Deshidrogenasa , Malatos , Mitocondrias , Humanos , Malatos/metabolismo , Malato Deshidrogenasa/metabolismo , Malato Deshidrogenasa/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Ácido Aspártico/metabolismo , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/patología , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/diagnóstico , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Fosforilación Oxidativa , AntiportadoresRESUMEN
Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.
Asunto(s)
Transportadores de Ácidos Dicarboxílicos , Humanos , Cinética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Multimerización de Proteína , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas de Transporte de Anión/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Antiportadores/metabolismo , Antiportadores/genética , Antiportadores/química , Translocasas Mitocondriales de ADP y ATP/metabolismo , Translocasas Mitocondriales de ADP y ATP/genética , Transporte Biológico , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/química , Adenosina Trifosfato/metabolismo , Proteínas Portadoras , Proteínas de Transporte de MembranaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Qing-Xin-Jie-Yu Granule (QXJYG) is an integrated traditional Chinese medicine formula used to treat atherosclerotic (AS) cardiovascular diseases. A randomized controlled trial found that QXJYG reduced cardiovascular events and experiments also verified that QXJYG attenuated AS by remodeling the intestinal flora. AIM OF THE STUDY: To determine whether QXJYG would attenuate AS and plaque vulnerability by regulating ferroptosis in high-fat diet-induced atherosclerotic ApoE-/- mice and to investigate the effects of QXJYG on macrophage ferroptosis in RAS-selective lethal 3 (RSL3)-induced J744A.1 cells. METHODS: AS models in ApoE-/- mice and RSL3-induced ferroptosis in J744A.1 cells were established to measure the protective and anti-ferroptotic effects of QXJYG in vivo and in vitro. The glutathione peroxidase 4 (GPX4)/cystine glutamate reverse transporter (xCT) signal pathway was examined by immunohistochemistry and western blotting. RESULTS: QXJYG attenuated AS progression and plaque vulnerability. Characteristic morphological changes of ferroptosis in the QXJYG-treated animals were rare. Total iron was significantly lower in the QXJYG group than in the model group (P < 0.05); QXJYG suppressed the lipid peroxidation (LPO) levels (malondialdehyde), enhanced the antioxidant capacity (superoxide dismutase and glutathione), and reduced inflammatory factors (interleukin [IL]-6, IL-1ß, tumor necrosis factor-α) associated with ferroptosis. Expression of GPX4/xCT in aorta tissues was remarkably increased in the QXJYG group. QXJYG inhibited ferroptosis in J744A.1 macrophages disturbed using RSL3. The Fe2+, LPO, and reactive oxygen species levels were lower in the QXJYG group than in the RSL3 group (P < 0.05). The QXJYG group showed higher expression of the GPX4/xCT signal pathway. CONCLUSION: QXJYG inhibits ferroptosis in vulnerable AS plaques partially via the GPX4/xCT signaling pathway.
Asunto(s)
Ferroptosis , Placa Aterosclerótica , Animales , Ratones , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Apolipoproteínas E , Placa Aterosclerótica/tratamiento farmacológico , Transducción de SeñalRESUMEN
Alcohol dependence results in long-lasting neuroadaptive changes in meso-corticolimbic system, especially in the nucleus accumbens (NAc), which drives relapse-like ethanol drinking upon abstinence or withdrawal. Within NAc, altered glutamate homeostasis is one of the neuroadaptive changes caused by alcohol dependence. Accumbal glutamate homeostasis is tightly maintained through glutamate transporter 1 (GLT-1) and cystine-glutamate antiporter (xCT). But the role of GLT-1 and xCT in relapse-like ethanol drinking is poorly understood. Here, we used alcohol-preferring (P) rats in relapse-like ethanol drinking paradigm to (a) determine the effect of relapse-like ethanol drinking on gene and protein expression of GLT-1 and xCT in NAc, measured by quantitative polymerase chain reaction (qPCR) and Western blot, respectively; (b) examine if glutamate uptake is affected by relapse-like ethanol drinking in NAc, measured by radioactive glutamate uptake assay; (c) elucidate if upregulation of either/both GLT-1 or/and xCT through ceftriaxone is/are required to attenuate relapse-like ethanol drinking. The GLT-1 or xCT protein expression was suppressed during ceftriaxone treatments through microinjection of GLT-1/xCT anti-sense vivo-morpholinos. We found that relapse-like ethanol drinking did not affect the gene and protein expression of GLT-1 and xCT in NAc. The glutamate uptake was also unaltered. Ceftriaxone (200 mg/kg body weight, i.p.) treatments during the last 5 days of abstinence attenuated relapse-like ethanol drinking. The suppression of GLT-1 or xCT expression prevented the ceftriaxone-induced attenuation of relapse-like ethanol drinking. These findings confirm that upregulation of both GLT-1 and xCT within NAc is crucial for ceftriaxone-mediated attenuation of relapse-like ethanol drinking.
Asunto(s)
Alcoholismo , Ceftriaxona , Consumo de Bebidas Alcohólicas/metabolismo , Alcoholismo/genética , Alcoholismo/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Ceftriaxona/metabolismo , Ceftriaxona/farmacología , Etanol/farmacología , Transportador 2 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Núcleo Accumbens , Ratas , RecurrenciaRESUMEN
Type 3 vesicular glutamate transporter (VGLUT3) represents a unique modulator of glutamate release from both nonglutamatergic and glutamatergic varicosities within the brain. Despite its limited abundance, VGLUT3 is vital for the regulation of glutamate signaling and, therefore, modulates the activity of various brain microcircuits. However, little is known about how glutamate receptors are regulated by VGLUT3 across different brain regions. Here, we used VGLUT3 constitutive knock-out (VGLUT3-/-) mice and explored how VGLUT3 deletion influences total and cell surface expression of different ionotropic and metabotropic glutamate receptors. VGLUT3 deletion upregulated the overall expression of metabotropic glutamate receptors mGluR5 and mGluR2/3 in the cerebral cortex. In contrast, no change in the total expression of ionotropic NMDAR glutamate receptors were observed in the cerebral cortex of VGLUT3-/- mice. We noted significant reduction in cell surface levels of mGluR5, NMDAR2A, NMDAR2B, as well as reductions in dopaminergic D1 receptors and muscarinic M1 acetylcholine receptors in the hippocampus of VGLUT3-/- mice. Furthermore, mGluR2/3 total expression and mGluR5 cell surface levels were elevated in the striatum of VGLUT3-/- mice. Last, AMPAR subunit GluA1 was significantly upregulated throughout cortical, hippocampal, and striatal brain regions of VGLUT3-/- mice. Together, these findings complement and further support the evidence that VGLUT3 dynamically regulates glutamate receptor densities in several brain regions. These results suggest that VGLUT3 may play an intricate role in shaping glutamatergic signaling and plasticity in several brain areas.
Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos , Proteínas de Transporte Vesicular de Glutamato , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Ácido Glutámico/metabolismo , Ratones , Proteínas de Transporte Vesicular de Glutamato/metabolismoRESUMEN
AGC1/Aralar/Slc25a12 is the mitochondrial carrier of aspartate-glutamate, the regulatory component of the NADH malate-aspartate shuttle (MAS) that transfers cytosolic redox power to neuronal mitochondria. The deficiency in AGC1/Aralar leads to the human rare disease named "early infantile epileptic encephalopathy 39" (EIEE 39, OMIM # 612949) characterized by epilepsy, hypotonia, arrested psychomotor neurodevelopment, hypo myelination and a drastic drop in brain aspartate (Asp) and N-acetylaspartate (NAA). Current evidence suggest that neurons are the main brain cell type expressing Aralar. However, paradoxically, glial functions such as myelin and Glutamine (Gln) synthesis are markedly impaired in AGC1 deficiency. Herein, we discuss the role of the AGC1/Aralar-MAS pathway in neuronal functions such as Asp and NAA synthesis, lactate use, respiration on glucose, glutamate (Glu) oxidation and other neurometabolic aspects. The possible mechanism triggering the pathophysiological findings in AGC1 deficiency, such as epilepsy and postnatal hypomyelination observed in humans and mice, are also included. Many of these mechanisms arise from findings in the aralar-KO mice model that extensively recapitulate the human disease including the astroglial failure to synthesize Gln and the dopamine (DA) mishandling in the nigrostriatal system. Epilepsy and DA mishandling are a direct consequence of the metabolic defect in neurons due to AGC1/Aralar deficiency. However, the deficits in myelin and Gln synthesis may be a consequence of neuronal affectation or a direct effect of AGC1/Aralar deficiency in glial cells. Further research is needed to clarify this question and delineate the transcellular metabolic fluxes that control brain functions. Finally, we discuss therapeutic approaches successfully used in AGC1-deficient patients and mice.
