Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nature ; 629(8010): 165-173, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632398

RESUMEN

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Asunto(s)
Antibiosis , Proteínas Bacterianas , Toxinas Bacterianas , Streptomyces , Antibacterianos/biosíntesis , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibiosis/efectos de los fármacos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Proteínas Bacterianas/ultraestructura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacología , Microscopía por Crioelectrón , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestructura , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efectos de los fármacos , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efectos de los fármacos , Streptomyces griseus/genética , Streptomyces griseus/crecimiento & desarrollo , Streptomyces griseus/metabolismo
2.
FEBS J ; 290(2): 521-532, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36017630

RESUMEN

TetR/AcrR-like transcription regulators enable bacteria to sense a wide variety of chemical compounds and to dynamically adapt the expression levels of specific genes in response to changing growth conditions. Here, we describe the structural characterisation of SCO3201, an atypical TetR/AcrR family member from Streptomyces coelicolor that strongly represses antibiotic production and morphological development under conditions of overexpression. We present crystal structures of SCO3201 in its ligand-free state as well as in complex with an unknown inducer, potentially a polyamine. In the ligand-free state, the DNA-binding domains of the SCO3201 dimer are held together in an unusually compact conformation and, as a result, the regulator cannot span the distance between the two half-sites of its operator. Interaction with the ligand coincides with a major structural rearrangement and partial conversion of the so-called hinge helix (α4) to a 310 -conformation, markedly increasing the distance between the DNA-binding domains. In sharp contrast to what was observed for other TetR/AcrR-like regulators, the increased interdomain distance might facilitate rather than abrogate interaction of the dimer with the operator. Such a 'reverse' induction mechanism could expand the regulatory repertoire of the TetR/AcrR family and may explain the dramatic impact of SCO3201 overexpression on the ability of S. coelicolor to generate antibiotics and sporulate.


Asunto(s)
Proteínas Represoras , Streptomyces coelicolor , Proteínas Represoras/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo , Antibacterianos/farmacología , Dominios Proteicos , ADN , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica
3.
J Proteomics ; 269: 104719, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36089190

RESUMEN

Streptomycetes are multicellular gram-positive bacteria that produce many bioactive compounds, including antibiotics, antitumorals and immunosuppressors. The Streptomyces phosphoproteome remains largely uncharted even though protein phosphorylation at Ser/Thr/Tyr is known to modulate morphological differentiation and specialized metabolic processes. We here expand the S. coelicolor phosphoproteome by optimised immobilized zirconium (IV) affinity chromatography and mass spectrometry to identify phosphoproteins at the vegetative and sporulating stages. We mapped 361 phosphorylation sites (41% pSer, 56.2% pThr, 2.8% pTyr) and discovered four novel Thr phosphorylation motifs ("Kxxxx(pT)xxxxK", "DxE(pT)", "D(pT)" and "Exxxxx(pT)") in 351 phosphopeptides derived from 187 phosphoproteins. We identified 154 novel phosphoproteins, thereby almost doubling the number of experimentally verified Streptomyces phosphoproteins. Novel phosphoproteins included cell division proteins (FtsK, CrgA) and specialized metabolism regulators (ArgR, AfsR, CutR and HrcA) that were differentially phosphorylated in the vegetative and in the antibiotic producing sporulating stages. Phosphoproteins involved in primary metabolism included 27 novel ribosomal proteins that were phosphorylated during the vegetative stage. Phosphorylation of these proteins likely participate in the intricate and incompletely understood regulation of Streptomyces development and secondary metabolism. We conclude that Zr(IV)-IMAC is an efficient and sensitive method to study protein phosphorylation and regulation in bacteria and enhance our understanding of bacterial signalling. SIGNIFICANCE: Two thirds of the secondary metabolites used in clinic, especially antibiotics, were discovered in Streptomyces strains. Antibiotic resistance became one of the major challenges in clinic, and new antibiotics are urgently required in clinic. Next-generation sequencing analyses revealed that streptomycetes harbour many cryptic secondary metabolite pathways, i.e. pathways not expressed in the laboratory. Secondary metabolism is tightly connected with hypha differentiation and sporulation, and understanding Streptomyces differentiation is one of the main challenges in industrial microbiology, in order to activate the expression of cryptic pathways in the laboratory. Protein phosphorylation at Ser/Thr/Tyr modulates development and secondary metabolism, but the Streptomyces phosphoproteome is still largely uncharted. Previous S. coelicolor phosphoproteomic studies used TiO2 affinity enrichment and LC-MS/MS identifying a total of 184 Streptomyces phosphoproteins. Here, we used by first time zirconium (IV) affinity chromatography and mass spectrometry, identifying 186 S. coelicolor phosphoproteins. Most of these phosphoproteins (154) were not identified in previous phosphoproteomic studies using TiO2 affinity enrichment. Thereby we almost doubling the number of experimentally verified Streptomyces phosphoproteins. Zr(IV)-IMAC affinity chromatography also worked in E. coli, allowing the identification of phosphoproteins that were not identified by TiO2 affinity chromatography. We conclude that Zr(IV)-IMAC is an efficient and sensitive method for studies of protein phosphorylation and regulation in bacteria to enhance our understanding of bacterial signalling networks. Moreover, the new Streptomyces phosphoproteins identified will contribute to design further works to understand and modulate Streptomyces secondary metabolism activation.


Asunto(s)
Streptomyces coelicolor , Antibacterianos , Cromatografía de Afinidad , Cromatografía Liquida , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Proteínas de la Membrana , Fosfopéptidos/análisis , Fosfoproteínas/análisis , Fosforilación , Proteoma/metabolismo , Proteómica/métodos , Proteínas Ribosómicas/metabolismo , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo , Espectrometría de Masas en Tándem/métodos , Titanio , Circonio/química , Circonio/metabolismo
4.
Nature ; 590(7846): 463-467, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536618

RESUMEN

Actinobacteria produce numerous antibiotics and other specialized metabolites that have important applications in medicine and agriculture1. Diffusible hormones frequently control the production of such metabolites by binding TetR family transcriptional repressors (TFTRs), but the molecular basis for this remains unclear2. The production of methylenomycin antibiotics in Streptomyces coelicolor A3(2) is initiated by the binding of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acid (AHFCA) hormones to the TFTR MmfR3. Here we report the X-ray crystal structure of an MmfR-AHFCA complex, establishing the structural basis for hormone recognition. We also elucidate the mechanism for DNA release upon hormone binding through the single-particle cryo-electron microscopy structure of an MmfR-operator complex. DNA binding and release assays with MmfR mutants and synthetic AHFCA analogues define the role of individual amino acid residues and hormone functional groups in ligand recognition and DNA release. These findings will facilitate the exploitation of actinobacterial hormones and their associated TFTRs in synthetic biology and in the discovery of new antibiotics.


Asunto(s)
Antibacterianos/biosíntesis , Furanos/metabolismo , Streptomyces coelicolor/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ADN/ultraestructura , Furanos/química , Hormonas/química , Hormonas/clasificación , Hormonas/metabolismo , Ligandos , Modelos Moleculares , Péptidos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/clasificación , Proteínas Represoras/metabolismo , Proteínas Represoras/ultraestructura , Transducción de Señal , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Relación Estructura-Actividad
5.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 8): 372-383, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744249

RESUMEN

Proteins belonging to the NTF2-like superfamily are present in the biosynthetic pathways of numerous polyketide natural products, such as anthracyclins and benzoisochromanequinones. Some have been found to be bona fide polyketide cyclases, but many of them have roles that are currently unknown. Here, the X-ray crystal structures of three NTF2-like proteins of unknown function are reported: those of ActVI-ORFA from Streptomyces coelicolor A3(2) and its homologs Caci_6494, a protein from an uncharacterized biosynthetic cluster in Catenulispora acidiphila, and Aln2 from Streptomyces sp. CM020, a protein in the biosynthetic pathway of alnumycin. The presence of a solvent-accessible cavity and the conservation of the His/Asp dyad that is characteristic of many polyketide cyclases suggest a potential enzymatic role for these enzymes in polyketide biosynthesis.


Asunto(s)
Actinobacteria/química , Proteínas Bacterianas/química , Policétidos/química , Streptomyces coelicolor/química , Streptomyces/química , Actinobacteria/enzimología , Secuencia de Aminoácidos , Antraquinonas/química , Antraquinonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Familia de Multigenes , Naftoquinonas/química , Naftoquinonas/metabolismo , Policétidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimología , Streptomyces coelicolor/enzimología , Especificidad por Sustrato
6.
Nat Commun ; 11(1): 890, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060276

RESUMEN

Lytic polysaccharide (mono)oxygenases (LPMOs) perform oxidative cleavage of polysaccharides, and are key enzymes in biomass processing and the global carbon cycle. It has been shown that LPMO reactions may be driven by light, using photosynthetic pigments or photocatalysts, but the mechanism behind this highly attractive catalytic route remains unknown. Here, prompted by the discovery that LPMOs catalyze a peroxygenase reaction more efficiently than a monooxygenase reaction, we revisit these light-driven systems, using an LPMO from Streptomyces coelicolor (ScAA10C) as model cellulolytic enzyme. By using coupled enzymatic assays, we show that H2O2 is produced and necessary for efficient light-driven activity of ScAA10C. Importantly, this activity is achieved without addition of reducing agents and proportional to the light intensity. Overall, the results highlight the importance of controlling fluxes of reactive oxygen species in LPMO reactions and demonstrate the feasibility of light-driven, tunable enzymatic peroxygenation to degrade recalcitrant polysaccharides.


Asunto(s)
Celulosa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Streptomyces coelicolor/enzimología , Biocatálisis , Celulosa/química , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Peróxido de Hidrógeno/metabolismo , Cinética , Luz , Oxigenasas/genética , Polimerizacion/efectos de la radiación , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/efectos de la radiación
7.
J Nat Prod ; 83(1): 159-163, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31904955

RESUMEN

Ion mobility spectrometry was utilized to corroborate the identity of streptorubin B (2) as the natural product produced by Streptomyces coelicolor. Natural product 2 was initially assigned as butylcycloheptylprodigiosin (3), and only relatively recently was this assignment clarified. We present additional evidence of this assignment by comparing collisional cross sections (Ω) of synthetic standards of 2, 3, and metacycloprodigiosin (4) to the cyclic prodiginine produced by S. coelicolor. Calculated theoretical Ω values demonstrate that cyclic prodiginines could be identified without standards. This work highlights ion mobility as an efficient tool for the dereplication of natural products.


Asunto(s)
Prodigiosina/análogos & derivados , Streptomyces coelicolor/química , Productos Biológicos , Espectrometría de Movilidad Iónica , Estructura Molecular , Prodigiosina/química
8.
J Chem Theory Comput ; 16(1): 794-799, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31809048

RESUMEN

Ion permeation, selectivity, and the behavior of the K+ channel selectivity filter have been studied intensively in the previous two decades. The agreement among multiple approaches used to study ion flux in K+ channels suggests a consensus mechanism of ion permeation across the selectivity that has been put to the test in recent years with the proposal of an alternative way by which ions can cross the selectivity filter of K+ channels via direct Coulomb repulsion between contacting cations. Past experimental work by Zhou and MacKinnon (J. Mol. Biol. 2004, 338, 839) showed that mutation of the site S4 reduces the total occupancy of the selectivity filter to less than two ions on average by lowering the occupancy of the S2-S4 configuration without changing the S1-S3 configuration much, and this reduction of occupancy means that ion configurations different from the ones involved in the canonical mechanism are likely to be involved. At that time, calculations using complicated kinetic networks to relate occupancy to conduction did not provide deeper insight into the conduction mechanism. Here, to help solve this enigma, umbrella sampling simulations have been performed to evaluate the potential of mean force of two KcsA mutant channels where the S4 site is substituted. Our new results provide insights into the significance of threonine in this position, revealing the effect of substitution on the alternate mechanisms of conduction proposed, involving either water or vacant sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Canales de Potasio/metabolismo , Potasio/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Cationes Monovalentes/metabolismo , Simulación por Computador , Cinética , Modelos Moleculares , Canales de Potasio/química , Conformación Proteica , Streptomyces coelicolor/química
9.
J Inorg Biochem ; 203: 110859, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31756557

RESUMEN

Streptomyces coelicolor is a soil-dwelling bacterium that is medically important due to its ability to produce several antibiotics, and nickel accumulation within this organism has been shown to prevent the production of the antibiotic undecylprodigiosin. The transcriptional repressor important in regulation of nickel uptake is the homodimeric Nur, a member of the Fur family. Nur contains two metal-binding sites per monomer: the M-site and the Ni-site. The work described here seeks to determine the roles of each of the metal-binding sites to establish a model of Nur activity through mutational studies, metal titrations, and fluorescence anisotropy. Through these studies, a model of Nur activity is proposed in which femtomolar metal binding to one M-site of Nur prompts DNA-binding, and metal binding to the second M-site fully activates the protein. Evidence is provided that shows cooperative metal binding to the Ni-site, but this process dampens affinity for promoter DNA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Níquel/metabolismo , Proteínas Represoras/metabolismo , Streptomyces coelicolor/química , Proteínas Bacterianas/química , Sitios de Unión , ADN/metabolismo , Unión Proteica , Proteínas Represoras/química
10.
Anal Chem ; 91(23): 14818-14823, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31694373

RESUMEN

Microbes interact with the world around them at the chemical level. However, directly examining the chemical exchange between microbes and microbes and their environment, at ecological scales, i.e., the scale of a single bacterial cell or small groups of cells, remains a key challenge. Here we address this obstacle by presenting a methodology that enables matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) of bacterial microcolonies. By combining optimized sample preparation with subatmospheric pressure MALDI, we demonstrate that chemical output from groups of as few as ∼50 cells can be visualized with MALDI-IMS. Application of this methodology to Bacillus subtilis and Streptomyces coelicolor revealed heterogeneity in chemical output across microcolonies and asymmetrical metabolite production when cells grew within physiological gradients produced by Medicago sativa roots. Taken together, these results indicate that MALDI-IMS can readily visualize metabolites made by very small assemblages of bacterial cells and that even these small groups of cells can differentially produce metabolites in response to local chemical gradients.


Asunto(s)
Bacillus subtilis/metabolismo , Metaboloma/fisiología , Péptidos Cíclicos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Streptomyces coelicolor/metabolismo , Bacillus subtilis/química , Bacillus subtilis/crecimiento & desarrollo , Medicago sativa/microbiología , Raíces de Plantas/microbiología , Protones , Percepción de Quorum/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Streptomyces coelicolor/química , Streptomyces coelicolor/crecimiento & desarrollo
11.
Biochim Biophys Acta Gen Subj ; 1863(11): 129405, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31376411

RESUMEN

BACKGROUND: Nucleoid associated proteins (NAPs) are essential for chromosome condensation in bacterial cells. Despite being a diverse group, NAPs share two common traits: they are small, oligomeric proteins and their oligomeric state is critical for DNA condensation. Streptomyces coelicolor IHF (sIHF) is an actinobacterial-specific nucleoid-associated protein that despite its name, shares neither sequence nor structural homology with the well-characterized Escherichia coli IHF. Like E. coli IHF, sIHF is needed for efficient nucleoid condensation, morphological development and antibiotic production in S. coelicolor. METHODS: Using a combination of crystallography, small-angle X-ray scattering, electron microscopy and structure-guided functional assays, we characterized how sIHF binds and remodels DNA. RESULTS: The structure of sIHF bound to DNA revealed two DNA-binding elements on opposite surfaces of the helix bundle. Using structure-guided functional assays, we identified an additional surface that drives DNA binding in solution. Binding by each element is necessary for both normal development and antibiotic production in vivo, while in vitro, they act collectively to restrain negative supercoils. CONCLUSIONS: The cleft defined by the N-terminal and the helix bundle of sIHF drives DNA binding, but the two additional surfaces identified on the crystal structure are necessary to stabilize binding, remodel DNA and maintain wild-type levels of antibiotic production. We propose a model describing how the multiple DNA-binding elements enable oligomerization-independent nucleoid condensation. GENERAL SIGNIFICANCE: This work provides a new dimension to the mechanistic repertoire ascribed to bacterial NAPs and highlights the power of combining structural biology techniques to study sequence unspecific protein-DNA interactions.


Asunto(s)
ADN Bacteriano/química , Factores de Integración del Huésped/química , Streptomyces coelicolor/química , Sitios de Unión , Cristalografía por Rayos X , Conformación Proteica en Hélice alfa
12.
Microbiology (Reading) ; 165(10): 1095-1106, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31339487

RESUMEN

Dodecins are small flavin-binding proteins that are widespread amongst haloarchaeal and bacterial species. Haloarchaeal dodecins predominantly bind riboflavin, while bacterial dodecins have been reported to bind riboflavin-5'-phosphate, also called flavin mononucleotide (FMN), and the FMN derivative, flavin adenine dinucleotide (FAD). Dodecins form dodecameric complexes and represent buffer systems for cytoplasmic flavins. In this study, dodecins of the bacteria Streptomyces davaonensis (SdDod) and Streptomyces coelicolor (ScDod) were investigated. Both dodecins showed an unprecedented low affinity for riboflavin, FMN and FAD when compared to other bacterial dodecins. Significant binding of FMN and FAD occurred at relatively low temperatures and under acidic conditions. X-ray diffraction analyses of SdDod and ScDod revealed that the structures of both Streptomyces dodecins are highly similar, which explains their similar binding properties for FMN and FAD. In contrast, SdDod and ScDod showed very different properties with regard to the stability of their dodecameric complexes. Site-directed mutagenesis experiments revealed that a specific salt bridge (D10-K62) is responsible for this difference in stability.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Membrana/química , Streptomyces coelicolor/química , Streptomyces/química , Proteínas Bacterianas/genética , Sitios de Unión , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Estabilidad Proteica , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Especificidad de la Especie , Streptomyces/genética , Streptomyces coelicolor/genética , Temperatura
13.
Biochem Biophys Res Commun ; 516(4): 1183-1189, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31296387

RESUMEN

Acyl carrier protein (ACP) is highly conserved across taxa and plays key roles in the fatty acid synthesis system by mediating acyl group delivery and shuttling. Here, we compared the structural and dynamic features of human type Ι ACP (hACP) and Escherichia coli type II ACP (EcACP). Analysis of chemical shift perturbations upon octanoyl group attachment showed perturbations in hACP only near acyl-group attachment sites, whereas EcACP showed the perturbation at residues in the hydrophobic cavity. This difference confirmed that hACP does not sequester the acyl chain in the hydrophobic cavity, which is blocked by hydrophobic triad residues (L34, L39, and V64). Moreover, hACP showed more flexible backbone dynamics than EcACP, especially in the front of α1α2 loop. We further investigated the interactions of hACP with Streptomyces coelicolor ACP synthase (ScAcpS), which is used to convert apo mammalian ACP to the holo form. Similar to protein-protein interface (PPI) found in hACP-hAcpS crystal structure, docking simulation and binding affinity measurements showed that the hydrophobic residues in universal recognition helix II of hACP contribute mainly to ScAcpS binding with binding affinity of 9.2 ±â€¯9.1 × 104 M. In contrast, interaction found in EcACP-EcAcpS crystal structure is dominated by electrostatic interactions. These results suggest that ScAcpS has relatively relaxed substrate specificity and a similar charge distribution to hAcpS. These fundamental differences of the charge distribution in hAcpS, ScAcpS and EcAcpS largely affect the interaction with hACP. These findings can provide a useful resource for development of novel antibiotics inhibiting PPI in bacterial FAS proteins with specificity.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos/metabolismo , Streptomyces coelicolor/metabolismo , Proteína Transportadora de Acilo/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/química , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica , Mapas de Interacción de Proteínas , Alineación de Secuencia , Streptomyces coelicolor/química
14.
Chemosphere ; 226: 687-695, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30959453

RESUMEN

Toxic effects of nanoparticles (NPs) on microorganisms have attracted substantial attention; however, there are few reports on whether NPs can affect the secondary metabolism of microbes. To investigate the toxic effects of Al2O3 NPs on cell growth and antibiotic secretion, Streptomyces coelicolor M145 was exposed to Al2O3 NPs with diameters of 30 and 80 nm and bulk Al2O3 at concentrations up to 1000 mg/L. The results indicated that differences in the toxicity of Al2O3 NPs were related to the particle size. In treatment with Al2O3 NPs, the maximum yields of undecylprodigiosin (RED) and actinorhodin (ACT) were 3.7- and 4.6-fold greater than that of the control, respectively, and the initial time of antibiotic production was much shorter. ROS quenching experiment by N-acetylcysteine (NAC) confirmed that ROS were responsible for the increased RED production. From 0 to 72 h, ROS had a significant impact on ACT production; however, after 72 h, the ROS content began to decrease until it disappeared. During ongoing exposure (0-144 h), ACT production continued to increase, indicating that in addition to ROS, nano effect of Al2O3 NPs also played roles in this process. Transcriptional analysis demonstrated that Al2O3 NPs could increase the expression levels of antibiotic biosynthetic genes and two-component systems (TCSs) and inhibit the expression levels of primary metabolic pathways. This study provides a new perspective for understanding the mechanisms of antibiotic production in nature and reveals important implications for exploring other uses of NPs in biomedical applications or regulation of antibiotics in nature.


Asunto(s)
Antibacterianos/metabolismo , Expresión Génica/genética , Nanopartículas/química , Streptomyces coelicolor/química
15.
Chemistry ; 25(14): 3675-3684, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30600851

RESUMEN

Nitric oxide (NO) can function as both a cytotoxin and a signalling molecule. In both cases, reaction with iron-sulfur (Fe-S) cluster proteins plays an important role because Fe-S clusters are reactive towards NO and so are a primary site of general NO-induced damage (toxicity). This sensitivity to nitrosylation is harnessed in the growing group of regulatory proteins that function in sensing of NO via an Fe-S cluster. Although information about the products of cluster nitrosylation is now emerging, detection and identification of intermediates remains a major challenge, due to their transient nature and the difficulty in distinguishing spectroscopically similar iron-NO species. Here we report studies of the NO-sensing Fe-S cluster regulators NsrR and WhiD using non-denaturing mass spectrometry, in which non-covalent interactions between the protein and Fe/S/NO species are preserved. The data provide remarkable insight into the nitrosylation reactions, permitting identification, for the first time, of protein-bound mono-, di- and tetranitrosyl [4Fe-4S] cluster complexes ([4Fe-4S](NO), [4Fe-4S])(NO)2 and [4Fe-4S](NO)4 ) as intermediates along pathways to formation of product Roussin's red ester (RRE) and Roussin's black salt (RBS)-like species. The data allow the nitrosylation mechanisms of NsrR and WhiD to be elucidated and clearly distinguished.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Streptomyces coelicolor/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Proteínas Hierro-Azufre/química , Modelos Moleculares , Mycobacterium tuberculosis/química , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray , Streptomyces coelicolor/química , Factores de Transcripción/química
16.
Carbohydr Res ; 472: 132-137, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30593944

RESUMEN

Promiscuous galactokinases (GalKs), which catalyse the ATP dependent phosphorylation of galactose in nature, have been widely exploited in biotechnology for the rapid synthesis of diverse sugar-1-phosphates. This work focuses on the characterisation of a bacterial GalK from Streptomyces coelicolor (ScGalK), which was overproduced in Escherichia coli and shown to phosphorylate galactose. ScGalK displayed a broad substrate tolerance, with activity towards Gal, GalN, Gal3D, GalNAc, Man and L-Ara. Most interestingly, ScGalK demonstrated a high activity over a broad pH and temperature range, suggesting that the enzyme could be highly amenable to multi-enzyme systems.


Asunto(s)
Galactoquinasa/genética , Galactoquinasa/metabolismo , Streptomyces coelicolor/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Galactoquinasa/química , Concentración de Iones de Hidrógeno , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Especificidad por Sustrato , Termodinámica
18.
Sci Rep ; 8(1): 16524, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30410115

RESUMEN

Coiled-coil domains of intermediate filaments (IF) and prokaryotic IF-like proteins enable oligomerisation and filamentation, and no additional function is ascribed to these coiled-coil domains. However, an IF-like protein from Streptomyces reticuli was reported to display cellulose affinity. We demonstrate that cellulose affinity is an intrinsic property of the IF-like proteins FilP and Scy and the coiled-coil protein DivIVA from the genus Streptomyces. Furthermore, IF-like proteins and DivIVA from other prokaryotic species and metazoan IF display cellulose affinity despite having little sequence homology. Cellulose affinity-based purification is utilised to isolate native FilP protein from the whole cell lysate of S. coelicolor. Moreover, cellulose affinity allowed for the isolation of IF and IF-like protein from the whole cell lysate of C. crescentus and a mouse macrophage cell line. The binding to cellulose is mediated by certain combinations of coiled-coil domains, as demornstrated for FilP and lamin. Fusions of target proteins to cellulose-binding coiled-coil domains allowed for cellulose-based protein purification. The data presented show that cellulose affinity is a novel function of certain coiled-coil domains of IF and IF-like proteins from evolutionary diverse species.


Asunto(s)
Bacterias/metabolismo , Celulosa/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Macrófagos/metabolismo , Animales , Bacterias/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Escherichia coli/química , Escherichia coli/metabolismo , Macrófagos/citología , Espectrometría de Masas , Ratones , Unión Proteica , Dominios Proteicos , Homología de Secuencia , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo
19.
J Bacteriol ; 200(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30061355

RESUMEN

The bacterial cell wall maintains cell shape and protects against bursting by turgor. A major constituent of the cell wall is peptidoglycan (PG), which is continuously modified to enable cell growth and differentiation through the concerted activity of biosynthetic and hydrolytic enzymes. Streptomycetes are Gram-positive bacteria with a complex multicellular life style alternating between mycelial growth and the formation of reproductive spores. This involves cell wall remodeling at apical sites of the hyphae during cell elongation and autolytic degradation of the vegetative mycelium during the onset of development and antibiotic production. Here, we show that there are distinct differences in the cross-linking and maturation of the PGs between exponentially growing vegetative hyphae and the aerial hyphae that undergo sporulation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis identified over 80 different muropeptides, revealing that major PG hydrolysis takes place over the course of mycelial growth. Half of the dimers lacked one of the disaccharide units in transition-phase cells, most likely due to autolytic activity. The deacetylation of MurNAc to MurN was particularly pronounced in spores and strongly reduced in sporulation mutants with a deletion of bldD or whiG, suggesting that MurN is developmentally regulated. Altogether, our work highlights the dynamic and growth phase-dependent changes in the composition of the PG in StreptomycesIMPORTANCE Streptomycetes are bacteria with a complex lifestyle and are model organisms for bacterial multicellularity. From a single spore, a large multigenomic multicellular mycelium is formed, which differentiates to form spores. Programmed cell death is an important event during the onset of morphological differentiation. In this work, we provide new insights into the changes in the peptidoglycan composition and over time, highlighting changes over the course of development and between growing mycelia and spores. This revealed dynamic changes in the peptidoglycan when the mycelia aged, with extensive peptidoglycan hydrolysis and, in particular, an increase in the proportion of 3-3 cross-links. Additionally, we identified a muropeptide that accumulates predominantly in the spores and may provide clues toward spore development.


Asunto(s)
Proteínas Bacterianas/química , Peptidoglicano/química , Streptomyces coelicolor/química , Pared Celular/química , Cromatografía Liquida , Hidrólisis , Hifa/crecimiento & desarrollo , Esporas Bacterianas/crecimiento & desarrollo , Espectrometría de Masas en Tándem
20.
J Sci Food Agric ; 98(10): 3843-3850, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29363791

RESUMEN

BACKGROUND: The effects of small laccase (SLAC) from Streptomyces coelicolor on the properties of whey protein isolate (WPI) films were studied. RESULTS: WPI was catalyze by SLAC without phenolic acid assistance. Particle size distribution results showed that some complexes with higher relative molecular weight formed in WPI samples treated with SLAC. The content of α-helixes decreased while those of ß-sheets and random coils increased following SLAC treatment according to circular dichroism results. Fourier transform infrared spectral analysis suggested that some conformational changes occurred in WPI following SLAC treatment. Analysis of WPI films prepared by casting after SLAC treatment indicated that their film properties were all improved, including mechanical properties, solubility, water vapor, oxygen and carbon dioxide barrier properties, film color, light transmission, transparency and thermal properties. Compared with that of the control film, some obvious differences in the morphology of the WPI films were observed following SLAC treatment. This report demonstrates that laccase can directly catalyze protein cross-linking, which may be useful to improve the performance of protein films. CONCLUSION: In this study, SLAC was applied to WPI edible film during the film-making process. The results showed that SLAC can catalyze WPI cross-linking without phenolic acid assistance, and WPI film properties were improved after SLAC treatment. © 2018 Society of Chemical Industry.


Asunto(s)
Proteínas Fúngicas/química , Lacasa/química , Streptomyces coelicolor/enzimología , Biocatálisis , Reactivos de Enlaces Cruzados/química , Embalaje de Alimentos/instrumentación , Proteínas de la Leche/química , Estructura Secundaria de Proteína , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Streptomyces coelicolor/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...