Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.960
Filtrar
1.
J Agric Food Chem ; 72(19): 10828-10841, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691839

RESUMEN

Chemosensory proteins (CSPs) constitute a class of olfactory proteins localized in insect sensory organs that serve a crucial function in decoding external chemical stimuli. This study aims to elucidate the involvement of CrufCSP3 in olfactory perception within the context of Cotesia ruficrus, an indigenous endoparasitoid targeting the invasive pest Spodoptera frugiperda. Through fluorescence-competitive binding assays and site-directed mutagenesis, we pinpointed four amino acids as pivotal residues involved in the interaction between CrufCSP3 and five host-related compounds. Subsequent RNA interference experiments targeting CrufCSP3 unveiled a reduced sensitivity to specific host-related compounds and a decline in the parasitism rate of the FAW larvae. These findings unequivocally indicate the essential role of CrufCSP3 in the chemoreception process of C. ruficrus. Consequently, our study not only sheds light on the functional importance of CSPs in parasitic wasp behavior but also contributes to the development of eco-friendly and efficacious wasp behavior modifiers for effectively mitigating pest population surges.


Asunto(s)
Proteínas de Insectos , Spodoptera , Avispas , Animales , Avispas/química , Avispas/fisiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Larva/crecimiento & desarrollo , Interacciones Huésped-Parásitos , Percepción Olfatoria
2.
PLoS One ; 19(5): e0299154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38709802

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), an invasive agricultural pest, has significantly impacted crop yields across Africa. This study investigated the relationship between temperature and FAW life history traits, employing life cycle modeling at temperatures of 20, 25, 28, 30, and 32°C. The development time for eggs, larvae, and pupae varied from 0-3 days, 10-18 days, and 7-16 days, respectively. The optimal temperature range for immature stage survival and female fecundity was identified as 21-25°C, with the intrinsic rate of increase (rm) and gross reproductive rate (GRR) peaking at 25-28°C. Model validation confirmed the accuracy of these findings. The research further projected the Establishment Risk Index (ERI), Activity Index (AI), and Generation Index (GI) for FAW under current and future climates (2050 and 2070) using RCP 2.6 and RCP 8.5 scenarios. Results indicate that RCP 2.6 leads to a reduction in high-risk FAW areas, particularly in central Africa. Conversely, RCP 8.5 suggests an increase in areas conducive to FAW activity. These findings highlight the impact of climate policy on pest dynamics and the importance of incorporating climatic factors into pest management strategies. The study predicts a potential decrease in FAW prevalence in West Africa by 2070 under aggressive climate mitigation, providing a basis for future FAW management approaches.


Asunto(s)
Estadios del Ciclo de Vida , Spodoptera , Temperatura , Zea mays , Animales , Spodoptera/fisiología , Spodoptera/crecimiento & desarrollo , África , Zea mays/parasitología , Zea mays/crecimiento & desarrollo , Tablas de Vida , Femenino , Larva/fisiología , Larva/crecimiento & desarrollo
3.
Arch Insect Biochem Physiol ; 116(1): e22121, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38783691

RESUMEN

Invasive insect pests, currently, pose a serious economic threat to several staple crops all over the world, one such being the fall armyworm, Spodoptera frugiperda. It was first observed in Africa since 2016, outside of its natural habitat in the Americas. Subsequently, it invaded several countries in South and South East Asia and also very recently in Australia. In all the newly invaded regions, maize is the principal crop attacked causing a serious economic concern to the poor farmers, particularly in the developing countries. Owing to the innate genetic ability, it defies many of the management options that include insecticides, Bt transgenics, and so forth. This is due to its high mobility, polyphagy and ability for quick development of resistance to several classes of insecticides. At this critical juncture, CRISPR/Cas9 mediated genome editing has shown a lot of promise in developing a novel area-wide pest management strategy called precision-guided sterile insect technique (pgSIT). pgSIT was initially demonstrated in Drosophila melanogaster which holds a greater promise for the environmentally friendly management of several globally significant agricultural pests such as S. frugiperda. Therefore, before developing both sgRNA and Cas9 transgenic lines, we have validated the target gene such as tssk2 through a non-transgenic approach by microinjecting ribo nucleo protein complex (Cas9 protein and tssk2 sgRNA) into G0 eggs of S. frugiperda. In the current investigation, we have obtained five edited males with distinct mutations which were further used for crossing studies to ascertain the effect of tssk2 editing affecting egg hatchability.


Asunto(s)
Sistemas CRISPR-Cas , Spodoptera , Animales , Spodoptera/genética , Masculino , Control Biológico de Vectores/métodos , Edición Génica/métodos , Espermatogénesis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Femenino , Control de Insectos/métodos
4.
Toxins (Basel) ; 16(5)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38787067

RESUMEN

Bacillus thuringiensis (Bt) secretes the nutritional insecticidal protein Vip3Aa11, which exhibits high toxicity against the fall armyworm (Spodoptera frugiperda). The Bt HD270 extracellular polysaccharide (EPS) enhances the toxicity of Vip3Aa11 protoxin against S. frugiperda by enhancing the attachment of brush border membrane vesicles (BBMVs). However, how EPS-HD270 interacts with Vip3Aa11 protoxin in vivo and the effect of EPS-HD270 on the toxicity of activated Vip3Aa11 toxin are not yet clear. Our results indicated that there is an interaction between mannose, a monosaccharide that composes EPS-HD270, and Vip3Aa11 protoxin, with a dissociation constant of Kd = 16.75 ± 0.95 mmol/L. When EPS-HD270 and Vip3Aa11 protoxin were simultaneously fed to third-instar larvae, laser confocal microscopy observations revealed the co-localization of the two compounds near the midgut wall, which aggravated the damage to BBMVs. EPS-HD270 did not have a synergistic insecticidal effect on the activated Vip3Aa11 protein against S. frugiperda. The activated Vip3Aa11 toxin demonstrated a significantly reduced binding capacity (548.73 ± 82.87 nmol/L) towards EPS-HD270 in comparison to the protoxin (34.96 ± 9.00 nmol/L). Furthermore, this activation diminished the affinity of EPS-HD270 for BBMVs. This study provides important evidence for further elucidating the synergistic insecticidal mechanism between extracellular polysaccharides and Vip3Aa11 protein both in vivo and in vitro.


Asunto(s)
Proteínas Bacterianas , Polisacáridos Bacterianos , Spodoptera , Animales , Proteínas Bacterianas/toxicidad , Proteínas Bacterianas/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Spodoptera/efectos de los fármacos , Larva/efectos de los fármacos , Insecticidas/toxicidad , Insecticidas/farmacología , Bacillus thuringiensis/metabolismo , Microvellosidades/metabolismo , Microvellosidades/efectos de los fármacos
5.
J Agric Food Chem ; 72(20): 11369-11380, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727083

RESUMEN

In keeping with our investigation, a simple and practical synthesis of novel heterocyclic compounds with a sulfamoyl moiety that can be employed as insecticidal agents was reported. The compound 2-hydrazinyl-N-(4-sulfamoylphenyl)-2-thioxoacetamide 1 was coupled smoothly with triethylorthoformate or a variety of halo compounds, namely phenacyl chloride, chloroacetyl chloride, chloroacetaldehyde, chloroacetone, 1,3-dichloropropane, 1,2-dichloroethane, ethyl chloroformate, 2,3-dichloro-1,4-naphthoquinone, and chloroanil respectively, which afforded the 1,3,4-thiadiazole and 1,3,4-thiadiazine derivatives. The new products structure was determined using elemental and spectral analysis. Under laboratory conditions, the biological and toxicological effects of the synthetic compounds were also evaluated as insecticides against Spodoptera littoralis (Boisd.). Compounds 3 and 5 had LC50 values of 6.42 and 6.90 mg/L, respectively. The investigated compounds (from 2 to 11) had been undergoing molecular docking investigation for prediction of the optimal arrangement and strength of binding between the ligand (herein, the investigated compounds (from 2 to 11)) and a receptor (herein, the 2CH5) molecule. The binding affinity within docking score (S, kcal/mol) ranged between -8.23 (for compound 5), -8.12 (for compound 3) and -8.03 (for compound 9) to -6.01 (for compound 8). These compounds were shown to have a variety of binding interactions within the 2CH5 active site, as evidenced by protein-ligand docking configurations. This study gives evidence that those compounds have 2CH5-inhibitory capabilities and hence may be used for 2CH5-targeting development. Furthermore, the three top-ranked compounds (5, 3, and 9) and the standard buprofezin were subjected to density functional theory (DFT) analysis. The highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy difference (ΔE) of compounds 5, 3, and 9 was found to be comparable to that of buprofezin. These findings highlighted the potential and relevance of charge transfer at the molecular level.


Asunto(s)
Diseño de Fármacos , Insecticidas , Simulación del Acoplamiento Molecular , Spodoptera , Tiadiazinas , Tiadiazoles , Animales , Insecticidas/química , Insecticidas/síntesis química , Insecticidas/farmacología , Spodoptera/efectos de los fármacos , Tiadiazoles/química , Tiadiazoles/farmacología , Tiadiazoles/síntesis química , Tiadiazinas/química , Tiadiazinas/farmacología , Tiadiazinas/síntesis química , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología , Sulfonamidas/síntesis química , Proteínas de Insectos/química , Bencenosulfonamidas , Estructura Molecular , Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica II/metabolismo , Anhidrasa Carbónica II/química
6.
Arch Microbiol ; 206(6): 268, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38762847

RESUMEN

Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.


Asunto(s)
Actinobacteria , Agricultura , Control Biológico de Vectores , Actinobacteria/metabolismo , Animales , Agentes de Control Biológico/metabolismo , Metabolismo Secundario , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Plaguicidas/metabolismo , Spodoptera/microbiología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Nematodos/microbiología , Endófitos/metabolismo
7.
J Agric Food Chem ; 72(18): 10271-10281, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655868

RESUMEN

Insect growth regulators (IGRs) are important green insecticides that disrupt normal growth and development in insects to reduce the harm caused by pests to crops. The ecdysone receptor (EcR) and three chitinases OfChtI, OfChtII, and OfChi-h are closely associated with the molting stage of insects. Thus, they are considered promising targets for the development of novel insecticides such as IGRs. Our previous work identified a dual-target compound 6j, which could act simultaneously on both EcR and OfChtI. In the present study, 6j was first found to have inhibitory activities against OfChtII and OfChi-h, too. Subsequently, taking 6j as a lead compound, 19 novel acetamido derivatives were rationally designed and synthesized by introducing an acetamido moiety into the amide bridge based on the flexibility of the binding cavities of 6j with EcR and three chitinases. Then, their insecticidal activities against Plutella xylostella (P. xylostella), Ostrinia furnacalis (O. furnacalis), and Spodoptera frugiperda (S. frugiperda) were carried out. The bioassay results revealed that most of these acetamido derivatives possessed moderate to good larvicidal activities against three lepidopteran pests. Especially, compound I-17 displayed excellent insecticidal activities against P. xylostella (LC50, 93.32 mg/L), O. furnacalis (LC50, 114.79 mg/L), and S. frugiperda (86.1% mortality at 500 mg/L), significantly better than that of 6j. In addition, further protein validation and molecular docking demonstrated that I-17 could act simultaneously on EcR (17.7% binding activity at 8 mg/L), OfChtI (69.2% inhibitory rate at 50 µM), OfChtII (71.5% inhibitory rate at 50 µM), and OfChi-h (73.9% inhibitory rate at 50 µM), indicating that I-17 is a potential lead candidate for novel multitarget IGRs. This work provides a promising starting point for the development of novel types of IGRs as pest management agents.


Asunto(s)
Quitinasas , Diseño de Fármacos , Proteínas de Insectos , Insecticidas , Hormonas Juveniles , Mariposas Nocturnas , Pirazoles , Spodoptera , Animales , Insecticidas/química , Insecticidas/farmacología , Insecticidas/síntesis química , Spodoptera/efectos de los fármacos , Spodoptera/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/metabolismo , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Relación Estructura-Actividad , Hormonas Juveniles/farmacología , Hormonas Juveniles/química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Quitinasas/metabolismo , Quitinasas/química , Quitinasas/antagonistas & inhibidores , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Simulación del Acoplamiento Molecular , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Acetamidas/farmacología , Acetamidas/química , Estructura Molecular
8.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38657164

RESUMEN

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Asunto(s)
Proteínas de Insectos , Larva , Neuropéptidos , Spodoptera , Animales , Spodoptera/fisiología , Spodoptera/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Neuropéptidos/química , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Flavonas/metabolismo , Flavonas/química , Conducta Alimentaria , Secuencia de Aminoácidos
9.
Proc Natl Acad Sci U S A ; 121(19): e2402045121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38683998

RESUMEN

Phytophagous insects have evolved sophisticated detoxification systems to overcome the antiherbivore chemical defenses produced by many plants. However, how these biotransformation systems differ in generalist and specialist insect species and their role in determining insect host plant range remains an open question. Here, we show that UDP-glucosyltransferases (UGTs) play a key role in determining the host range of insect species within the Spodoptera genus. Comparative genomic analyses of Spodoptera species that differ in host plant breadth identified a relatively conserved number of UGT genes in generalist species but high levels of UGT gene pseudogenization in the specialist Spodoptera picta. CRISPR-Cas9 knockouts of the three main UGT gene clusters of Spodoptera frugiperda revealed that UGT33 genes play an important role in allowing this species to utilize the poaceous plants maize, wheat, and rice, while UGT40 genes facilitate utilization of cotton. Further functional analyses in vivo and in vitro identified the UGT SfUGT33F32 as the key mechanism that allows generalist S. frugiperda to detoxify the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), a potent insecticidal phytotoxin produced by poaceous plants. However, while this detoxification capacity is conserved in several generalist Spodoptera species, Spodoptera picta, which specializes on Crinum plants, is unable to detoxify DIMBOA due to a nonfunctionalizing mutation in SpUGT33F34. Collectively, these findings provide insight into the role of insect UGTs in host plant adaptation, the mechanistic basis of evolutionary transitions between generalism and specialism and offer molecular targets for controlling a group of notorious insect pests.


Asunto(s)
Spodoptera , Animales , Spodoptera/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Especificidad del Huésped/genética , Uridina Difosfato/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Filogenia
10.
Arch Virol ; 169(5): 108, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658418

RESUMEN

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra. Two baculoviruses were constructed: AcPHGFP (polh+), with GFP as a fusion to wild type (wt) polyhedrin and AcΔPHGFP (polh+), with GFP fused to a fragment corresponding to amino acids 19 to 110 of polyhedrin. These baculoviruses were evaluated by infecting Sf9 cells and stably transformed Sf9, Sf9POLH, and Sf9POLHE44G cells. The stably transformed cells contributed another copy of wt or a mutant polyhedrin, respectively. Polyhedra of each type were isolated and characterized by classical methods. The fusion PHGFP showed more-efficient incorporation into polyhedra than ΔPHGFP in the three cell lines assayed. However, ΔPHGFP polyhedron yields were higher than those of PHGFP in Sf9 and Sf9POLH cells. Based on an integral analysis of the studied parameters, it can be concluded that, except for the AcΔPHGFP/Sf9POLHE44G combination, deficiencies in one factor can be offset by improved performance by another. The combinations AcPHGFP/Sf9POLHE44G and AcΔPHGFP/Sf9POLH stand out due to their high level of incorporation and the large number of recombinant polyhedra produced, respectively. Consequently, the choice between these approaches becomes dependent on the intended application.


Asunto(s)
Biotecnología , Nucleopoliedrovirus , Spodoptera , Nucleopoliedrovirus/genética , Nucleopoliedrovirus/metabolismo , Animales , Células Sf9 , Biotecnología/métodos , Spodoptera/virología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Matriz de Cuerpos de Oclusión , Cuerpos de Oclusión Viral/metabolismo , Cuerpos de Oclusión Viral/genética , Línea Celular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Sci Total Environ ; 930: 172807, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679092

RESUMEN

Biodiversity loss, as driven by anthropogenic global change, imperils biosphere intactness and integrity. Ecosystem services such as top-down regulation (or biological control; BC) are susceptible to loss of extinction-prone taxa at upper trophic levels and secondary 'support' species e.g., herbivores. Here, drawing upon curated open-access interaction data, we structurally analyze trophic networks centered on the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) and assess their robustness to species loss. Tri-partite networks link 80 BC organisms (invertebrate or microbial), 512 lepidopteran hosts and 1194 plants (including 147 cultivated crops) in the Neotropics. These comprise threatened herbaceous or woody plants and conservation flagships such as saturniid moths. Treating all interaction partners functionally equivalent, random herbivore loss exerts a respective 26 % or 108 % higher impact on top-down regulation in crop and non-crop settings than that of BC organisms (at 50 % loss). Equally, random loss of BC organisms affects herbivore regulation to a greater extent (13.8 % at 50 % loss) than herbivore loss mediates their preservation (11.4 %). Yet, under moderate biodiversity loss, (non-pest) herbivores prove highly susceptible to loss of BC organisms. Our topological approach spotlights how agriculturally-subsidized BC agents benefit vegetation restoration, while non-pest herbivores uphold biological control in on- and off-farm settings alike. Our work underlines how the on-farm usage of endemic biological control organisms can advance conservation, restoration, and agricultural sustainability imperatives. We discuss how integrative approaches and close interdisciplinary cooperation can spawn desirable outcomes for science, policy and practice.


Asunto(s)
Biodiversidad , Herbivoria , Animales , Ecosistema , Spodoptera/fisiología , Cadena Alimentaria , Conservación de los Recursos Naturales/métodos
12.
Bull Entomol Res ; 114(2): 159-171, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563228

RESUMEN

The fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) is a highly damaging invasive omnivorous pest that has developed varying degrees of resistance to commonly used insecticides. To investigate the molecular mechanisms of tolerance to tetraniliprole, spinetoram, and emamectin benzoate, the enzyme activity, synergistic effect, and RNA interference were implemented in S. frugiperda. The functions of cytochrome P450 monooxygenase (P450) in the tolerance to tetraniliprole, spinetoram, and emamectin benzoate in S. frugiperda was determined by analysing changes in detoxification metabolic enzyme activity and the effects of enzyme inhibitors on susceptibility to the three insecticides. 102 P450 genes were screened via transcriptome and genome, of which 67 P450 genes were differentially expressed in response to tetraniliprole, spinetoram, and emamectin benzoate and validated by quantitative real-time PCR. The expression patterns of CYP9A75, CYP340AA4, CYP340AX8v2, CYP340L16, CYP341B15v2, and CYP341B17v2 were analysed in different tissues and at different developmental stages in S. frugiperda. Silencing CYP340L16 significantly increased the susceptibility of S. frugiperda to tetraniliprole, spinetoram, and emamectin benzoate. Furthermore, knockdown of CYP340AX8v2, CYP9A75, and CYP341B17v2 significantly increased the sensitivity of S. frugiperda to tetraniliprole. Knockdown of CYP340AX8v2 and CYP340AA4 significantly increased mortality of S. frugiperda to spinetoram. Knockdown of CYP9A75 and CYP341B15v2 significantly increased the susceptibility of S. frugiperda to emamectin benzoate. These results may help to elucidate the mechanisms of tolerance to tetraniliprole, spinetoram and emamectin benzoate in S. frugiperda.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Insecticidas , Ivermectina , Spodoptera , Animales , Spodoptera/genética , Spodoptera/metabolismo , Spodoptera/efectos de los fármacos , Ivermectina/análogos & derivados , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Insecticidas/farmacología , Larva/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/genética , Resistencia a los Insecticidas/genética , Inactivación Metabólica , Interferencia de ARN , Macrólidos
13.
Phytochemistry ; 222: 114075, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570006

RESUMEN

Six undescribed bisindole alkaloids, namely taberdisines A-F (1-6), were isolated from the leaves of Tabernaemontana divaricata 'Dwaft'. Among them, alkaloids 1 and 2 were the first examples of strychnos-iboga type alkaloid with both C-C linkage patterns. Alkaloid 3, a new type of aspidosperma-iboga with a furan-ring, as well as other three undescribed ones was disclosed. Their structures were elucidated by comprehensive spectroscopic analyses. Alkaloids 1 and 5 showed insecticide activity on Sf9 cell and eggs of Spodoptera frugiperda in vivo, which might explain the potential of the plants for insect resistance.


Asunto(s)
Alcaloides Indólicos , Insecticidas , Hojas de la Planta , Spodoptera , Tabernaemontana , Tabernaemontana/química , Hojas de la Planta/química , Insecticidas/química , Insecticidas/farmacología , Insecticidas/aislamiento & purificación , Animales , Spodoptera/efectos de los fármacos , Alcaloides Indólicos/química , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Estructura Molecular , Células Sf9
14.
Glycoconj J ; 41(2): 151-162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557922

RESUMEN

Molluscs are intermediate hosts for several parasites. The recognition processes, required to evade the host's immune response, depend on carbohydrates. Therefore, the investigation of mollusc glycosylation capacities is of high relevance to understand the interaction of parasites with their host. UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I (GnT-I) is the key enzyme for the biosynthesis of hybrid and complex type N-glycans catalysing the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the α-1,3 Man antenna of Man5GlcNAc2. Thereby, the enzyme produces a suitable substrate for further enzymes, such as α-mannosidase II, GlcNAc-transferase II, galactosyltransferases or fucosyltransferases. The sequence of GnT- I from the Pacific oyster, Crassostrea gigas, was obtained by homology search using the corresponding human enzyme as the template. The obtained gene codes for a 445 amino acids long type II transmembrane glycoprotein and shared typical structural elements with enzymes from other species. The enzyme was expressed in insect cells and purified by immunoprecipitation using protein A/G-plus agarose beads linked to monoclonal His-tag antibodies. GnT-I activity was determined towards the substrates Man5-PA, MM-PA and GnM-PA. The enzyme displayed highest activity at pH 7.0 and 30 °C, using Man5-PA as the substrate. Divalent cations were indispensable for the enzyme, with highest activity at 40 mM Mn2+, while the addition of EDTA or Cu2+ abolished the activity completely. The activity was also reduced by the addition of UDP, UTP or galactose. In this study we present the identification, expression and biochemical characterization of the first molluscan UDP-N-acetylglucosamine:α-1,3-D-mannoside ß-1,2-N-acetylglucosaminyltransferase I, GnT-I, from the Pacific oyster Crassostrea gigas.


Asunto(s)
Crassostrea , N-Acetilglucosaminiltransferasas , Animales , N-Acetilglucosaminiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/genética , Crassostrea/enzimología , Crassostrea/genética , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Clonación Molecular , Especificidad por Sustrato , Filogenia , Spodoptera
15.
Chemosphere ; 356: 141888, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582169

RESUMEN

Climate change complicates ecotoxicology studies because species responses to pesticides depend on temperature. Classically illustrated by the effect of constant laboratory temperatures, a recent review revealed that the toxicity of pesticides is also often increased by daily temperature fluctuations. Here, we investigated the combined effects of daily temperature fluctuation and mean temperature on the toxicity of two insecticides in the moth Spodoptera littoralis. Our study tested the toxicity of chlorpyrifos and deltamethrin on larvae of six experimental groups that crossed three treatments of daily temperature fluctuations (0, 5 or 10 °C) and two treatments of mean temperatures (25 or 33 °C). We showed that daily temperature fluctuation increased larval mortality induced by chlorpyrifos and deltamethrin. However, the response differed between the organophosphorus insecticide chlorpyrifos and the pyrethroid insecticide deltamethrin. The increase in chlorpyrifos toxicity by daily temperature fluctuation did not differ between mean temperatures of 25 and 33 °C. Remarkably, the increase in deltamethrin toxicity by daily temperature fluctuation was dependent on the crossed effects of the amplitude of daily fluctuation and mean temperature. This increase in deltamethrin toxicity occurred with a daily fluctuation of only 5 °C for larvae reared at 25 °C and a daily fluctuation of 10 °C in larvae reared at 33 °C. To confidently quantify the responses of insecticide toxicity to temperature, future ecotoxicology studies will have to evaluate the generality of the interaction between the effects of daily temperature fluctuation and mean temperature.


Asunto(s)
Cloropirifos , Insecticidas , Larva , Nitrilos , Piretrinas , Temperatura , Animales , Insecticidas/toxicidad , Piretrinas/toxicidad , Larva/efectos de los fármacos , Nitrilos/toxicidad , Cloropirifos/toxicidad , Cambio Climático , Spodoptera/efectos de los fármacos , Spodoptera/fisiología , Spodoptera/crecimiento & desarrollo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/crecimiento & desarrollo
16.
Int J Biol Macromol ; 267(Pt 1): 131459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593893

RESUMEN

Insect resistance evolution poses a significant threat to the advantages of biopesticides and transgenic crops utilizing insecticidal Cry-toxins from Bacillus thuringiensis (Bt). However, there is limited research on the relationship between transcriptional regulation of specific toxin receptors in lepidopteran insects and their resistance to Bt toxins. Here, we report the positive regulatory role of the SfGATAe transcription factor on the expression of the ABCC2 gene in Spodoptera frugiperda. DNA regions in the SfABCC2 promoter that are vital for regulation by SfGATAe, utilizing DAP-seq technology and promoter deletion mapping. Through yeast one-hybrid assays, DNA pull-down experiments, and site-directed mutagenesis, we confirmed that the transcription factor SfGATAe regulates the core control site PBS2 in the ABCC2 target gene. Tissue-specific expression analysis has revealed that SfGATAe is involved in the regulation and expression of midgut cells in the fall armyworm. Silencing SfGATAe in fall armyworm larvae resulted in reduced expression of SfABCC2 and decreased sensitivity to Cry1Ac toxin. Overall, this study elucidated the regulatory mechanism of the transcription factor SfGATAe on the expression of the toxin receptor gene SfABCC2 and this transcriptional control mechanism impacts the resistance of the fall armyworm to Bt toxins.


Asunto(s)
Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas , Resistencia a los Insecticidas , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Regiones Promotoras Genéticas , Spodoptera , Factores de Transcripción , Animales , Spodoptera/genética , Spodoptera/efectos de los fármacos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Resistencia a los Insecticidas/genética , Proteínas Hemolisinas/genética , Regiones Promotoras Genéticas/genética , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Endotoxinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Larva/genética
17.
J Agric Food Chem ; 72(15): 8423-8433, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565327

RESUMEN

Trehalases (TREs) are pivotal enzymes involved in insect development and reproduction, making them prime targets for pest control. We investigated the inhibitory effect of three thiazolidinones with piperine skeletons (6a, 7b, and 7e) on TRE activity and assessed their impact on the growth and development of the fall armyworm (FAW), Spodoptera frugiperda. The compounds were injected into FAW larvae, while the control group was treated with 2% DMSO solvent. All three compounds effectively inhibited TRE activity, resulting in a significant extension of the pupal development stage. Moreover, the treated larvae exhibited significantly decreased survival rates and a higher incidence of abnormal phenotypes related to growth and development compared to the control group. These results suggest that these TRE inhibitors affect the molting of larvae by regulating the chitin metabolism pathway, ultimately reducing their survival rates. Consequently, these compounds hold potential as environmentally friendly insecticides.


Asunto(s)
Alcaloides , Benzodioxoles , Insecticidas , Piperidinas , Alcamidas Poliinsaturadas , Trehalasa , Animales , Larva , Spodoptera , Trehalasa/genética , Insecticidas/farmacología
18.
Pestic Biochem Physiol ; 201: 105891, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685253

RESUMEN

The fall armyworm (Spodoptera frugiperda) was found to have invaded China in December 2018, and in just one year, crops in 26 provinces were heavily affected. Currently, the most effective method for emergency control of fulminant pests is to use of chemical pesticides. Recently, most fall armyworm populations in China were begining to exhibite low level resistance to chlorantraniliprole. At present, it is not possible to sensitively reflect the low level resistance of S. frugiperda by detecting target mutation and detoxification enzyme activity. In this study we found that 12 successive generations of screening with chlorantraniliprole caused S. frugiperda to develop low level resistance to this insecticide, and this phenotype was not attribute to genetic mutations in S. frugiperda, but rather to a marked increase in the relative amount of the symbiotic bacteria Sphingomonas. Using FISH and qPCR assays, we determined the amount of Sphingomonas in the gut of S. frugiperda and found Sphingomonas accumulation to be highest in the 3rd-instar larvae. Additionally, Sphingomonas was observed to provide a protective effect to against chlorantraniliprole stress to S. frugiperda. With the increase of the resistance to chlorantraniliprole, the abundance of bacteria also increased, we propose Sphingomonas monitoring could be adapted into an early warning index for the development of chlorantraniliprole resistance in S. frugiperda populations, such that timely measures can be taken to delay or prevent the widespread propagation of resistance to this highly useful agricultural chemical in S. frugiperda field populations.


Asunto(s)
Insecticidas , Larva , Sphingomonas , Spodoptera , ortoaminobenzoatos , Animales , Spodoptera/efectos de los fármacos , Spodoptera/microbiología , ortoaminobenzoatos/farmacología , Insecticidas/farmacología , Insecticidas/toxicidad , Larva/efectos de los fármacos , Sphingomonas/efectos de los fármacos , Sphingomonas/genética , Resistencia a los Insecticidas/genética
19.
Pestic Biochem Physiol ; 201: 105892, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685254

RESUMEN

As an agricultural pest, the fall armyworm (FAW), Spodoptera frugiperda, poses a severe threat to agriculture in China. Chlorantraniliprole has been widely used to control this pest. In our previous studies, we discovered that LD10, LD20, and LD30 chlorantraniliprole promoted encapsulation in the 4th instar larvae of the FAW, with LD30 chlorantraniliprole having the most significant effect. To further investigate the molecular mechanism underlying the sublethal effects of chlorantraniliprole on encapsulation in the FAW, this study conducted the effects of encapsulation in 4th instar larvae of the FAW exposed to LD30 chlorantraniliprole. Then, we analyzed the transcriptome of the FAW hemolymph treated with LD30 chlorantraniliprole and identified genes related to encapsulation using RNAi. Our results showed that the encapsulation in the FAW was enhanced at 6, 12, 18, 24, and 48 h after exposure to LD30 chlorantraniliprole. Additionally, LD30 chlorantraniliprole significantly affected the expression of certain immune-related genes, with the heat shock protein 70 family gene SfHSP68.1 showing the most significant upregulation. Subsequent interference with SfHSP68.1 resulted in a significant inhibition of encapsulation in FAW. These findings suggested that LD30 chlorantraniliprole can promote encapsulation in the FAW by upregulating SfHSP68.1 expression. This study provides valuable insights into the sublethal effects of chlorantraniliprole on encapsulation in the FAW and the interaction between encapsulation and heat shock proteins (HSPs).


Asunto(s)
Proteínas HSP70 de Choque Térmico , Proteínas de Insectos , Insecticidas , Larva , Spodoptera , ortoaminobenzoatos , Animales , ortoaminobenzoatos/toxicidad , ortoaminobenzoatos/farmacología , Spodoptera/efectos de los fármacos , Spodoptera/genética , Insecticidas/toxicidad , Insecticidas/farmacología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Larva/efectos de los fármacos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
ACS Appl Mater Interfaces ; 16(17): 22558-22570, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38637157

RESUMEN

The development of nanopesticides provides new avenues for pesticide reduction and efficiency improvement. However, the size effect of nanopesticides remains unclear, and its underlying mechanisms of influence have become a major obstacle in the design and application of pesticide nanoformulations. In this research, the noncarrier-coated emamectin benzoate (EB) solid dispersions (Micro-EB and Nano-EB) were produced under a constant surfactant-to-active ingredient ratio by a self-emulsifying-carrier solidification technique. The particle size of Micro-EB was 162 times that of spherical Nano-EB. The small size and large specific surface area of Nano-EB facilitated the adsorption of surfactants on the surface of the particles, thereby improving its dispersibility, suspensibility, and stability. The pinning effect of nanoparticles significantly suppressed droplet retraction and rebounding. Moreover, Nano-EB exhibited a 25% higher retention of the active ingredient on cabbage leaves and a 70% higher washing resistance than Micro-EB, and both were significantly different. The improvement of abilities in wetting, spreading, and retention of Nano-EB on crop leaves contributed to the increase in foliar utilization, which further resulted in a 1.6-fold enhancement of bioactivity against target Spodoptera exigua compared to Micro-EB. Especially, Nano-EB did not exacerbate the safety risk to the nontarget organism zebrafish with no significant difference. This study elaborates the size effect on the effectiveness and safety of pesticide formulations and lays a theoretical foundation for the development and rational utilization of efficient and environmentally friendly nanopesticides.


Asunto(s)
Ivermectina , Ivermectina/análogos & derivados , Nanopartículas , Tamaño de la Partícula , Spodoptera , Ivermectina/farmacología , Ivermectina/química , Animales , Spodoptera/efectos de los fármacos , Nanopartículas/química , Insecticidas/farmacología , Insecticidas/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tensoactivos/química , Tensoactivos/farmacología , Brassica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA