Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.440
Filtrar
1.
mSphere ; 9(7): e0077823, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38990043

RESUMEN

Early childhood dental caries (ECC) is the most common chronic disease among children, especially among low socioeconomic populations. Streptococcus mutans is most frequently associated with initiation of ECC. Although many studies report children with multiple S. mutans strains (i.e., genotypes) have greater odds of developing ECC, studies investigating intraspecies interactions in dental caries are lacking. This study investigates the impact of intraspecies interactions on cariogenic and fitness traits of clinical S. mutans isolates using in vitro and in vivo approaches. Association analysis evaluated if presence of multiple S. mutans genotypes within the first year of colonization was associated with caries. Initially, clinical S. mutans isolates from 10 children were evaluated. S. mutans strains (G09 and G18, most prevalent) isolated from one child were used for subsequent analysis. Biofilm analysis was performed for single and mixed cultures to assess cariogenic traits, including biofilm biomass, intra-polysaccharide, pH, and glucan. Confocal laser scanning microscopy (CLSM) and time-lapse imaging were used to evaluate spatial and temporal biofilm dynamics, respectively. A Drosophila model was used to assess colonization in vivo. Results showed the mean biofilm pH was significantly lower in co-cultured biofilms versus monoculture. Doubling of S. mutans biofilms was observed by CLSM and in vivo colonization in Drosophila for co-cultured S. mutans. Individual strains occupied specific domains in co-culture and G09 contributed most to increased co-culture biofilm thickness and colonization in Drosophila. Biofilm formation and acid production displayed distinct signatures in time-lapsed experiments. This study illuminates that intraspecies interactions of S. mutans significantly impacts biofilm acidity, architecture, and colonization.IMPORTANCEThis study sheds light on the complex dynamics of a key contributor to early childhood dental caries (ECC) by exploring intraspecies interactions of different S. mutans strains and their impact on cariogenic traits. Utilizing clinical isolates from children with ECC, the research highlights significant differences in biofilm architecture and acid production in mixed versus single genotype cultures. The findings reveal that co-cultured S. mutans strains exhibit increased cell density and acidity, with individual strains occupying distinct domains. These insights, enhanced by use of time-lapsed confocal laser scanning microscopy and a Drosophila model, offer a deeper understanding of ECC pathogenesis and potential avenues for targeted interventions.


Asunto(s)
Biopelículas , Caries Dental , Streptococcus mutans , Biopelículas/crecimiento & desarrollo , Streptococcus mutans/genética , Streptococcus mutans/fisiología , Streptococcus mutans/patogenicidad , Caries Dental/microbiología , Humanos , Animales , Preescolar , Drosophila/microbiología , Virulencia , Interacciones Microbianas , Genotipo , Femenino , Masculino , Niño , Concentración de Iones de Hidrógeno , Factores de Virulencia/genética , Modelos Animales de Enfermedad , Microscopía Confocal
2.
PLoS One ; 19(7): e0306862, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38990802

RESUMEN

To evaluate the effect of antiseptic soap on single and dual-species biofilms of Candida albicans and Streptococcus mutans on denture base and reline resins. Samples of the resins were distributed into groups (n = 9) according to the prevention or disinfection protocols. In the prevention protocol, samples were immersed in the solutions (Lifebuoy, 0.5% sodium hypochlorite solution and PBS) for 7, 14 and 28 days before the single and dual-species biofilms formation. Overnight denture disinfection was simulated. In the disinfection protocol, samples were immersed in the same solutions during 8 hours after the single and dual-species biofilms formation. Antimicrobial activity was analyzed by counting colony-forming units (CFU/mL) and evaluating cell metabolism. Cell viability and protein components of the biofilm matrix were evaluated using confocal laser scanning microscopy (CLSM). Data were submitted to ANOVA, followed by Tukey's post-test (α = 0.05) or Dunnett's T3 multiple comparisons test. In the prevention protocol, Lifebuoy solution effectively reduced the number of CFU/mL of both species. In addition, the solution decreased the cell metabolism of the microorganisms. Regarding disinfection protocol, the Lifebuoy solution was able of reduce approximately of 2-3 logs for all the biofilms on the denture base and reline resin. Cellular metabolism was also reduced. The images obtained with CLSM corroborate these results. Lifebuoy solution was effective in reducing single and dual-species biofilms on denture base and reline resins.


Asunto(s)
Resinas Acrílicas , Biopelículas , Candida albicans , Bases para Dentadura , Streptococcus mutans , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Bases para Dentadura/microbiología , Resinas Acrílicas/química , Resinas Acrílicas/farmacología , Antiinfecciosos Locales/farmacología , Desinfección/métodos , Humanos
3.
Lasers Med Sci ; 39(1): 184, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020076

RESUMEN

PURPOSE: This study aimed to investigate the efficiency of antimicrobial photodynamic therapy (aPDT) on Streptococcus mutans biofilm in the oral cavity using the photosensitizer chloroaluminum phthalocyanine encapsulated in chitosan nanoparticles (ClAlPc/Ch) at three preirradiation times. METHODS: Biofilms of Streptococcus mutans strains (ATCC 25,175) were cultivated on bovine tooth blocks and exposed to a 10% sucrose solution three times a day for 1 min over three consecutive days. The samples were randomly distributed into five treatment groups (n = 5): (I) aPDT with ClAlPc/Ch with a preirradiation time of 5 min (F5), (II) aPDT with ClAlPc/Ch with a preirradiation time of 15 min (F15), (III) aPDT with ClAlPc/Ch with a preirradiation time of 30 min (F30), (IV) 0.12% chlorhexidine digluconate (CHX), and (V) 0.9% saline solution (NaCl). After treatment, the S. mutans biofilms formed on each specimen were collected to determine the number of viable bacteria (colony-forming units (CFU)/mL). Data were analyzed for normality using the Shapiro-Wilk test and the analysis of variance (ANOVA) and Tukey HSD tests to analyze the number of viable bacteria (α = 0.05). RESULTS: The one-way ANOVA showed a difference between the groups (p = 0.0003), and the Tukey HSD posttest showed that CHX had the highest microbial reduction of S. mutans, not statistically different from the F5 and F15 groups, whereas the NaCl group had the lowest microbial reduction statistically similar to the F30 group. CONCLUSION: The results demonstrate that aPDT mediated by ClAlPc/Ch when used at preirradiation times of 5-15 min can be an effective approach in controlling cariogenic biofilm of S. mutans, being an alternative to 0.12% CHX.


Asunto(s)
Biopelículas , Quitosano , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/efectos de la radiación , Streptococcus mutans/fisiología , Fotoquimioterapia/métodos , Quitosano/farmacología , Quitosano/química , Nanopartículas/química , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Animales , Bovinos , Fármacos Fotosensibilizantes/farmacología , Técnicas In Vitro , Indoles/farmacología , Boca/microbiología , Clorhexidina/farmacología , Clorhexidina/análogos & derivados , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Compuestos Organometálicos
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 1-6, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836689

RESUMEN

This study aimed to investigate the antibacterial and antimicrobial activity of ozone gel against oral biofilms grown on titanium dental implant discs. The experiment used medical grade five titanium discs on which peri-implant isolated biofilms were grown. The experimental groups were control, Streptococcus mutans (S. mutans) and Granulicatella adiacens (G. adiacens), (n = 6). The oral microbes grown on titanium discs were exposed to ozone gel for 3 minutes and the antibacterial activity was assessed by turbidity test and adherence test for the antibiofilm activity test. Bacterial morphology and confluence were investigated by scanning electron microscopy (SEM), (n=3). Two bacterial species were identified from the peri-implant sample, S. mutans and G. adiacens. The results showed that adding ozone to the bacterial biofilm on titanium dental implants did not exhibit significant antibacterial activity against S. mutans. Moreover, there was no significant difference in antibiofilm activity between control and treatment groups. However, significant antibacterial and antibiofilm effect was exhibited by ozone gel against G. adiacens. Ozonated olive oil can be considered as a potential antimicrobial agent for disinfecting dental implant surfaces and treating peri-implantitis.


Asunto(s)
Biopelículas , Implantes Dentales , Aceite de Oliva , Ozono , Periimplantitis , Streptococcus mutans , Ozono/farmacología , Aceite de Oliva/farmacología , Aceite de Oliva/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Periimplantitis/microbiología , Periimplantitis/tratamiento farmacológico , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Humanos , Implantes Dentales/microbiología , Titanio/farmacología , Titanio/química , Antibacterianos/farmacología , Microscopía Electrónica de Rastreo , Pruebas de Sensibilidad Microbiana
5.
Arch Oral Biol ; 165: 106009, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38838513

RESUMEN

OBJECTIVE: The objective was to measure the thickness of Streptococcus mutans (S. mutans) biofilms forming in an oral biofilm reactor (OBR) by using a noninvasive swept-source optical coherence tomography (SS-OCT) system at every 4 h time interval until 20 h and analyze the correlations with the amounts of biofilms. METHODS: S. mutans biofilms were formed on square-shaped bovine enamel blocks inside an OBR. Biofilms were analyzed at every 4 h stage (4 h, 8 h, 12 h, 16 h and 20 h) using a SS-OCT system and a laser scanning confocal microscope (LSCM). The amounts of biofilms were measured at each stage by separating the water insoluble glucan (WIG) and bacterial cells. Co-relationships between the SS-OCT measured biofilm thickness and the amounts of adhered biofilms were analyzed. RESULTS: The thickness of biofilms detected on SS-OCT images at 4 h stage was 0.059 ± 0.029 (Av ± SD) mm which increased time-dependently in a linear fashion after 8 h stage and reached to 0.435 ± 0.159 mm at 20 h stage and the correlation coefficient was about 0.89. The amounts of biofilms; bacterial optical density (OD) and WIG concentration increased time-dependently were 0.035 ± 0.008 / mm2 and 10.328 ± 2.492 µg/ mm2 respectively at 20 h stage. Correlation coefficients of 0.66 between 'the amounts of bacteria' and 'biofilm thickness on OCT' and 0.67 between 'the amounts of WIG' and 'biofilm thickness on OCT' were obtained, suggesting that there was a relatively positive correlation between them. CONCLUSION: The SS-OCT can be a useful tool to measure time-dependent growth of biofilms. Further studies are needed in order to assess biofilms using SS-OCT more accurately.


Asunto(s)
Biopelículas , Esmalte Dental , Microscopía Confocal , Streptococcus mutans , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Bovinos , Animales , Streptococcus mutans/fisiología , Microscopía Confocal/métodos , Esmalte Dental/microbiología , Técnicas In Vitro , Caries Dental/microbiología , Caries Dental/diagnóstico por imagen , Factores de Tiempo
6.
Arch Oral Biol ; 166: 106029, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38924874

RESUMEN

OBJECTIVES: To develop a protocol for forming subsurface caries lesions on bovine enamel by dual-species biofilms of Streptococcus mutans and Candida albicans in vitro. DESIGN: Biofilms were grown on bovine enamel specimens in artificial saliva (AS) for seven days. After 24 h of formation, the AS was supplemented or not with fluoride (F) using sodium fluoride (0.005 or 0.008 ppm F), and the biofilms were exposed or not to a 20 % sucrose solution (reproducing a cariogenic challenge) once/day. On the seventh day, the biofilms were harvested and had their extracellular polysaccharides (EPS) and inorganic components analyzed. The specimens were subjected to computed X-ray microtomography analysis to determine their mineral concentration. Data were compared using two-way analyses of variance, followed by Fisher's LSD or Student-Newman-Keuls tests (p < 0.05). RESULTS: Biofilms exposed to the cariogenic challenge had significantly higher EPS concentrations than those not exposed, regardless of the presence of F. For biofilms grown with 0.008 ppm F, those exposed to the cariogenic challenge had lower F levels than those not exposed. For biofilms exposed to the cariogenic challenge, those grown with 0.008 ppm F had lower lesion depths and integrated mineral loss, and higher outer layers than those grown without F. CONCLUSIONS: The dual biofilm model assessed was able to create subsurface caries lesions in bovine enamel in vitro, which was influenced by the presence of F in the culture medium and exposure to sucrose.


Asunto(s)
Biopelículas , Candida albicans , Caries Dental , Esmalte Dental , Streptococcus mutans , Candida albicans/fisiología , Streptococcus mutans/fisiología , Caries Dental/microbiología , Animales , Bovinos , Polisacáridos Bacterianos/metabolismo , Sacarosa/farmacología , Fluoruros/farmacología , Esmalte Dental/química , Esmalte Dental/microbiología , Esmalte Dental/patología , Modelos Animales
7.
J Microbiol Immunol Infect ; 57(4): 533-545, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38825404

RESUMEN

BACKGROUND: Periodontal disease is the leading cause of tooth loss, and an association between periodontal disease and non-oral systemic diseases has been shown. Formation of biofilm by periodontal pathogens such as Fusobacterium nucleatum, Porphyromonas gingivalis, and Streptococcus mutans and their resistance to antimicrobial agents are at the root of persistent and chronic bacterial infections. METHODS: The bactericidal effect of far-ultraviolet (F-UV) light irradiation at 222 nm on periodontal bacteria was assessed qualitatively and quantitatively. The effect of biofilm disruption by F-UV light on periodontal bacteria was examined by crystal violet staining, and the morphologic changes of the biofilm after F-UV irradiation were explored by confocal laser microscopy and scanning electron microscopy. We developed a thin fiber-type 222 nm F-UV irradiator and studied its safety and effect of reducing bacteria in rodent models. RESULTS: F-UV light at 222 nm had a bactericidal effect on F. nucleatum, P. gingivalis, and S. mutans. Irradiation with F-UV light reduced the biofilm formed by the bacteria and sterilized them from within. Confocal laser microscopy showed a clear reduction in biofilm thickness, and scanning electron microscopy confirmed disintegration of the biofilm architecture. F-UV irradiation was less damaging to DNA and less cytotoxic than deep-ultraviolet light, and it reduced bacterial counts on the tooth surface. CONCLUSION: F-UV irradiation has the potential to destroy biofilm and act as a bactericide against pathogenic bacteria in the biofilm.


Asunto(s)
Biopelículas , Fusobacterium nucleatum , Periodontitis , Porphyromonas gingivalis , Streptococcus mutans , Rayos Ultravioleta , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Porphyromonas gingivalis/efectos de los fármacos , Porphyromonas gingivalis/efectos de la radiación , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/efectos de la radiación , Animales , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/efectos de la radiación , Streptococcus mutans/fisiología , Periodontitis/microbiología , Microscopía Confocal , Microscopía Electrónica de Rastreo , Ratones , Viabilidad Microbiana/efectos de la radiación , Viabilidad Microbiana/efectos de los fármacos , Humanos
8.
J Appl Oral Sci ; 32: e20230458, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38922241

RESUMEN

OBJECTIVE: This study compared three protocols for developing artificial white spot lesions (WSL) using biofilm models. METHODOLOGY: In total, 45 human enamel specimens were sterilized and allocated into three groups based on the biofilm model: Streptococcus sobrinus and Lactobacillus casei (Ss+Lc), Streptococcus sobrinus (Ss), or Streptococcus mutans (Sm). Specimens were incubated in filter-sterilized human saliva to form the acquired pellicle and then subjected to the biofilm challenge consisting of three days of incubation with bacteria (for demineralization) and one day of remineralization, which was performed once for Ss+Lc (four days total), four times for Ss (16 days total), and three times for Sm (12 days total). After WSL creation, the lesion fluorescence, depth, and chemical composition were assessed using Quantitative Light-induced Fluorescence (QLF), Polarized Light Microscopy (PLM), and Raman Spectroscopy, respectively. Statistical analysis consisted of two-way ANOVA followed by Tukey's post hoc test (α=0.05). WSL created using the Ss+Lc protocol presented statistically significant higher fluorescence loss (ΔF) and integrated fluorescence (ΔQ) in comparison to the other two protocols (p<0.001). RESULTS: In addition, Ss+Lc resulted in significantly deeper WSL (137.5 µm), followed by Ss (84.1 µm) and Sm (54.9 µm) (p<0.001). While high mineral content was observed in sound enamel surrounding the WSL, lesions created with the Ss+Lc protocol showed the highest demineralization level and changes in the mineral content among the three protocols. CONCLUSION: The biofilm model using S. sobrinus and L. casei for four days was the most appropriate and simplified protocol for developing artificial active WSL with lower fluorescence, higher demineralization, and greater depth.


Asunto(s)
Biopelículas , Caries Dental , Esmalte Dental , Lacticaseibacillus casei , Streptococcus mutans , Humanos , Streptococcus mutans/fisiología , Caries Dental/microbiología , Caries Dental/terapia , Esmalte Dental/microbiología , Esmalte Dental/química , Lacticaseibacillus casei/fisiología , Factores de Tiempo , Reproducibilidad de los Resultados , Streptococcus sobrinus/fisiología , Espectrometría Raman , Análisis de Varianza , Microscopía de Polarización , Estadísticas no Paramétricas , Remineralización Dental/métodos , Valores de Referencia , Saliva/microbiología , Saliva/química , Desmineralización Dental/microbiología , Fluorescencia
9.
Arch Oral Biol ; 164: 106002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38759390

RESUMEN

OBJECTIVES: The aim of this study was to investigate the difference in dental biofilm formation according to substratum direction, using an artificial biofilm model. METHODS: A three-species biofilm, consisting of Streptococcus mutans, Streptococcus oralis, and Actinomyces naeslundii, was formed on saliva-coated hydroxyapatite (sHA) discs oriented in three directions: downward (the discs placed in the direction of gravity), vertical (the discs placed parallel to the direction of gravity), and upward (the discs placed in opposite direction of gravity). The biofilms at 22 h and 46 h of age were analyzed using microbiological and biochemical methods, fluorescence-based assays, and scanning electron microscopy to investigate difference in bacterial adhesion, early and mature biofilm formation. RESULTS: The biofilms formed in the upward direction displayed the most complex structure, with the highest number and biovolume of bacteria, as well as the lowest pH conditions at both time points. The vertical and downward directions, however, had only scattered and small bacterial colonies. In the 22-h-old biofilms, the proportion of S. oralis was similar to, or slightly higher than, that of S. mutans in all directions of substratum surfaces. However, in the 46-h-old biofilms, S. mutans became the dominant bacteria in all directions, especially in the vertical and upward directions. CONCLUSIONS: The direction of the substratum surface could impact the proportion of bacteria and cariogenic properties of the multi-species biofilm. Biofilms in an upward direction may exhibit a higher cariogenic potential, followed by those in the vertical and downward directions, which could be related to gravity.


Asunto(s)
Actinomyces , Adhesión Bacteriana , Biopelículas , Durapatita , Microscopía Electrónica de Rastreo , Saliva , Streptococcus mutans , Streptococcus oralis , Actinomyces/fisiología , Streptococcus mutans/fisiología , Saliva/microbiología , Streptococcus oralis/fisiología , Adhesión Bacteriana/fisiología , Durapatita/química , Humanos , Propiedades de Superficie , Concentración de Iones de Hidrógeno
10.
Sci Rep ; 14(1): 10882, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740792

RESUMEN

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Asunto(s)
Biopelículas , Gases em Plasma , Saliva , Streptococcus mutans , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Gases em Plasma/farmacología , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Saliva/microbiología , Fibroblastos/microbiología , Fibroblastos/efectos de los fármacos , Periodontitis/microbiología , Periodontitis/terapia , Línea Celular , Boca/microbiología
11.
J Trace Elem Med Biol ; 84: 127448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626650

RESUMEN

INTRODUCTION: S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES: The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY: 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 µg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES: SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS: The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION: It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT: The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Selenio , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Biopelículas/efectos de los fármacos , Selenio/farmacología , Selenio/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Tamaño de la Partícula
12.
J Appl Oral Sci ; 32: e20230326, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38656049

RESUMEN

OBJECTIVE: This study evaluated the surface roughness, wettability and adhesion of multispecies biofilms (Candida albicans, Staphylococcus aureus and Streptococcus mutans) on 3D-printed resins for complete denture bases and teeth compared to conventional resins (heat-polymerized acrylic resin; artificial pre-fabricated teeth). METHODOLOGY: Circular specimens (n=39; 6.0 mm Ø × 2.0 mm) of each group were subjected to roughness (n=30), wettability (n=30) and biofilm adhesion (n=9) tests. Three roughness measurements were taken by laser confocal microscopy and a mean value was calculated. Wettability was evaluated by the contact angle of sessile drop method, considering the mean of the three evaluations per specimen. In parallel, microorganism adhesion to resin surfaces was evaluated using a multispecies biofilm model. Microbial load was evaluated by determining the number of Colony Forming Units (CFU/mL) and by scanning electron microscopy (SEM). Data were subjected to the Wald test in a generalized linear model with multiple comparisons and Bonferroni adjustment, as well as two-way ANOVA (α=5%). RESULTS: The roughness of the conventional base resin (0.01±0.04) was lower than that of the conventional tooth (0.14±0.04) (p=0.023) and 3D-printed base (0.18±0.08) (p<0.001). For wettability, conventional resin (84.20±5.57) showed a higher contact angle than the 3D-printed resin (60.58±6.18) (p<0.001). Higher microbial loads of S. mutans (p=0.023) and S. aureus (p=0.010) were observed on the surface of the conventional resin (S. mutans: 5.48±1.55; S. aureus: 7.01±0.57) compared to the 3D-printed resin (S. mutans: 4.11±1.96; S. aureus: 6.42±0.78). The adhesion of C. albicans was not affected by surface characteristics. The conventional base resin showed less roughness than the conventional dental resin and the printed base resin. CONCLUSION: The 3D-printed resins for base and tooth showed less hydrophobicity and less adhesion of S. mutans and S. aureus than conventional resins.


Asunto(s)
Resinas Acrílicas , Adhesión Bacteriana , Biopelículas , Candida albicans , Bases para Dentadura , Ensayo de Materiales , Microscopía Confocal , Microscopía Electrónica de Rastreo , Impresión Tridimensional , Staphylococcus aureus , Streptococcus mutans , Propiedades de Superficie , Humectabilidad , Streptococcus mutans/fisiología , Staphylococcus aureus/fisiología , Candida albicans/fisiología , Bases para Dentadura/microbiología , Resinas Acrílicas/química , Análisis de Varianza , Reproducibilidad de los Resultados , Dentadura Completa/microbiología , Valores de Referencia , Recuento de Colonia Microbiana , Modelos Lineales
13.
Methods Enzymol ; 696: 155-174, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658078

RESUMEN

The interactions between communities of microorganisms inhabiting the dental biofilm is a major determinant of oral health. These biofilms are periodically exposed to high concentrations of fluoride, which is present in almost all oral healthcare products. The microbes resist fluoride through the action of membrane export proteins. This chapter describes the culture, growth and harvest conditions of model three-species dental biofilm comprised of cariogenic pathogens Streptococcus mutans and Candida albicans and the commensal bacterium Streptococcus gordonii. In order to examine the role of fluoride export by S. mutans in model biofilms, procedures for generating a strain of S. mutans with a genetic knockout of the fluoride exporter are described. We present a case study examining the effects of this mutant strain on the biofilm mass, acid production and mineral dissolution under exposure to low levels of fluoride. These general approaches can be applied to study the effects of any gene of interest in physiologically realistic multispecies oral biofilms.


Asunto(s)
Biopelículas , Candida albicans , Fluoruros , Streptococcus gordonii , Streptococcus mutans , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/fisiología , Streptococcus mutans/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Fluoruros/farmacología , Fluoruros/metabolismo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiología , Streptococcus gordonii/efectos de los fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/fisiología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Caries Dental/microbiología
14.
mBio ; 15(5): e0018424, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624207

RESUMEN

Microorganisms resist fluoride toxicity using fluoride export proteins from one of several different molecular families. Cariogenic species Streptococcus mutans and Candida albicans extrude intracellular fluoride using a CLCF F-/H+ antiporter and FEX fluoride channel, respectively, whereas oral commensal eubacteria, such as Streptococcus gordonii, export fluoride using a Fluc fluoride channel. In this work, we examine how genetic knockout of fluoride export impacts pathogen fitness in single-species and three-species dental biofilm models. For biofilms generated using S. mutans with the genetic knockout of the CLCF transporter, exposure to low fluoride concentrations decreased S. mutans counts, synergistically reduced the populations of C. albicans, increased the relative proportion of oral commensal S. gordonii, and reduced properties associated with biofilm pathogenicity, including acid production and hydroxyapatite dissolution. Biofilms prepared with C. albicans with genetic knockout of the FEX channel also exhibited reduced fitness in the presence of fluoride but to a lesser degree. Imaging studies indicate that S. mutans is highly sensitive to fluoride, with the knockout strain undergoing complete lysis when exposed to low fluoride for a moderate amount of time. Biochemical purification of the S. mutans CLCF transporter and functional reconstitution establishes that the functional protein is a dimer encoded by a single gene. Together, these findings suggest that fluoride export by oral pathogens can be targeted by specific inhibitors to restore biofilm symbiosis in dental biofilms and that S. mutans is especially susceptible to fluoride toxicity. IMPORTANCE: Dental caries is a globally prevalent condition that occurs when pathogenic species, including Streptococcus mutans and Candida albicans, outcompete beneficial species, such as Streptococcus gordonii, in the dental biofilm. Fluoride is routinely used in oral hygiene to prevent dental caries. Fluoride also has antimicrobial properties, although most microbes possess fluoride exporters to resist its toxicity. This work shows that sensitization of cariogenic species S. mutans and C. albicans to fluoride by genetic knockout of fluoride exporters alters the microbial composition and pathogenic properties of dental biofilms. These results suggest that the development of drugs that inhibit fluoride exporters could potentiate the anticaries effect of fluoride in over-the-counter products like toothpaste and mouth rinses. This is a novel strategy to treat dental caries.


Asunto(s)
Biopelículas , Candida albicans , Fluoruros , Streptococcus gordonii , Streptococcus mutans , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/fisiología , Candida albicans/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/metabolismo , Streptococcus mutans/fisiología , Fluoruros/farmacología , Fluoruros/metabolismo , Streptococcus gordonii/efectos de los fármacos , Streptococcus gordonii/genética , Streptococcus gordonii/fisiología , Streptococcus gordonii/metabolismo , Técnicas de Inactivación de Genes , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Caries Dental/microbiología
15.
Braz J Microbiol ; 55(1): 365-374, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38040990

RESUMEN

Candida albicans causes a variety of clinical manifestations through multiple virulence factors that act simultaneously to overcome the immune system and invade the host tissues. Owing to the limited number of antifungal agents available, new candidiasis therapeutic strategies are required. Previous studies have demonstrated that the metabolites produced by Streptococcus mutans lead to a decrease in the number of Candida cells. Here, for the first time, we evaluated whether the C. albicans cells that survived the pretreatment with S. mutans supernatant can modify their virulence factors and their capability to infect Galleria mellonella larvae. Streptococcus mutans supernatant (SM-S) was obtained by filtering the culture supernatant of this bacterium. Then, C. albicans cells were pretreated with SM-S for 24 h, and the surviving cells were evaluated using in vitro and in vivo assays. The C. albicans pretreated with SM-S showed a significant inhibition of hyphal growth, an altered adhesion pattern, and an impaired capability to form biofilms; however, its proteolytic activity was not affected. In the in vivo assays, C. albicans cells previously exposed to SM-S exhibited a reduced ability to infect G. mellonella and a higher amount of circulating hemocytes. Thus, SM-S could inhibit important virulence factors of C. albicans, which may contribute to the development of new candidiasis therapeutic strategies.


Asunto(s)
Candida albicans , Candidiasis , Animales , Virulencia , Streptococcus mutans/fisiología , Candidiasis/microbiología , Factores de Virulencia , Biopelículas
16.
Small ; 20(19): e2309230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38112271

RESUMEN

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Asunto(s)
Regeneración Ósea , Colágeno , Células Madre Mesenquimatosas , Nanocables , Osteogénesis , Andamios del Tejido , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanocables/química , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Humanos , Colágeno/química , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Animales , Porphyromonas gingivalis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Streptococcus mutans/fisiología , Streptococcus mutans/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
17.
J Dent ; 141: 104805, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38101504

RESUMEN

INTRODUCTION: Childhood caries, a prevalent chronic disease, affects 60-90 % of children in industrialized regions, leading to lesions in both primary and permanent teeth. This condition precipitates hospital admissions, emergency room visits, elevated treatment costs, and missed school days, thereby impeding the child's academic engagement and increasing the likelihood of caries into adulthood. Despite multiple identified risk factors, significant interpersonal variability remains unexplained. The immune system generates a unique antibody repertoire, essential for maintaining a balanced and healthy oral microbiome. Streptococcus mutans is a primary contributor to the development of caries. METHODS: Employing mass spectrometry, we investigated the S. mutans proteins targeted by antibodies in children both with and without caries, delineating a fundamental suite of proteins discernible by the immune systems of a majority of individuals. Notably, this suite was enriched with proteins pivotal for bacterial adhesion. To ascertain the physiological implications of these discoveries, we evaluated the efficacy of saliva in thwarting S. mutans adherence to dental surfaces. RESULTS: Antibodies in most children recognized a core set of ten S. mutans proteins, with additional proteins identified in some individuals. There was no significant difference in the proteins identified by children with or without caries, but there was variation in antibody binding intensity to some proteins. Functionally, saliva from caries-free individuals, but not children with caries, was found to hinder the binding of S. mutans to teeth. These findings delineate the S. mutans proteome targeted by the immune system and suggest that the inhibition of bacterial adherence to teeth is a primary mechanism employed by the immune system to maintain oral balance and prevent caries formation. CONCLUSIONS: These findings enhance our knowledge of the immune system's function in oral health maintenance and caries prevention, shedding light on how immunoglobulins interact with S. mutans proteins. CLINICAL SIGNIFICANCE: Targeting S. mutans proteins implicated in bacterial adhesion could be a promising strategy for preventing childhood caries.


Asunto(s)
Caries Dental , Diente , Niño , Humanos , Streptococcus mutans/fisiología , Susceptibilidad a Caries Dentarias , Caries Dental/prevención & control , Caries Dental/microbiología , Adhesión Bacteriana , Saliva/química
18.
Braz Dent J ; 34(3): 73-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37466528

RESUMEN

Experimental models that consider host-pathogen interactions are relevant for improving knowledge about oral candidiasis. The aim of this study was to assess the epithelial immune responses, Candida penetration of cell monolayers, and virulence during mixed species culture infections. Single species cultures of Candida albicans and mixed cultures (C. albicans, Streptococcus mutans, and Streptococcus sanguinis) were used to infect monolayers of HaCaT and FaDu ATCC HTB-43 cells for 12 h. After infection, IL-18 and IL-34 gene expression was measured to assess epithelial cell immune responses, and lactate dehydrogenase (LDH) activity was measured as an indicator of cell damage. Microscopy determined C. albicans morphology and penetration of fungal cells through the keratinocyte monolayer. Monolayers devoid of infection served as controls. Data were analyzed by an ANOVA one-way test followed by Tukey's post-hoc test (α = 0.05). The results found that IL-18 and IL-34 gene expression and LDH activity were significantly (p < 0.05) upregulated for both cell lines exposed to mixed species cultures compared with C. albicans alone. Candida albicans yeast and hyphae were evident in C. albicans only infections. In contrast, monolayers infected by C. albicans, S. mutans, and S. sanguinis exhibited higher microbial invasion with several hyphal aggregates detected. The presence of streptococci in C. albicans infection enhances the virulence and pathogenicity of the fungus with associated increased immune responses and tissue damage. Extrapolation of these findings to oral infection would indicate the added potential benefit of managing bacterial components of biofilms during treatment.


Asunto(s)
Candida albicans , Interleucina-18 , Virulencia , Interleucina-18/metabolismo , Streptococcus , Streptococcus mutans/fisiología , Biopelículas
19.
Front Cell Infect Microbiol ; 13: 1053230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187472

RESUMEN

Objective: Various studies have indicated the application of Coenzyme Q10 and probiotic bacteria such as Ligilactobacillus salivarius (L. salivarius) and Lactiplantibacillus plantarum (L. plantarum) in combating periodontal disease. Considering the positive effect of these two on oral health, and the destructive effect of S. mutans, in this study, we investigate the outcomes of the administration of probiotics and Q10 on infected HEp-2 cell viability and S. mutans adhesion in different settings. Methods: A 3-week-old human epidermoid laryngeal (HEp-2) cell line was cultured and exposed to two different probiotics and 3 different doses of Q10 doses. Samples were contaminated by S. mutans immediately (therapeutic setting) and after 3 hours (preventive setting). Eventually, the viability of HEp-2 cells was investigated by MTT. Also, the number of adhered S. mutans was explored by direct and indirect adhesion assays. Results: L. plantarum and L. salivarius protect epithelial cells against S. mutans in both therapeutic and preventive settings, albeit not fully. In contrast, Q10 completely preserves the viability of infected Her HEp-2 cells at all concentrations. The effects of the coexistence of Q10 and probiotics were not quite equal, among which L. salivarius and 5 µg of Q10 form the best results. The microscopic adherence assay of S. mutans revealed that samples containing Q10 had significantly lower adhesion of probiotics and S. mutans to HEp-2 cells. Similarly, plates containing L. salivarius with 5µg or L. plantarum with 1µg Q10 or sole presence of L. salivarius had the lowest S. mutans adherence among others. Also, L. salivarius with 5µg Q10 had one of the highest probiotic adherences. Conclusion: In conclusion, co-administration of Q10 and probiotics especially in presence of L. salivarius with 5µg Q10 could have remarkable effects on HEp-2 cell viability, S. mutans, and probiotic adherence. Nevertheless, our study, for the first time, showed that Q10 might have an anti-bacterial activity by suppressing the adhesion of tested bacteria to HEp-2 cells. This hypothesis, if correct, suggests that due to their different mechanisms, co-prescription of Q10 and probiotics may lead to better clinical responses, especially in the mentiond dose.


Asunto(s)
Ligilactobacillus salivarius , Enfermedades Periodontales , Probióticos , Humanos , Femenino , Streptococcus mutans/fisiología , Supervivencia Celular , Probióticos/uso terapéutico
20.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108414

RESUMEN

A disturbed balance within the dental biofilm can result in the dominance of cariogenic and periodontopathogenic species and disease development. Due to the failure of pharmacological treatment of biofilm infection, a preventive approach to promoting healthy oral microbiota is necessary. This study analyzed the influence of Streptococcus salivarius K12 on the development of a multispecies biofilm composed of Streptococcus mutans, S. oralis and Aggregatibacter actinomycetemcomitans. Four different materials were used: hydroxyapatite, dentin and two dense polytetrafluoroethylene (d-PTFE) membranes. Total bacteria, individual species and their proportions in the mixed biofilm were quantified. A qualitative analysis of the mixed biofilm was performed using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that in the presence of S. salivarius K 12 in the initial stage of biofilm development, the proportion of S. mutans was reduced, which resulted in the inhibition of microcolony development and the complex three-dimensional structure of the biofilm. In the mature biofilm, a significantly lower proportion of the periodontopathogenic species A. actinomycetemcomitans was found in the salivarius biofilm. Our results show that S. salivarius K 12 can inhibit the growth of pathogens in the dental biofilm and help maintain the physiological balance in the oral microbiome.


Asunto(s)
Streptococcus mutans , Streptococcus salivarius , Streptococcus mutans/fisiología , Aggregatibacter actinomycetemcomitans , Biopelículas , Homeostasis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...