Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mSphere ; 6(6): e0087521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34908459

RESUMEN

As common commensals residing on mucosal tissues, Lactobacillus species are known to promote health, while some Streptococcus species act to enhance the pathogenicity of other organisms in those environments. In this study, we used a combination of in vitro imaging of live biofilms and computational modeling to explore biofilm interactions between Streptococcus oralis, an accessory pathogen in oral candidiasis, and Lactobacillus paracasei, an organism with known probiotic properties. A computational agent-based model was created where the two species interact only by competing for space, oxygen and glucose. Quantification of bacterial growth in live biofilms indicated that S. oralis biomass and cell numbers were much lower than predicted by the model. Two subsequent models were then created to examine more complex interactions between these species, one where L. paracasei secretes a surfactant, and another where L. paracasei secretes an inhibitor of S. oralis growth. We observed that the growth of S. oralis could be affected by both mechanisms. Further biofilm experiments support the hypothesis that L. paracasei may secrete an inhibitor of S. oralis growth, although they do not exclude that a surfactant could also be involved. This contribution shows how agent-based modeling and experiments can be used in synergy to address multiple species biofilm interactions, with important roles in mucosal health and disease. IMPORTANCE We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms. Here, we used an iterative collaborative process between experimentation and modeling to reveal aspects of the mostly unexplored relationship between S. oralis and L. paracasei in biofilm growth. The inhibitory nature of L. paracasei on S. oralis in biofilms may be exploited as a means of preventing or alleviating mucosal fungal infections.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Lacticaseibacillus paracasei/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Análisis de Sistemas , Virulencia
2.
Biofouling ; 36(3): 245-255, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32326753

RESUMEN

Dental plaque is a biofilm composed of a complex oral microbial community. The accumulation of plaque in the pit and fissures of dental elements often leads to the development of tooth decay (dental caries). Here, potent anti-biofilm materials were developed by incorporating zinc methacrylates or di-n-butyl-dimethacrylate-tin into the light-curable sealant and their physical, mechanical, and biological properties were evaluated. The data revealed that 5% di-n-butyl-dimethacrylate-tin (SnM 5%) incorporated sealant showed strong anti-biofilm efficacy against various single-species (Streptococcus mutans or Streptococcus oralis or Candida albicans) and S. mutans-C. albicans cross-kingdom dual-species biofilms without either impairing the mechanical properties of the sealant or causing cytotoxicities against mouse fibroblasts. The findings indicate that the incorporation of SnM 5% in the experimental pit and fissure self-adhesive sealant may have the potential to be part of current chemotherapeutic strategies to prevent the formation of cariogenic oral biofilms that cause dental caries.


Asunto(s)
Adhesivos/farmacología , Biopelículas/efectos de los fármacos , Caries Dental/prevención & control , Selladores de Fosas y Fisuras/farmacología , Zinc/química , Adhesivos/química , Animales , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Caries Dental/microbiología , Humanos , Metacrilatos/química , Ratones , Microbiota/efectos de los fármacos , Selladores de Fosas y Fisuras/química , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/efectos de los fármacos , Streptococcus oralis/crecimiento & desarrollo
3.
Colloids Surf B Biointerfaces ; 173: 392-399, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30317126

RESUMEN

The extracellular polymer substances (EPS) generated by biofilms confers resistance to antimicrobial agents through electrostatic and steric interactions that hinder molecular diffusion. This resistance mechanism is particularly evident for antibacterial nanomaterials, which inherently diffuse more slowly compared to small organic antibacterial agents. The aim of this study was to determine if a biofilm's resistance to antibacterial nanomaterial diffusion could be diminished using electrolytes to screen the EPS's electrostatic interactions. Anionic (+) alpha-tocopherol phosphate (α-TP) liposomes were used as the antimicrobial nanomaterials in the study. They self-assembled into 700 nm sized structures with a zeta potential of -20 mV that were capable of killing oral bacteria (S. oralis growth inhibition time of 3.34 ± 0.52 h). In a phosphate (-ve) buffer the -ve α-TP liposomes did not penetrate multispecies oral biofilms, but in a Tris (hydroxymethyl)aminomethane (+ve) buffer they did (depth - 12.4 ± 3.6 µm). The Tris did not modify the surface charge of the α-TP nanomaterials, rather it facilitated the α-TP-biofilm interactions through electrolyte screening (Langmuir modelled surface pressure increase of 2.7 ± 1.8 mN/ m). This data indicated that EPS resistance was mediated through charge repulsion and that this effect could be diminished through the co-administration of cationic electrolytes.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Electrólitos/química , Nanoestructuras/química , Streptococcus oralis/efectos de los fármacos , alfa-Tocoferol/análogos & derivados , Antibacterianos/química , Biopelículas/crecimiento & desarrollo , Tampones (Química) , Farmacorresistencia Bacteriana/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/química , Liposomas/química , Tamaño de la Partícula , Permeabilidad , Electricidad Estática , Streptococcus oralis/química , Streptococcus oralis/crecimiento & desarrollo , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
4.
Probiotics Antimicrob Proteins ; 11(4): 1219-1226, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30535674

RESUMEN

Changes in bacterial composition of nasal microbiota may alter the host's susceptibility to several infectious and allergic diseases such as chronic rhinosinusitis and allergic rhinitis. The aim of this study was to evaluate the effects of 1-week administration of a probiotic product, composed by a combination of Streptococcus salivarius 24SMBc and Streptococcus oralis 89a, on the nostril microbiota. Differences in the nasal microbiota composition were investigated by using a next-generation sequencing approach. A strong and significant decrease in Staphylococcus aureus abundance was detected immediately after the bacterial administration. Moreover, comparing the microbial networks of nostril microbiota before and 1 month after the end of treatment, we detected an increase in the total number of both bacterial nodes and microbial correlations, with particular regard to the beneficial ones. Furthermore, a less abundance of microbial genera commonly associated to potential harmful bacteria has been observed. These results suggest a potential ability of S. salivarius 24SMBc and S. oralis 89a to regulate and reorganize the nasal microbiota composition, possibly favoring those microorganisms that may be able to limit the overgrowth of potential pathogens.


Asunto(s)
Microbiota , Nariz/microbiología , Streptococcus oralis/fisiología , Streptococcus salivarius/fisiología , Administración Intranasal , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Femenino , Humanos , Masculino , Probióticos/administración & dosificación , Streptococcus oralis/crecimiento & desarrollo , Streptococcus salivarius/crecimiento & desarrollo
5.
Nanomedicine ; 14(7): 2307-2316, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29410321

RESUMEN

'Soft' nanomaterials have the potential to produce substantive antibiofilm effects. The aim of this study was to understand the oral antimicrobial activity of soft nanomaterials generated from alpha-tocopherol (α-T) and alpha-tocopherol phosphate (α-TP). (+) α-TP formed planar bilayer islands (175 ± 21 nm, -14.9 ± 3.5 mV) in a Trizma® buffer, whereas (+) α-T formed spherical liposomes (563 ± 1 nm, -10.5 ± 0.2 mV). The (+) α-TP bilayers displayed superior Streptococcus oralis biofilm growth retardation, a more substantive action, generated a superior adsorption to hydroxyapatite and showed an enhanced inhibition of multi-species bacterial saliva biofilm growth (38 ± 7µm vs 58 ± 18 µm, P ˂ 0.05) compared to (+) α-T. Atomic force microscopy data indicated that the ability of the 'soft' α-TP nanomaterials to transition into planar bilayer structures upon contact with interfaces facilitated their adhesive properties and substantive antimicrobial effects.


Asunto(s)
Antiinfecciosos/administración & dosificación , Biopelículas/efectos de los fármacos , Membrana Dobles de Lípidos/química , Saliva/microbiología , Streptococcus mutans/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , alfa-Tocoferol/análogos & derivados , Adhesivos , Antiinfecciosos/química , Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Humanos , Liposomas/administración & dosificación , Liposomas/química , Microscopía de Fuerza Atómica , Boca/microbiología , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , alfa-Tocoferol/química , alfa-Tocoferol/farmacología
6.
Mol Oral Microbiol ; 33(3): 234-239, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29327482

RESUMEN

Bacteria residing in oral biofilms live in a state of dynamic equilibrium with one another. The intricate synergistic or antagonistic interactions between them are crucial for determining this balance. Using the six-species Zürich "supragingival" biofilm model, this study aimed to investigate interactions regarding growth and localization of the constituent species. As control, an inoculum containing all six strains was used, whereas in each of the further five inocula one of the bacterial species was alternately absent, and in the last, both streptococci were absent. Biofilms were grown anaerobically on hydroxyapatite disks, and after 64 h they were harvested and quantified by culture analyses. For visualization, fluorescence in situ hybridization and confocal laser scanning microscopy were used. Compared with the control, no statistically significant difference of total colony-forming units was observed in the absence of any of the biofilm species, except for Fusobacterium nucleatum, whose absence caused a significant decrease in total bacterial numbers. Absence of Streptococcus oralis resulted in a significant decrease in Actinomyces oris, and increase in Streptococcus mutans (P < .001). Absence of A. oris, Veillonella dispar or S. mutans did not cause any changes. The structure of the biofilm with regards to the localization of the species did not result in observable changes. In summary, the most striking observation of the present study was that absence of S. oralis resulted in limited growth of commensal A. oris and overgrowth of S. mutans. These data establish highlight S. oralis as commensal keeper of homeostasis in the biofilm by antagonizing S. mutans, so preventing a caries-favoring dysbiotic state.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Homeostasis , Interacciones Microbianas/fisiología , Streptococcus mutans/fisiología , Streptococcus oralis/fisiología , Actinomyces/crecimiento & desarrollo , Recuento de Colonia Microbiana , Durapatita , Fusobacterium nucleatum/crecimiento & desarrollo , Hibridación Fluorescente in Situ , Consorcios Microbianos , Microscopía Confocal , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Veillonella/crecimiento & desarrollo
7.
Virulence ; 8(8): 1602-1617, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-28481721

RESUMEN

Candida albicans and Streptococcus oralis are ubiquitous oral commensal organisms. Under host-permissive conditions these organisms can form hypervirulent mucosal biofilms. C. albicans biofilm formation is controlled by 6 master transcriptional regulators: Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1. The objective of this work was to test whether any of these regulators play a role in cross-kingdom interactions between C. albicans and S. oralis in oral mucosal biofilms, and identify downstream target gene(s) that promote these interactions. Organotypic mucosal constructs and a mouse model of oropharyngeal infection were used to analyze mucosal biofilm growth and fungal gene expression. By screening 6 C. albicans transcription regulator reporter strains we discovered that EFG1 was strongly activated by interaction with S. oralis in late biofilm growth stages. EFG1 gene expression was increased in polymicrobial biofilms on abiotic surfaces, mucosal constructs and tongue tissues of mice infected with both organisms. EFG1 was required for robust Candida-streptococcal biofilm growth in organotypic constructs and mouse oral tissues. S. oralis stimulated C. albicans ALS1 gene expression in an EFG1-dependent manner, and Als1 was identified as a downstream effector of the Efg1 pathway which promoted C. albicans-S. oralis coaggregation interactions in mixed biofilms. We conclude that S. oralis induces an increase in EFG1 expression in C. albicans in late biofilm stages. This in turn increases expression of ALS1, which promotes coaggregation interactions and mucosal biofilm growth. Our work provides novel insights on C. albicans genes which play a role in cross-kingdom interactions with S. oralis in mucosal biofilms.


Asunto(s)
Biopelículas , Candida albicans/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Mucosa Bucal/microbiología , Streptococcus oralis/fisiología , Factores de Transcripción/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Candida albicans/genética , Proteínas de Unión al ADN/genética , Femenino , Proteínas Fúngicas/genética , Ratones , Ratones Endogámicos C57BL , Streptococcus oralis/genética , Streptococcus oralis/crecimiento & desarrollo , Factores de Transcripción/genética
8.
Arch Oral Biol ; 78: 48-57, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28193570

RESUMEN

OBJECTIVES: This research investigates the ability of live and heat-killed (HK) Lactic Acid Bacteria (LAB) to interfere with Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 during biofilm formation. DESIGN: Eight Lactobacillus spp. and two oral colonizers, pathogenic Streptococcus mutans and resident Streptococcus oralis, were characterized for their aggregation abilities, cell surface properties and biofilm formation ability on titanium surface. Then, the interference activity of selected live and HK Lactobacillus spp. during S. mutans and S. oralis biofilm development were performed. The cell-free culture supernatants (CFCS) anti-biofilm activity was also determined. RESULTS: LAB possess good abilities of auto-aggregation (from 14.19 to 28.97%) and of co-aggregation with S. oralis. The cell-surfaces characteristics were most pronounced in S. mutans and S. oralis, while the highest affinities to xylene and chloroform were observed in Lactobacillus rhamnosus ATCC 53103 (56.37%) and Lactobacillus paracasei B21060 (43.83%). S. mutans and S. oralis developed a biofilm on titanium surface, while LAB showed a limited or no ability to create biofilm. Live and HK L. rhamnosus ATCC 53103 and L. paracasei B21060 inhibited streptococci biofilm formation by competition and displacement mechanisms with no substantial differences. The CFCSs of both LAB strains, particularly the undiluted one of L. paracasei B21060, decreased S. mutans and S. oralis biofilm formation. CONCLUSIONS: This study evidenced the association of LAB aggregation abilities and cell-surface properties with the LAB-mediated inhibition of S. mutans and S. oralis biofilm formation. Lactobacilli showed different mechanisms of action and peculiar strain-specific characteristics, maintained also in the heat-killed LAB.


Asunto(s)
Antibiosis , Biopelículas/crecimiento & desarrollo , Lactobacillus/fisiología , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Titanio/química , Adhesión Bacteriana , Calor , Propiedades de Superficie
9.
Mol Oral Microbiol ; 32(1): 60-73, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26834007

RESUMEN

The fungus Candida albicans is carried orally and causes a range of superficial infections that may become systemic. Oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque and on oral mucosa. The aims of this study were to determine the mechanisms by which S. oralis and A. oris interact with each other and with C. albicans in biofilm development. Spatial distribution of microorganisms was visualized by confocal laser scanning microscopy of biofilms labeled by differential fluorescence or by fluorescence in situ hybridization (FISH). Actinomyces oris and S. oralis formed robust dual-species biofilms, or three-species biofilms with C. albicans. The bacterial components tended to dominate the lower levels of the biofilms while C. albicans occupied the upper levels. Non-fimbriated A. oris was compromised in biofilm formation in the absence or presence of streptococci, but was incorporated into upper biofilm layers through binding to C. albicans. Biofilm growth and hyphal filament production by C. albicans was enhanced by S. oralis. It is suggested that the interkingdom biofilms are metabolically coordinated to house all three components, and this study demonstrates that adhesive interactions between them determine spatial distribution and biofilm architecture. The physical and chemical communication processes occurring in these communities potentially augment C. albicans persistence at multiple oral cavity sites.


Asunto(s)
Actinomyces/fisiología , Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Película Dental/microbiología , Streptococcus oralis/fisiología , Actinomyces/crecimiento & desarrollo , Actinomyces/metabolismo , Adhesión Bacteriana , Biopelículas/clasificación , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Película Dental/diagnóstico por imagen , Placa Dental/microbiología , Humanos , Hibridación Fluorescente in Situ/métodos , Interacciones Microbianas , Microscopía Confocal , Boca/microbiología , Mucosa Bucal/microbiología , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/metabolismo
10.
Biofouling ; 32(9): 1079-87, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27643392

RESUMEN

Despite the widespread use of fluoride for the prevention of dental caries, few studies have demonstrated the effects of fluoride on the bacterial composition of dental biofilms. This study investigated whether fluoride affects the proportion of Streptococcus mutans and S. oralis in mono- and dual-species biofilm models, via microbiological, biochemical, and confocal fluorescence microscope studies. Fluoride did not affect the bacterial count and bio-volume of S. mutans and S. oralis in mono-species biofilms, except for the 24-h-old S. mutans biofilms. However, fluoride reduced the proportion and bio-volume of S. mutans but did not decrease those of S. oralis during both S. oralis and S. mutans dual-species biofilm formation, which may be related to the decrease in extracellular polysaccharide formation by fluoride. These results suggest that fluoride may prevent the shift in the microbial proportion to cariogenic bacteria in dental biofilms, subsequently inhibiting the cariogenic bacteria dominant biofilm formation.


Asunto(s)
Antibiosis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Fluoruros/farmacología , Streptococcus mutans/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , Carga Bacteriana/efectos de los fármacos , Caries Dental/microbiología , Relación Dosis-Respuesta a Droga , Humanos , Modelos Biológicos , Streptococcus mutans/crecimiento & desarrollo , Streptococcus mutans/fisiología , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/fisiología
11.
Appl Microbiol Biotechnol ; 100(15): 6767-6777, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27102127

RESUMEN

Lactic acid bacteria (LAB) can interfere with pathogens through different mechanisms; one is the production of biosurfactants, a group of surface-active molecules, which inhibit the growth of potential pathogens. In the present study, biosurfactants produced by Lactobacillus reuteri DSM 17938, Lactobacillus acidophilus DDS-1, Lactobacillus rhamnosus ATCC 53103, and Lactobacillus paracasei B21060 were dialyzed (1 and 6 kDa) and characterized in term of reduction of surface tension and emulsifying activity. Then, aliquots of the different dialyzed biosurfactants were added to Streptococcus mutans ATCC 25175 and Streptococcus oralis ATCC 9811 in the culture medium during the formation of biofilm on titanium surface and the efficacy was determined by agar plate count, biomass analyses, and flow cytometry. Dialyzed biosurfactants showed abilities to reduce surface tension and to emulsifying paraffin oil. Moreover, they significantly inhibited the adhesion and biofilm formation on titanium surface of S. mutans and S. oralis in a dose-dependent way, as demonstrated by the remarkable decrease of cfu/ml values and biomass production. The antimicrobial properties observed for dialyzed biosurfactants produced by the tested lactobacilli opens future prospects for their use against microorganisms responsible of oral diseases.


Asunto(s)
Antibacterianos/metabolismo , Biopelículas/crecimiento & desarrollo , Lacticaseibacillus paracasei/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus acidophilus/metabolismo , Limosilactobacillus reuteri/metabolismo , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Tensoactivos/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Streptococcus mutans/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , Tensión Superficial/efectos de los fármacos , Tensoactivos/farmacología , Titanio
12.
Pathog Dis ; 74(3)2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26755532

RESUMEN

Candida-associated stomatitis affects up to 60% of denture wearers, and Candida albicans remains the most commonly isolated fungal species. The oral bacteria Actinomyces oris and Streptococcus oralis are abundant in early dental plaque. The aims of this study were to determine the effects of S. oralis and A. oris on the development of C. albicans biofilms on denture material. Resin discs were coated with saliva and at early (1.5 h) or later (24 h) stages of biofilm development, cell numbers of each species were determined. Spatial distribution of microorganisms was visualized by confocal scanning laser microscopy of biofilms labelled by differential fluorescence or by fluorescence in situ hybridization. Interkingdom interactions underpinning biofilm development were also evaluated planktonically utilizing fluorescence microscopy. Synergistic interactions between all three species occurred within biofilms and planktonically. Bacterial cells coaggregated with each other and adhered singly or in coaggregates to C. albicans hyphal filaments. Streptococcus oralis appeared to enhance hyphal filament production and C. albicans biovolume was increased 2-fold. Concomitantly, cell numbers of S. oralis and A. oris were enhanced by C. albicans. Thus, cooperative physical and metabolic processes occurring between these three microbial species intensify pathogenic plaque communities on denture surfaces.


Asunto(s)
Actinomyces/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Dentaduras/microbiología , Streptococcus oralis/crecimiento & desarrollo , Simbiosis/fisiología , Adulto , Humanos , Hibridación Fluorescente in Situ , Consorcios Microbianos/fisiología , Microscopía Confocal , Saliva , Estomatitis Subprotética/microbiología
13.
Odontology ; 104(3): 310-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26319990

RESUMEN

Streptococcus gordonii, a bacterium involved in the initial colonization of tooth surfaces, contributes to dental biofilm formation and is an important cause of infective endocarditis. This study aimed to investigate the influence of surface reaction-type pre-reacted glass ionomer (S-PRG) filler on oral bacterial growth and aggregation of S. gordonii. The effect of various concentrations of S-PRG eluate on the growth and the biofilm formation of S. gordonii and other oral microorganisms (Streptococcus mutans, Streptococcus oralis, Lactobacillus acidophilus, and Candida albicans) was assessed. In addition, the effect of S-PRG eluate on coaggregation of S. gordonii with both S. oralis and Fusobacterium nucleatum was assessed. The effect of S-PRG eluate treatment on autoaggregation of S. gordonii was also evaluated. Our results indicate that S-PRG eluate treatment reduced both for the growth and for biofilm of all organisms in a dose-dependent manner. Coaggregation of S. gordonii with both S. oralis and F. nucleatum was inhibited by S-PRG eluate, whereas autoaggregation of S. gordonii increased at certain concentrations of S-PRG eluate. These results indicate that the S-PRG filler possesses antimicrobial activity that is mediated by inhibiting growth and biofilm of oral microorganisms, and by suppressing coaggregation of S. gordonii. In addition, these findings indicate that coaggregation of S. gordonii with other bacteria is inhibited by increased autoaggregation of S. gordonii.


Asunto(s)
Cementos de Ionómero Vítreo/farmacología , Streptococcus gordonii/crecimiento & desarrollo , Adhesión Bacteriana , Biopelículas , Candida albicans/crecimiento & desarrollo , Fusobacterium nucleatum/crecimiento & desarrollo , Cementos de Ionómero Vítreo/química , Lactobacillus acidophilus/crecimiento & desarrollo , Ensayo de Materiales , Espectrofotometría Atómica , Streptococcus mutans/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo , Propiedades de Superficie
14.
Mol Oral Microbiol ; 30(4): 307-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25754666

RESUMEN

Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.


Asunto(s)
Biopelículas , Candida albicans/fisiología , Mucosa Bucal/microbiología , Streptococcus oralis/fisiología , Biopelículas/clasificación , Biopelículas/crecimiento & desarrollo , Candida , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Medios de Cultivo , Hifa/clasificación , Hifa/crecimiento & desarrollo , Mucosa Bucal/ultraestructura , Mutación , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/patogenicidad , Simbiosis , Virulencia
15.
Proc Natl Acad Sci U S A ; 111(10): 3835-40, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24567409

RESUMEN

The formation of dental plaque, a highly complex biofilm that causes gingivitis and periodontitis, requires specific adherence among many oral microbes, including the coaggregation of Actinomyces oris with Streptococcus oralis that helps to seed biofilm development. Here, we report the discovery of a key coaggregation factor for this process. This protein, which we named coaggregation factor A (CafA), is one of 14 cell surface proteins with the LPXTG motif predicted in A. oris MG1, whose function was hitherto unknown. By systematic mutagenesis of each of these genes and phenotypic characterization, we found that the Actinomyces/Streptococcus coaggregation is only abolished by deletion of cafA. Subsequent biochemical and cytological experiments revealed that CafA constitutes the tip of a unique form of the type 2 fimbria long known for its role in coaggregation. The direct and predominant role of CafA in adherence is evident from the fact that CafA or an antibody against CafA inhibits coaggregation, whereas the shaft protein FimA or a polyclonal antibody against FimA has no effect. Remarkably, FimA polymerization was blocked by deletion of genes for both CafA and FimB, the previously described tip protein of the type 2 fimbria. Together, these results indicate that some surface proteins not linked to a pilus gene cluster in Gram-positive bacteria may hijack the pilus. These unique tip proteins displayed on a common pilus shaft may serve distinct physiological functions. Furthermore, the pilus shaft assembly in Gram-positive bacteria may require a tip, as is true for certain Gram-negative bacterial pili.


Asunto(s)
Actinomyces/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Placa Dental/microbiología , Fimbrias Bacterianas/fisiología , Proteínas de la Membrana/metabolismo , Streptococcus oralis/metabolismo , Actinomyces/crecimiento & desarrollo , Secuencias de Aminoácidos/genética , Proteínas Bacterianas/genética , Western Blotting , Fraccionamiento Celular , Escherichia coli , Humanos , Proteínas de la Membrana/genética , Microscopía Inmunoelectrónica , Familia de Multigenes/genética , Mutagénesis , Streptococcus oralis/crecimiento & desarrollo
16.
J Periodontal Res ; 49(3): 323-32, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23815431

RESUMEN

BACKGROUND AND OBJECTIVE: Bacteria in the oral cavity grow in the form of biofilms; these structures are subject to constant saliva or gingival crevicular fluid flow conditions. The aims of this study were: (i) to develop and to characterize an in-vitro biofilm model with oral bacteria growing under flow and shear conditions; and (ii) to demonstrate the usefulness of the model for evaluating the activity of three antiplaque agents. MATERIAL AND METHODS: We used a bioreactor to grow the oral bacteria Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis under planktonic conditions. Biofilms were established using a modified Robbins device on hydroxyapatite (HAP) discs. Three- to 7-d-old biofilms were analysed using culture methods, scanning electron microscopy, Live/Dead staining and fluorescence in-situ hybridization (confocal laser scanning microscopy). Finally, we assessed the antimicrobial activity of three mouthrinses [0.12% chlorhexidine (CHX), 0.12% chlorhexidine and sodium fluoride (CHX+NaF) and 0.12% chlorhexidine and 0.05% cetylpyridinium chloride (CHX+CPC)] using a planktonic test (short interval-killing test) and in our 4-d biofilm model. RESULTS: The viable cell counts showed that each species was consistently found in the biofilms throughout the study. The architecture and cell distribution were similar to those described for biofilms in situ, with the exception of a thin layer of living cells that was found close to the HAP. The effectiveness test of the mouthwashes demonstrated that cells in biofilms showed more tolerance compared with planktonic cells. Moreover, it was observed that in 4-d biofilm formed in vitro, CHX+CPC caused significantly higher mortality compared with CHX (p = 0.003) and CHX+NaF (p < 0.001). CONCLUSION: Our results suggest that we have a highly reproducible system for multispecies oral biofilm formation and that it is a useful tool for assessing antibacterial molecules before their clinical evaluation. It also has great potential to be used in basic research on supragingival and subgingival biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Reactores Biológicos , Boca/microbiología , Actinomyces/crecimiento & desarrollo , Aggregatibacter actinomycetemcomitans/crecimiento & desarrollo , Antiinfecciosos Locales/farmacología , Carga Bacteriana/efectos de los fármacos , Técnicas Bacteriológicas , Cetilpiridinio/farmacología , Clorhexidina/farmacología , Durapatita/química , Fusobacterium nucleatum/crecimiento & desarrollo , Humanos , Hibridación Fluorescente in Situ , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Antisépticos Bucales/farmacología , Porphyromonas gingivalis/crecimiento & desarrollo , Saliva/fisiología , Fluoruro de Sodio/farmacología , Streptococcus oralis/crecimiento & desarrollo , Veillonella/crecimiento & desarrollo
17.
Arch Oral Biol ; 58(11): 1584-93, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112723

RESUMEN

OBJECTIVE: Streptococcus oralis is an early coloniser of the oral cavity that contributes to dental plaque formation. Many different genotypes can coexist in the same individual and cause opportunistic infections such as bacterial endocarditis. However, little is known about virulence factors involved in those processes. The aim was to analyze the evolving growth of S. oralis colony/biofilm to find out potentially pathogenic features. DESIGN: Thirty-three S. oralis isolates were analyzed for: (1) biofilm production, by spectrophotometric microtiter plate assay; (2) colonial internal architecture, by histological methods and light and electron microscopy; (3) agar invasion, by a new colony-biofilm assay. RESULTS: S. oralis colonies showed two different growth patterns: (1) fast growth rate without invasion or minimally invasive; (2) slow growth rate, but high invasion ability. 12.1% of strains were biofilm non-producers and 24.2% not invasive, compared to 51.5% biofilm high-producers and 39.4% very invasive. Both phenotypic characteristics tended to be mutually exclusive. However, a limited number of strains (15%) co-expressed these features at the highest level. CONCLUSIONS: Morphological plasticity of S. oralis highlighted in this study may have important ecological and clinical implications. Coexistence of strains with different growth patterns could produce a synergic effect in the formation and development of subgingival dental plaque. Moreover, invasiveness might regulate dissemination and colonisation mechanisms. Simultaneous co-expression of high-invasive and high-biofilm phenotypes gives a fitness advantage during colonisation and may confer higher pathogenic potential.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Placa Dental/microbiología , Boca/microbiología , Streptococcus oralis/crecimiento & desarrollo , Factores de Virulencia , Técnicas Bacteriológicas , Humanos , Espectrofotometría , Streptococcus oralis/citología , Streptococcus oralis/patogenicidad
18.
Arch Oral Biol ; 58(11): 1594-602, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24112724

RESUMEN

Autoinducer 2 (AI-2) is a quorum sensing molecule and plays an important role in dental biofilm formation, mediating interspecies communication and virulence expression of oral bacteria. Fusobacterium nucleatum connects early colonizing commensals and late colonizing periodontopathogens. F. nucleatum AI-2 and quorum sensing inhibitors (QSIs) can manipulate dental biofilm formation. In this study, we evaluated the effect of F. nucleatum AI-2 and QSIs on biofilm formation of Streptococcus gordonii and Streptococcus oralis, which are initial colonizers in dental biofilm. F. nucleatum AI-2 significantly enhanced biofilm growth of S. gordonii and attachment of F. nucleatum to preformed S. gordonii biofilms. By contrast, F. nucleatum AI-2 reduced biofilm growth of S. oralis and attachment of F. nucleatum to preformed S. oralis biofilms. The QSIs, (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone and d-ribose, reversed the stimulatory and inhibitory effects of AI-2 on S. gordonii and S. oralis, respectively. In addition, co-culture using a two-compartment system showed that secreted molecules of F. nucleatum had the same effect on biofilm growth of the streptococci as AI-2. Our results demonstrate that early colonizing bacteria can influence the accretion of F. nucleatum, a secondary colonizer, which ultimately influences the binding of periodontopathogens.


Asunto(s)
Biopelículas/efectos de los fármacos , Fusobacterium nucleatum , Homoserina/análogos & derivados , Lactonas/administración & dosificación , Percepción de Quorum/fisiología , Saliva/microbiología , Streptococcus gordonii/efectos de los fármacos , Streptococcus oralis/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Técnicas de Cocultivo , Homoserina/administración & dosificación , Homoserina/antagonistas & inhibidores , Humanos , Lactonas/antagonistas & inhibidores , Percepción de Quorum/efectos de los fármacos , Ribosa/farmacología , Espectrofotometría , Streptococcus gordonii/crecimiento & desarrollo , Streptococcus oralis/crecimiento & desarrollo
19.
J Periodontal Res ; 48(4): 517-26, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23278531

RESUMEN

BACKGROUND AND OBJECTIVE: Subgingival biofilms are the prime etiological factor of periodontal disease. Owing to their complex polymicrobial nature, quantification of individual bacterial species within the biofilm for research and diagnostic purposes can be methodologically challenging. The aims of this study were to establish a quantitative real-time PCR (qPCR) assay to quantify the bacteria used in our 10-species in vitro 'subgingival' biofilm model and to compare the quantitative outcome with fluorescence microscopy and colony-forming unit (CFU) counts on selective agar plates. MATERIAL AND METHODS: The 10 species included in the in vitro biofilm were Streptococcus oralis, Streptococcus anginosus, Veillonella dispar, Fusobacterium nucleatum, Treponema denticola, Tannerella forsythia, Actinomyces oris, Campylobacter rectus, Porphyromonas gingivalis and Prevotella intermedia. The numbers of each species were quantified at two time points using qPCR, microscopy counting following fluorescence in-situ hybridization (FISH) or immunofluorescence staining, and counting of CFUs after growth on selective agar plates. RESULTS: All 10 species were successfully quantified using qPCR and FISH or immunofluorescence, and the eight species culturable on selective agar plates were also quantified by counting the numbers of CFUs after growth on selective agar. In early biofilm cultures, all methods showed a significant correlation, although the absolute numbers differed between methods. In late biofilm cultures, measurements obtained using qPCR and FISH or immunofluorescence, but not by CFU counts, maintained significant correlation. CFU counts yielded lower values than did measurements made using the other two methods. CONCLUSION: Quantitative PCR and epifluorescence microscopy can be easily combined with each other to determine species-specific bacterial numbers within biofilms. However, conventional bacterial cultures cannot be as efficiently combined using these molecular detection methods. This may be crucial in designing and selecting appropriate clinical diagnostic methods for subgingival biofilm samples.


Asunto(s)
Carga Bacteriana/métodos , Biopelículas/clasificación , Encía/microbiología , Microscopía Fluorescente/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Actinomyces/crecimiento & desarrollo , Actinomyces/aislamiento & purificación , Agar , Técnicas Bacteriológicas , Bacteroides/crecimiento & desarrollo , Bacteroides/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Campylobacter rectus/crecimiento & desarrollo , Campylobacter rectus/aislamiento & purificación , Medios de Cultivo , Técnica del Anticuerpo Fluorescente , Fusobacterium nucleatum/crecimiento & desarrollo , Fusobacterium nucleatum/aislamiento & purificación , Humanos , Hibridación Fluorescente in Situ , Porphyromonas gingivalis/crecimiento & desarrollo , Porphyromonas gingivalis/aislamiento & purificación , Prevotella intermedia/crecimiento & desarrollo , Prevotella intermedia/aislamiento & purificación , Streptococcus anginosus/crecimiento & desarrollo , Streptococcus anginosus/aislamiento & purificación , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/aislamiento & purificación , Factores de Tiempo , Treponema denticola/crecimiento & desarrollo , Treponema denticola/aislamiento & purificación , Veillonella/crecimiento & desarrollo , Veillonella/aislamiento & purificación
20.
PLoS Pathog ; 8(4): e1002623, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496649

RESUMEN

Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Boca/microbiología , Polisacáridos/metabolismo , Streptococcus mutans , Streptococcus oralis , Animales , Humanos , Concentración de Iones de Hidrógeno , Streptococcus mutans/crecimiento & desarrollo , Streptococcus mutans/metabolismo , Streptococcus mutans/patogenicidad , Streptococcus oralis/crecimiento & desarrollo , Streptococcus oralis/metabolismo , Streptococcus oralis/patogenicidad , Factores de Virulencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...