Asunto(s)
Agrecanos/genética , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Predisposición Genética a la Enfermedad , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/etiología , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Mitocondriales/etiología , Enfermedades Mitocondriales/metabolismo , Trastornos Psicomotores/etiología , Trastornos Psicomotores/metabolismo , Agrecanos/deficiencia , Agrecanos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Biomarcadores , Encéfalo/metabolismo , Terapia Combinada , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Metabolismo Energético , Estudios de Asociación Genética , Ácido Glutámico/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/terapia , Humanos , Malatos/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Vaina de Mielina/metabolismo , Oxidación-Reducción , Fenotipo , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/terapiaRESUMEN
BACKGROUND: Myelin-associated glycoprotein (MAG) is a key molecule involved in the nurturing effect of myelin on ensheathed axons. MAG also inhibits axon outgrowth after injury. In preclinical stroke models, administration of a function-blocking anti-MAG monoclonal antibody (mAb) aimed to improve axon regeneration demonstrated reduced lesion volumes and a rapid clinical improvement, suggesting a mechanism of immediate neuroprotection rather than enhanced axon regeneration. In addition, it has been reported that antibody-mediated crosslinking of MAG can protect oligodendrocytes (OLs) against glutamate (Glu) overload by unknown mechanisms. PURPOSE: To unravel the molecular mechanisms underlying the protective effect of anti-MAG therapy with a focus on neuroprotection against Glu toxicity. RESULTS: MAG activation (via antibody crosslinking) triggered the clearance of extracellular Glu by its uptake into OLs via high affinity excitatory amino acid transporters. This resulted not only in protection of OLs but also nearby neurons. MAG activation led to a PKC-dependent activation of factor Nrf2 (nuclear-erythroid related factor-2) leading to antioxidant responses including increased mRNA expression of metabolic enzymes from the glutathione biosynthetic pathway and the regulatory chain of cystine/Glu antiporter system xc- increasing reduced glutathione (GSH), the main antioxidant in cells. The efficacy of early anti-MAG mAb administration was demonstrated in a preclinical model of excitotoxicity induced by intrastriatal Glu administration and extended to a model of Experimental Autoimmune Encephalitis showing axonal damage secondary to demyelination. CONCLUSIONS: MAG activation triggers Glu uptake into OLs under conditions of Glu overload and induces a robust protective antioxidant response.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Ácido Glutámico/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Axones/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Ácido Glutámico/administración & dosificación , Ácido Glutámico/farmacología , Glutatión/metabolismo , Ratones , Ratones Endogámicos C57BL , Glicoproteína Asociada a Mielina/inmunología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Oligodendroglía/citología , Oligodendroglía/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteína Quinasa C/metabolismo , Ratas , Receptores de Glutamato/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Intraventricular hemorrhage (IVH) results in periventricular inflammation, hypomyelination of the white matter, and hydrocephalus in premature infants. No effective therapy exists to prevent these disorders. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists reduce inflammation, alleviate free radical generation, and enhance microglial phagocytosis, promoting clearance of debris and red blood cells. We hypothesized that activation of PPAR-γ would enhance myelination, reduce hydrocephalus, and promote neurological recovery in newborns with IVH. These hypotheses were tested in a preterm rabbit model of IVH; autopsy brain samples from premature infants with and without IVH were analyzed. We found that IVH augmented PPAR-γ expression in microglia of both preterm human infants and rabbit kits. The treatment with PPAR-γ agonist or PPAR-γ overexpression by adenovirus delivery further elevated PPAR-γ levels in microglia, reduced proinflammatory cytokines, increased microglial phagocytosis, and improved oligodendrocyte progenitor cell (OPC) maturation in kits with IVH. Transcriptomic analyses of OPCs identified previously unrecognized PPAR-γ-induced genes for purinergic signaling, cyclic adenosine monophosphate generation, and antioxidant production, which would reprogram these progenitors toward promoting myelination. RNA-sequencing analyses of microglia revealed PPAR-γ-triggered down-regulation of several proinflammatory genes and transcripts having roles in Parkinson's disease and amyotrophic lateral sclerosis, contributing to neurological recovery in kits with IVH. Accordingly, PPAR-γ activation enhanced myelination and neurological function in kits with IVH. This also enhanced microglial phagocytosis of red blood cells but did not reduce hydrocephalus. Treatment with PPAR-γ agonist might enhance myelination and neurological recovery in premature infants with IVH.
Asunto(s)
Hemorragia Cerebral Intraventricular/metabolismo , Proteínas de la Mielina/biosíntesis , PPAR gamma/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Animales Recién Nacidos , Antiportadores/deficiencia , Antiportadores/metabolismo , Hemorragia Cerebral Intraventricular/patología , Modelos Animales de Enfermedad , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Humanos , Recien Nacido Prematuro , Microglía/metabolismo , Enfermedades Mitocondriales/metabolismo , Oligodendroglía/patología , PPAR gamma/agonistas , Trastornos Psicomotores/metabolismo , Conejos , Rosiglitazona/farmacología , Análisis de Secuencia de ARN/métodosRESUMEN
Hepatocellular carcinoma (HCC) is a longstanding issue in clinical practice and metabolic research. New clues in better understanding the pathogenesis of HCC might relate to the metabolic context in patients with citrin (aspartate-glutamate carrier 1) deficiency (CD). Because citrin-deficient liver (CDL) is subject to HCC, it represents a unique metabolic model to highlight the mechanisms of HCC promotion, offering different angles of study than the classical metabolic syndrome/obesity/non-alcoholic fatty liver disease (NAFLD)/HCC study axis. In turn, the metabolic features of HCC could shed light on the pathogenesis of CDL. Among these, HCC-induced re-activation of aralar-1 (aspartate-glutamate carrier 2), physiologically not expressed in the adult liver, might take place in CDL, so gene redundancy for mitochondrial aspartate-glutamate carriers would be exploited by the CDL. This proposed (aralar-1 re-activation) and known (citrate/malate cycle) adaptive mechanisms may substitute for the impaired function in CD and are consistent with the clinical remission stage of CD and CD improvement by medium-chain triglycerides (MCT). However, these metabolic adaptive benefits could also promote HCC development. In CD, as a result of PPARα down-regulation, liver mitochondrial fatty acid-derived acetyl-CoA would, like glucose-derived acetyl-CoA, be used for lipid anabolism and fuel nuclear acetylation events which might trigger aralar-1 re-activation as seen in non-CD HCC. A brief account of these metabolic events which might lead to aralar-1 re-activation in CDL is here given. Consistency of this account for CDL events further relies on the protective roles of PPARα and inhibition of mitochondrial and plasma membrane citrate transporters in non-CD HCC.
Asunto(s)
Proteínas de Unión al Calcio/deficiencia , Carcinoma Hepatocelular/etiología , Neoplasias Hepáticas/etiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Transportadores de Anión Orgánico/deficiencia , Acetilcoenzima A/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/metabolismo , Humanos , NAD/metabolismo , Triglicéridos/metabolismoRESUMEN
The mammalian cochlea cannot regenerate functional hair cells (HCs) spontaneously. Atoh1 overexpression as well as other strategies are unable to generate functional HCs. Here, we simultaneously upregulated the expression of Gfi1, Pou4f3, and Atoh1 in postnatal cochlear supporting cells (SCs) in vivo, which efficiently converted SCs into HCs. The newly regenerated HCs expressed HC markers Myo7a, Calbindin, Parvalbumin, and Ctbp2 and were innervated by neurites. Importantly, many new HCs expressed the mature and terminal marker Prestin or vesicular glutamate transporter 3 (vGlut3), depending on the subtypes of the source SCs. Finally, our patch-clamp analysis showed that the new HCs in the medial region acquired a large K+ current, fired spikes transiently, and exhibited signature refinement of ribbon synapse functions, in close resemblance to native wild-type inner HCs. We demonstrated that co-upregulating Gfi1, Pou4f3, and Atoh1 enhances the efficiency of HC generation and promotes the functional maturation of new HCs.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/genética , Células Laberínticas de Soporte/metabolismo , Organogénesis/genética , Factor de Transcripción Brn-3C/genética , Factores de Transcripción/genética , Potenciales de Acción/fisiología , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calbindinas/genética , Calbindinas/metabolismo , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células Ciliadas Auditivas/citología , Proteínas de Homeodominio/metabolismo , Transporte Iónico , Células Laberínticas de Soporte/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Motoras Moleculares/genética , Proteínas Motoras Moleculares/metabolismo , Miosina VIIa/genética , Miosina VIIa/metabolismo , Neuritas/metabolismo , Neuritas/ultraestructura , Parvalbúminas/genética , Parvalbúminas/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Transducción de Señal , Factor de Transcripción Brn-3C/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.
Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Química Encefálica/fisiología , Núcleos del Rafe/metabolismo , Rombencéfalo/metabolismo , Serotonina/metabolismo , Factores de Transcripción/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/análisis , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Núcleos del Rafe/química , Rombencéfalo/química , Serotonina/análisis , Factores de Transcripción/análisisRESUMEN
Amino acids are delivered into developing wheat grains to support the accumulation of storage proteins in the starchy endosperm, and transporters play important roles in regulating this process. RNA-seq, RT-qPCR, and promoter-GUS assays showed that three amino acid transporters are differentially expressed in the endosperm transfer cells (TaAAP2), starchy endosperm cells (TaAAP13), and aleurone cells and embryo of the developing grain (TaAAP21), respectively. Yeast complementation revealed that all three transporters can transport a broad spectrum of amino acids. RNAi-mediated suppression of TaAAP13 expression in the starchy endosperm did not reduce the total nitrogen content of the whole grain, but significantly altered the composition and distribution of metabolites in the starchy endosperm, with increasing concentrations of some amino acids (notably glutamine and glycine) from the outer to inner starchy endosperm cells compared with wild type. Overexpression of TaAAP13 under the endosperm-specific HMW-GS (high molecular weight glutenin subunit) promoter significantly increased grain size, grain nitrogen concentration, and thousand grain weight, indicating that the sink strength for nitrogen transport was increased by manipulation of amino acid transporters. However, the total grain number was reduced, suggesting that source nitrogen remobilized from leaves is a limiting factor for productivity. Therefore, simultaneously increasing loading of amino acids into the phloem and delivery to the spike would be required to increase protein content while maintaining grain yield.
Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Grano Comestible/metabolismo , Triticum/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Cromatografía Líquida de Alta Presión , Grano Comestible/crecimiento & desarrollo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Glútenes/genética , Glútenes/metabolismo , Espectroscopía de Resonancia Magnética , Nitrógeno/metabolismo , Floema/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Interferencia de ARN , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Triticum/genética , Regulación hacia ArribaRESUMEN
Kidney tubular cell death induced by transforming growth factor-ß1 (TGF-ß1) is known to contribute to diabetic nephropathy, a major complication of diabetes. Caspase-3-dependent apoptosis and caspase-1-dependent pyroptosis are also involved in tubular cell death under diabetic conditions. Recently, ferroptosis, an atypical form of iron-dependent cell death, was reported to cause kidney disease, including acute kidney injury. Ferroptosis is primed by lipid peroxide accumulation through the cystine/glutamate antiporter system Xc- (xCT) and glutathione peroxidase 4 (GPX4)-dependent mechanisms. The aim of this study was to evaluate the role of ferroptosis in diabetes-induced tubular injury. TGF-ß1-stimulated proximal tubular epithelial cells and diabetic mice models were used for in vitro and in vivo experiments, respectively. xCT and GPX4 expression, cell viability, glutathione concentration, and lipid peroxidation were quantified to indicate ferroptosis. The effect of ferroptosis inhibition was also assessed. In kidney biopsy samples from diabetic patients, xCT and GPX4 mRNA expression was decreased compared to nondiabetic samples. In TGF-ß1-stimulated tubular cells, intracellular glutathione concentration was reduced and lipid peroxidation was enhanced, both of which are related to ferroptosis-related cell death. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, alleviated TGF-ß1-induced ferroptosis. In diabetic mice, kidney mRNA and protein expressions of xCT and GPX4 were reduced compared to control. Kidney glutathione concentration was decreased, while lipid peroxidation was increased in these mice, and these changes were alleviated by Fer-1 treatment. Ferroptosis is involved in kidney tubular cell death under diabetic conditions. Ferroptosis inhibition could be a therapeutic option for diabetic nephropathy.
Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Diabetes Mellitus Experimental/complicaciones , Nefropatías Diabéticas/etiología , Ferroptosis , Túbulos Renales Proximales/ultraestructura , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Adolescente , Adulto , Anciano , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Femenino , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Humanos , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Peroxidación de Lípido , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratas , Factor de Crecimiento Transformador beta1/farmacología , Adulto JovenRESUMEN
Cochlear outer hair cells (OHCs) are known to uniquely participate in auditory processing through their electromotility, and like inner hair cells, are also capable of releasing vesicular glutamate onto spiral ganglion (SG) neurons: in this case, onto the sparse Type II SG neurons. However, unlike glutamate signaling at the inner hair cell-Type I SG neuron synapse, which is robust across a wide spectrum of sound intensities, glutamate signaling at the OHC-Type II SG neuron synapse is weaker and has been hypothesized to occur only at intense, possibly damaging sound levels. Here, we tested the ability of the OHC-Type II SG pathway to signal to the brain in response to moderate, nondamaging sound (80 dB SPL) as well as to intense sound (115 dB SPL). First, we determined the VGluTs associated with OHC signaling and then confirmed the loss of glutamatergic synaptic transmission from OHCs to Type II SG neurons in KO mice using dendritic patch-clamp recordings. Next, we generated genetic mouse lines in which vesicular glutamate release occurs selectively from OHCs, and then assessed c-Fos expression in the cochlear nucleus in response to sound. From these analyses, we show, for the first time, that glutamatergic signaling at the OHC-Type II SG neuron synapse is capable of activating cochlear nucleus neurons, even at moderate sound levels.SIGNIFICANCE STATEMENT Evidence suggests that cochlear outer hair cells (OHCs) release glutamate onto Type II spiral ganglion neurons only when exposed to loud sound, and that Type II neurons are activated by tissue damage. Knowing whether moderate level sound, without tissue damage, activates this pathway has functional implications for this fundamental auditory pathway. We first determined that OHCs rely largely on VGluT3 for synaptic glutamate release. We then used a genetically modified mouse line in which OHCs, but not inner hair cells, release vesicular glutamate to demonstrate that moderate sound exposure activates cochlear nucleus neurons via the OHC-Type II spiral ganglion pathway. Together, these data indicate that glutamate signaling at the OHC-Type II afferent synapse participates in auditory function at moderate sound levels.
Asunto(s)
Estimulación Acústica/métodos , Núcleo Coclear/metabolismo , Ácido Glutámico/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Neuronas/metabolismo , Ganglio Espiral de la Cóclea/metabolismo , Vías Aferentes/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Vías Auditivas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
BACKGROUND: In man two mitochondrial aspartate/glutamate carrier (AGC) isoforms, known as aralar and citrin, are required to accomplish several metabolic pathways. In order to fill the existing gap of knowledge in Drosophila melanogaster, we have studied aralar1 gene, orthologue of human AGC-encoding genes in this organism. METHODS: The blastp algorithm and the "reciprocal best hit" approach have been used to identify the human orthologue of AGCs in Drosophilidae and non-Drosophilidae. Aralar1 proteins have been overexpressed in Escherichia coli and functionally reconstituted into liposomes for transport assays. RESULTS: The transcriptional organization of aralar1 comprises six isoforms, three constitutively expressed (aralar1-RA, RD and RF), and the remaining three distributed during the development or in different tissues (aralar1-RB, RC and RE). Aralar1-PA and Aralar1-PE, representative of all isoforms, have been biochemically characterized. Recombinant Aralar1-PA and Aralar1-PE proteins share similar efficiency to exchange glutamate against aspartate, and same substrate affinities than the human isoforms. Interestingly, although Aralar1-PA and Aralar1-PE diverge only in their EF-hand 8, they greatly differ in their specific activities and substrate specificity. CONCLUSIONS: The tight regulation of aralar1 transcripts expression and the high request of aspartate and glutamate during early embryogenesis suggest a crucial role of Aralar1 in this Drosophila developmental stage. Furthermore, biochemical characterization and calcium sensitivity have identified Aralar1-PA and Aralar1-PE as the human aralar and citrin counterparts, respectively. GENERAL SIGNIFICANCE: The functional characterization of the fruit fly mitochondrial AGC transporter represents a crucial step toward a complete understanding of the metabolic events acting during early embryogenesis.