Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.977
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731473

RESUMEN

Chalkophomycin is a novel chalkophore with antibiotic activities isolated from Streptomyces sp. CB00271, while its potential in studying cellular copper homeostasis makes it an important probe and drug lead. The constellation of N-hydroxylpyrrole, 2H-oxazoline, diazeniumdiolate, and methoxypyrrolinone functional groups into one compact molecular architecture capable of coordinating cupric ions draws interest to unprecedented enzymology responsible for chalkophomycin biosynthesis. To elucidate the biosynthetic machinery for chalkophomycin production, the chm biosynthetic gene cluster from S. sp. CB00271 was identified, and its involvement in chalkophomycin biosynthesis was confirmed by gene replacement. The chm cluster was localized to a ~31 kb DNA region, consisting of 19 open reading frames that encode five nonribosomal peptide synthetases (ChmHIJLO), one modular polyketide synthase (ChmP), six tailoring enzymes (ChmFGMNQR), two regulatory proteins (ChmAB), and four resistance proteins (ChmA'CDE). A model for chalkophomycin biosynthesis is proposed based on functional assignments from sequence analysis and structure modelling, and is further supported by analogy to over 100 chm-type gene clusters in public databases. Our studies thus set the stage to fully investigate chalkophomycin biosynthesis and to engineer chalkophomycin analogues through a synthetic biology approach.


Asunto(s)
Familia de Multigenes , Péptido Sintasas , Sintasas Poliquetidas , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Streptomyces/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/química , Péptido Sintasas/metabolismo , Péptido Sintasas/genética , Péptido Sintasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
2.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731531

RESUMEN

Actinomycetes have long been recognized as an important source of antibacterial natural products. In recent years, actinomycetes in extreme environments have become one of the main research directions. Streptomyces sp. KN37 was isolated from the cold region of Kanas in Xinjiang. It demonstrated potent antimicrobial activity, but the primary active compounds remained unclear. Therefore, we aimed to combine genomics with traditional isolation methods to obtain bioactive compounds from the strain KN37. Whole-genome sequencing and KEGG enrichment analysis indicated that KN37 possesses the potential for synthesizing secondary metabolites, and 41 biosynthetic gene clusters were predicted, some of which showed high similarity to known gene clusters responsible for the biosynthesis of antimicrobial antibiotics. The traditional isolation methods and activity-guided fractionation were employed to isolate and purify seven compounds with strong bioactivity from the fermentation broth of the strain KN37. These compounds were identified as 4-(Diethylamino)salicylaldehyde (1), 4-Nitrosodiphenylamine (2), N-(2,4-Dimethylphenyl)formamide (3), 4-Nitrocatechol (4), Methylsuccinic acid (5), Phenyllactic acid (6) and 5,6-Dimethylbenzimidazole (7). Moreover, 4-(Diethylamino)salicylaldehyde exhibited the most potent inhibitory effect against Rhizoctonia solani, with an EC50 value of 14.487 mg/L, while 4-Nitrosodiphenylamine showed great antibacterial activity against Erwinia amylovora, with an EC50 value of 5.715 mg/L. This study successfully isolated several highly active antimicrobial compounds from the metabolites of the strain KN37, which could contribute as scaffolds for subsequent chemical synthesis. On the other hand, the newly predicted antibiotic-like substances have not yet been isolated, but they still hold significant research value. They are instructive in the study of active natural product biosynthetic pathways, activation of silent gene clusters, and engineering bacteria construction.


Asunto(s)
Genómica , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Genómica/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Agricultura/métodos , Secuenciación Completa del Genoma
3.
Appl Microbiol Biotechnol ; 108(1): 326, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717487

RESUMEN

Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.


Asunto(s)
Escherichia coli , Streptomyces , Streptomyces/genética , Streptomyces/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Especificidad por Sustrato , Dipeptidasas/metabolismo , Dipeptidasas/genética , Dipeptidasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Simulación del Acoplamiento Molecular , Familia de Multigenes , Concentración de Iones de Hidrógeno , Dipéptidos/metabolismo , Temperatura , Cinética
4.
Microbiome ; 12(1): 83, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725008

RESUMEN

BACKGROUND: Fungi and bacteria coexist in a wide variety of environments, and their interactions are now recognized as the norm in most agroecosystems. These microbial communities harbor keystone taxa, which facilitate connectivity between fungal and bacterial communities, influencing their composition and functions. The roots of most plants are associated with arbuscular mycorrhizal (AM) fungi, which develop dense networks of hyphae in the soil. The surface of these hyphae (called the hyphosphere) is the region where multiple interactions with microbial communities can occur, e.g., exchanging or responding to each other's metabolites. However, the presence and importance of keystone taxa in the AM fungal hyphosphere remain largely unknown. RESULTS: Here, we used in vitro and pot cultivation systems of AM fungi to investigate whether certain keystone bacteria were able to shape the microbial communities growing in the hyphosphere and potentially improved the fitness of the AM fungal host. Based on various AM fungi, soil leachates, and synthetic microbial communities, we found that under organic phosphorus (P) conditions, AM fungi could selectively recruit bacteria that enhanced their P nutrition and competed with less P-mobilizing bacteria. Specifically, we observed a privileged interaction between the isolate Streptomyces sp. D1 and AM fungi of the genus Rhizophagus, where (1) the carbon compounds exuded by the fungus were acquired by the bacterium which could mineralize organic P and (2) the in vitro culturable bacterial community residing on the surface of hyphae was in part regulated by Streptomyces sp. D1, primarily by inhibiting the bacteria with weak P-mineralizing ability, thereby enhancing AM fungi to acquire P. CONCLUSIONS: This work highlights the multi-functionality of the keystone bacteria Streptomyces sp. D1 in fungal-bacteria and bacterial-bacterial interactions at the hyphal surface of AM fungi. Video Abstract.


Asunto(s)
Hifa , Microbiota , Micorrizas , Raíces de Plantas , Microbiología del Suelo , Streptomyces , Micorrizas/fisiología , Micorrizas/clasificación , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/fisiología , Hifa/crecimiento & desarrollo , Raíces de Plantas/microbiología , Fósforo/metabolismo , Interacciones Microbianas/fisiología , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo
5.
Arch Microbiol ; 206(6): 256, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734826

RESUMEN

A novel actinobacterium strain, designated HUAS 2-6 T, was isolated from the rhizosphere soil of Camellia oleifera Abel collected from Taoyuan County, Northwestern Hunan Province, South China. This strain was subjected to a polyphasic taxonomic study. Strain HUAS 2-6 T is characterized by morphology typical of members of the genus Streptomyces, with deep purplish vinaceous aerial mycelia and deep dull lavender substrate mycelia. Strain HUAS 2-6 T, based on the full-length 16S rRNA gene sequence analysis, exhibited the highest similarities to S. puniciscabiei S77T (99.31%), S. filipinensis NBRC 12860 T (99.10%), S. yaanensis CGMCC 4.7035 T (99.09%), S. fodineus TW1S1T (99.08%), S. broussonetiae CICC 24819 T (98.76%), S. achromogenes JCM 4121 T (98.69%), S. barringtoniae JA03T (98.69%), and less than 98.70% with other validly species. In phylogenomic tree, strain HUAS 2-6 T was clustered together with S. broussonetiae CICC 24819 T, suggesting that they were closely related to each other. However, average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) between them were much less than the species cutoff values (ANI 96.7% and dDDH 70%). Moreover, in phenotypic and chemotaxonomic characteristics, strain HUAS 2-6 T is distinct from S. broussonetiae CICC 24819 T. On the basis of the polyphasic data, strain HUAS 2-6 T is proposed to represent a novel species, Streptomyces camelliae sp. nov. (= MCCC 1K04729T = JCM 35918 T).


Asunto(s)
Camellia , ADN Bacteriano , Filogenia , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Streptomyces , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/clasificación , Camellia/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , China , Ácidos Grasos/análisis , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Composición de Base
6.
Curr Microbiol ; 81(6): 166, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724665

RESUMEN

Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Cloranfenicol/farmacología , Isoquinolinas/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-38767616

RESUMEN

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Ácidos Grasos , Fermentación , Ginsenósidos , Hibridación de Ácido Nucleico , Panax notoginseng , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Streptomyces , Vitamina K 2 , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Streptomyces/aislamiento & purificación , Streptomyces/genética , Streptomyces/clasificación , Vitamina K 2/análogos & derivados , ADN Bacteriano/genética , China , Panax notoginseng/microbiología , Ginsenósidos/metabolismo , Peptidoglicano , Grano Comestible/microbiología , Ácido Diaminopimélico , Fosfolípidos/química , Composición de Base
8.
Artículo en Inglés | MEDLINE | ID: mdl-38695864

RESUMEN

A novel actinobacterium, designated strain CWNU-1T, was isolated from the rhizospheric soil of Fritillaria cirrhosa D. Don and examined using a polyphasic taxonomic approach. The organism developed pale blue aerial mycelia that was simply branched and terminated in open or closed coils of three or more volutions on International Streptomyces Project 3 agar. Spores were ellipsoidal to cylindrical with wrinkled surfaces. The strain showed high 16S rRNA gene sequence similarity to Streptomyces kurssanovii NBRC 13192T (98.8 %), Streptomyces xantholiticus NBRC 13354T (98.7 %) and Streptomyces peucetius JCM 9920T (98.6 %). The phylogenetic result based on 16S rRNA gene and genome sequences clearly demonstrated that strain CWNU-1T formed an independent phylogenetic lineage. On the basis of orthologous average nucleotide identity, CWNU-1T was most closely related to Streptomyces inusitatus NBRC 13601T with 79.3 % identity. The results of the digital DNA-DNA hybridization analysis also indicated low levels of relatedness with other species, as the highest value was observed with S. inusitatus NBRC 13601T (25.3 %). With reference to phenotypic characteristics, phylogenetic data, orthologous average nucleotide identity and digital DNA-DNA hybridization results, strain CWNU-1T was readily distinguished from its most closely related strains and classified as representing a novel species, for which the name Streptomyces albipurpureus sp. nov. is proposed. The type strain is CWNU-1T (=CGMCC 4.7758T=MCCC 1K07402T=JCM 35391T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Fritillaria , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S , Rizosfera , Análisis de Secuencia de ADN , Microbiología del Suelo , Streptomyces , Streptomyces/genética , Streptomyces/clasificación , Streptomyces/aislamiento & purificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fritillaria/microbiología , Vitamina K 2/análogos & derivados
9.
Artículo en Inglés | MEDLINE | ID: mdl-38713186

RESUMEN

Two novel actinobacteria, designated as LP05-1T and LP11T, were isolated from the lichen Pyxine cocoes (Sw.) Nyl. collected in Bangkok, Thailand. Genotypic and phenotypic analyses revealed that both strains represented members of the genus Streptomyces. The 16S rRNA gene of LP05-1T showed the highest similarity to the genome of Streptomyces gelaticus (98.41 %), while the 16S rRNA gene of LP11T was most similar to that of Streptomyces cinerochromogenes (98.93 %). The major menaquinones in LP05-1T were MK-9(H8), MK-9(H6), MK-9(H4) and MK-9(H2), and in LP11T, they were MK-9(H8) and MK-9(H6). Both strains exhibited the major fatty acids iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0, with LP05-1T also possessing iso-C17 : 0. The polar lipids of LP05-1T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and an unidentified lipid, while those of LP11T consisted of phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unidentified aminolipid and an unidentified glycolipid. The digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) values indicated that both strains are distinct from each other with values below 70 and 95 %, respectively. dDDH, ANI by blast (ANIb) and ANI by MUMmer (ANIm) values between LP05-1T and its closely related type strains were 26.07-26.80 %, 81.24-82.01 % and 86.82-86.96 %, respectively, while those for LP11T and its closely related type strains were 30.70-31.70 %, 84.09-85.31 % and 88.02-88.39 %, respectively. The results of the taxonomic investigation, including dDDH and ANI values, indicate that LP05-1T and LP11T are novel type strains of two novel species within the genus Streptomyces. The names proposed are Streptomyces pyxinae sp. nov. for strain LP05-1T (=TBRC 15494T, =NBRC 115434T) and Streptomyces pyxinicus sp. nov. for strain LP11T (=TBRC 15493T, =NBRC 115421T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Líquenes , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Streptomyces , Vitamina K 2 , Vitamina K 2/análogos & derivados , ARN Ribosómico 16S/genética , Líquenes/microbiología , Vitamina K 2/análisis , ADN Bacteriano/genética , Streptomyces/genética , Streptomyces/aislamiento & purificación , Streptomyces/clasificación , Ácidos Grasos/química , Tailandia , Hibridación de Ácido Nucleico , Fosfolípidos
10.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704580

RESUMEN

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Asunto(s)
Antraquinonas , Enediinos , Ingeniería Metabólica , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Ingeniería Metabólica/métodos , Antraquinonas/metabolismo , Enediinos/metabolismo , Familia de Multigenes , Vías Biosintéticas
11.
Chem Pharm Bull (Tokyo) ; 72(5): 475-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38749722

RESUMEN

Heterologous expression of natural compound biosynthetic gene clusters (BGCs) is a robust approach for not only revealing the biosynthetic mechanisms leading to the compounds, but also for discovering new products from uncharacterized BGCs. We established a heterologous expression technique applicable to huge biosynthetic gene clusters for generating large molecular secondary metabolites such as type-I polyketides. As an example, we targeted concanamycin BGC from Streptomyces neyagawaensis IFO13477 (the cluster size of 99 kbp), and obtained a bacterial artificial chromosome (BAC) clone with an insert size of 211 kbp that contains the entire concanamycin BGC. Interestingly, heterologous expression for this BAC clone resulted in two additional aromatic polyketides, ent-gephyromycin, and a new compound designated as JBIR-157, together with the expected concanamycin. Bioinformatic and biochemical analyses revealed that a cryptic biosynthetic gene cluster in this BAC clone was responsible for the production of these type-II polyketide synthases (PKS) compounds. Here, we describe the production, isolation, and structure elucidation of JBIR-157, determined primarily by a series of NMR spectral analyses.


Asunto(s)
Familia de Multigenes , Policétidos , Streptomyces , Policétidos/química , Policétidos/metabolismo , Policétidos/aislamiento & purificación , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Estructura Molecular , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Conformación Molecular
12.
BMC Microbiol ; 24(1): 120, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582825

RESUMEN

BACKGROUND: Chrysomycin A (CA) is a promising antibiotic for treatment of Gram-positive bacterial infections and cancers. In order to enhance CA yield, optimization of fermentation conditions and medium components was carried out on strain Streptomyces sp. 891-B6, an UV-induced mutant with improved CA titer compared with its wide-type marine strain 891. RESULTS: Using one-way experiment, the optimal fermentation conditions for CA production in 1-L shake flask were obtained as follows: 12 days of fermentation time, 5 days of seed age, 5% of inoculum volume ratio, 200 mL of loading volume and 6.5 of initial pH. By response surface methodology, the optimal medium components determined as glucose (39.283 g/L), corn starch (20.662 g/L), soybean meal (15.480 g/L) and CaCO3 (2.000 g/L). CONCLUSION: Validation tests showed that the maximum yield of CA reached 1601.9 ± 56.7 mg/L, which was a 60% increase compared to the initial yield (952.3 ± 53.2 mg/L). These results provided an important basis for scale-up production of CA by strain 891-B6.


Asunto(s)
Streptomyces , Fermentación , Streptomyces/genética , Aminoglicósidos , Antibacterianos , Medios de Cultivo
13.
J Agric Food Chem ; 72(15): 8521-8535, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38565849

RESUMEN

Thirty-five norsesquiterpenoids were isolated from the fermentation broth of Streptomyces microflavus from the forest soil of Ailaoshan in China. The structures of new compounds (1-5, 10-26) were elucidated by comprehensive spectroscopic analysis including data from experimental and calculated ECD spectra, as well as Mosher's reagent derivatives method. Norsesquiterpenoids showed different levels of antifungal activity with MIC80 values ranging from 25 to 200 µg/mL against Candida albicans, Candida parapsilosis, and Cryptococcus neoformans. The combining isolated norsesquiterpenoids with amphotericin B resulted in a synergistic interaction against test yeast-like fungi with a fractional inhibitory concentration index < 0.5. Compound 33 significantly inhibited biofilm formation and destroyed the preformed biofilm of fungi. Moreover, 33 downregulated the expression of adhesion-related genes HWP1, ALS1, ALS3, ECE1, EAP1, and BCR1 to inhibit the adhesion of C. albicans. Findings from the current study highlight the potential usage of norsesquiterpenoids from soil-derived Streptomyces for antifungal leads discovery.


Asunto(s)
Antifúngicos , Streptomyces , Antifúngicos/farmacología , Anfotericina B/farmacología , Candida albicans , Streptomyces/genética , Biopelículas , Pruebas de Sensibilidad Microbiana
14.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611762

RESUMEN

We report the discovery of a novel cyclic nonribosomal peptide (NRP), acyl-surugamide A2, from a marine-derived Streptomyces albidoflavus RKJM-0023 (CP133227). The structure of acyl-surugamide A2 was elucidated using a combination of NMR spectroscopy, MS2 fragmentation analysis, and comparative analysis of the sur biosynthetic gene cluster. Acyl-surugamide A2 contains all eight core amino acids of surugamide A, with a modified N-ε-acetyl-L-lysine residue. Our study highlights the potential of marine Streptomyces strains to produce novel natural products with potential therapeutic applications. The structure of cyclic peptides can be solved using MS2 spectra and analysis of their biosynthetic gene clusters.


Asunto(s)
Lisina , Streptomyces , Aminoácidos , Péptidos Cíclicos , Streptomyces/genética
15.
Nat Commun ; 15(1): 3574, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678027

RESUMEN

Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,ß-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.


Asunto(s)
Streptomyces , Streptomyces/enzimología , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dipéptidos/química , Dipéptidos/metabolismo , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/metabolismo , Antibacterianos/biosíntesis
16.
ACS Synth Biol ; 13(5): 1562-1571, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38679882

RESUMEN

Respirantins are 18-membered antimycin-type depsipeptides produced by Streptomyces sp. and Kitasatospora sp. These compounds have shown extraordinary anticancer activities against a panel of cancer cell lines with nanomolar levels of IC50 values. However, further investigation has been impeded by the low titers of the natural producers and the challenging chemical synthesis due to their structural complexity. The biosynthetic gene cluster (BGC) of respirantin was previously proposed based on a bioinformatic comparison of the four members of antimycin-type depsipeptides. In this study, we report the first successful reconstitution of respirantin in Streptomyces albus using a synthetic BGC. This heterologous system serves as an accessible platform for the production and diversification of respirantins. Through polyketide synthase pathway engineering, biocatalysis, and chemical derivatization, we generated nine respirantin compounds, including six new derivatives. Cytotoxicity screening against human MCF-7 and Hela cancer cell lines revealed a unique biphasic dose-response profile of respirantin. Furthermore, a structure-activity relationship study has elucidated the essential functional groups that contribute to its remarkable cytotoxicity. This work paves the way for respirantin-based anticancer drug discovery and development.


Asunto(s)
Antimicina A , Antineoplásicos , Depsipéptidos , Familia de Multigenes , Streptomyces , Humanos , Streptomyces/metabolismo , Streptomyces/genética , Depsipéptidos/farmacología , Depsipéptidos/química , Depsipéptidos/biosíntesis , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/química , Células HeLa , Antimicina A/análogos & derivados , Antimicina A/farmacología , Antimicina A/metabolismo , Células MCF-7 , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Vías Biosintéticas/genética , Relación Estructura-Actividad
17.
J Hazard Mater ; 471: 134336, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640665

RESUMEN

Microbial herbicide degradation is an efficient bioremediation method. In this study, a strain of Streptomyces nigra, LM01, which efficiently degrades atrazine and nicosulfuron, was isolated from a corn field using a direct isolation method. The degradation effects of the identified strain on two herbicides were investigated and optimized using an artificial neural network. The maximum degradation rates of S. nigra LM01 were 58.09 % and 42.97 % for atrazine and nicosulfuron, respectively. The degradation rate of atrazine in the soil reached 67.94 % when the concentration was 108 CFU/g after 5 d and was less effective than that of nicosulfuron. Whole genome sequencing of strain LM01 helped elucidate the possible degradation pathways of atrazine and nicosulfuron. The protein sequences of strain LM01 were aligned with the sequences of the degraded proteins of the two herbicides by using the National Center for Biotechnology Information platform. The sequence (GE005358, GE001556, GE004212, GE005218, GE004846, GE002487) with the highest query cover was retained and docked with the small-molecule ligands of the herbicides. The results revealed a binding energy of - 6.23 kcal/mol between GE005358 and the atrazine ligand and - 6.66 kcal/mol between GE002487 and the nicosulfuron ligand.


Asunto(s)
Atrazina , Biodegradación Ambiental , Herbicidas , Piridinas , Streptomyces , Compuestos de Sulfonilurea , Atrazina/metabolismo , Atrazina/química , Streptomyces/metabolismo , Streptomyces/genética , Herbicidas/metabolismo , Herbicidas/química , Compuestos de Sulfonilurea/metabolismo , Compuestos de Sulfonilurea/química , Piridinas/metabolismo , Piridinas/química , Contaminantes del Suelo/metabolismo , Genes Bacterianos , Redes Neurales de la Computación
18.
Methods Enzymol ; 696: 231-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38658081

RESUMEN

Nonheme iron enzymes stand out as one of the most versatile biocatalysts for molecular functionalization. They facilitate a wide array of chemical transformations within biological processes, including hydroxylation, chlorination, epimerization, desaturation, cyclization, and more. Beyond their native biological functions, these enzymes possess substantial potential as powerful biocatalytic platforms for achieving abiological metal-catalyzed reactions, owing to their functional and structural diversity and high evolvability. To this end, our group has recently engineered a series of nonheme iron enzymes to employ non-natural radical-relay mechanisms for abiological radical transformations not previously known in biology. Notably, we have demonstrated that a nonheme iron enzyme, (S)-2-hydroxypropylphosphonate epoxidase from Streptomyces viridochromogenes (SvHppE), can be repurposed into an efficient and selective biocatalyst for radical fluorine transfer reactions. This marks the first known instance of a redox enzymatic process for C(sp3)F bond formation. This chapter outlines the detailed experimental protocol for engineering SvHPPE for fluorination reactions. Furthermore, the provided protocol could serve as a general guideline that might facilitate other engineering endeavors targeting nonheme iron enzymes for novel catalytic functions.


Asunto(s)
Biocatálisis , Flúor , Halogenación , Ingeniería de Proteínas , Streptomyces , Flúor/química , Ingeniería de Proteínas/métodos , Streptomyces/enzimología , Streptomyces/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/química , Oxidación-Reducción , Proteínas de Hierro no Heme/química , Proteínas de Hierro no Heme/metabolismo , Proteínas de Hierro no Heme/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
19.
World J Microbiol Biotechnol ; 40(5): 156, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587708

RESUMEN

In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.


Asunto(s)
Streptomyces , Streptomyces/genética , Metabolismo Secundario/genética , Mapeo Cromosómico , Biología Computacional , Ingeniería Metabólica
20.
Artículo en Inglés | MEDLINE | ID: mdl-38632045

RESUMEN

Narrow-spectrum antibiotics are of great interest given their ability to spare the microbiome and decrease widespread antibiotic resistance compared to broad-spectrum antibiotics. Herein, we screened an in-house library of Actinobacteria strains for selective activity against Acinetobacter baumannii and successfully identified Streptomyces sp. CS-62 as a producer of a natural product with this valuable activity. Analysis of the cultures via high-resolution mass spectrometry and tandem mass spectrometry, followed by comparison with molecules in the Natural Product Atlas and the Global Natural Products Social Molecular Networking platform, suggested a novel natural product. Genome mining analysis initially supported the production of a novel kirromycin derivative. Isolation and structure elucidation via mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses revealed that the active natural product was the known natural product factumycin, exposing omissions and errors in the consulted databases. While public databases are generally very useful for avoiding rediscovery of known molecules, rediscovery remains a problem due to public databases either being incomplete or having errors that result in failed dereplication. Overall, the work describes the ongoing problem of dereplication and the continued need for public database curation.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Productos Biológicos/metabolismo , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA