Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Science ; 379(6627): 94-99, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36603079

RESUMEN

Maize (Zea mays) is a major staple crop in Africa, where its yield and the livelihood of millions are compromised by the parasitic witchweed Striga. Germination of Striga is induced by strigolactones exuded from maize roots into the rhizosphere. In a maize germplasm collection, we identified two strigolactones, zealactol and zealactonoic acid, which stimulate less Striga germination than the major maize strigolactone, zealactone. We then showed that a single cytochrome P450, ZmCYP706C37, catalyzes a series of oxidative steps in the maize-strigolactone biosynthetic pathway. Reduction in activity of this enzyme and two others involved in the pathway, ZmMAX1b and ZmCLAMT1, can change strigolactone composition and reduce Striga germination and infection. These results offer prospects for breeding Striga-resistant maize.


Asunto(s)
Lactonas , Striga , Zea mays , Germinación , Lactonas/metabolismo , Fitomejoramiento , Striga/crecimiento & desarrollo , Zea mays/genética , Zea mays/metabolismo
2.
Plant Physiol ; 188(2): 1369-1384, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850204

RESUMEN

The obligate hemiparasitic weed Striga hermonthica grows on cereal roots and presents a severe threat to global food security by causing enormous yield losses, particularly in sub-Saharan Africa. The rapidly increasing Striga seed bank in infested soils provides a major obstacle in controlling this weed. Striga seeds require host-derived strigolactones (SLs) for germination, and corresponding antagonists could be used as germination inhibitors. Recently, we demonstrated that the common detergent Triton X-100 is a specific inhibitor of Striga seed germination by binding noncovalently to its receptor, S. hermonthica HYPO-SENSITIVE TO LIGHT 7 (ShHTL7), without blocking the rice (Oryza sativa) SL receptor DWARF14 (OsD14). Moreover, triazole ureas, the potent covalently binding antagonists of rice SL perception with much higher activity toward OsD14, showed inhibition of Striga but were less specific. Considering that Triton X-100 is not suitable for field application and by combining structural elements of Triton and triazole urea, we developed two hybrid compounds, KK023-N1 and KK023-N2, as potential Striga-specific germination inhibitors. Both compounds blocked the hydrolysis activity of ShHTL7 but did not affect that of OsD14. Binding of KK023-N1 diminished ShHTL7 interaction with S. hermonthica MORE AXILLARY BRANCHING 2, a major component in SL signal transduction, and increased ShHTL7 thermal specificity. Docking studies indicate that KK023-N1 binding is not covalent but is caused by hydrophobic interactions. Finally, in vitro and greenhouse tests revealed specific inhibition of Striga seed germination, which led to a 38% reduction in Striga infestation in pot experiments. These findings reveal that KK023-N1 is a potential candidate for combating Striga and a promising basis for rational design and development of further Striga-specific herbicides.


Asunto(s)
Grano Comestible/parasitología , Germinación/efectos de los fármacos , Reguladores del Crecimiento de las Plantas , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Striga/efectos de los fármacos , Striga/crecimiento & desarrollo , Agentes de Control Biológico , Productos Agrícolas/parasitología , Semillas/efectos de los fármacos , Control de Malezas/métodos
3.
Plant Physiol ; 186(3): 1632-1644, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33856485

RESUMEN

Witchweeds (Striga spp.) and broomrapes (Orobanchaceae and Phelipanche spp.) are root parasitic plants that infest many crops in warm and temperate zones, causing enormous yield losses and endangering global food security. Seeds of these obligate parasites require rhizospheric, host-released stimulants to germinate, which opens up possibilities for controlling them by applying specific germination inhibitors or synthetic stimulants that induce lethal germination in the host's absence. To determine their effect on germination, root exudates or synthetic stimulants/inhibitors are usually applied to parasitic seeds in in vitro bioassays, followed by assessment of germination ratios. Although these protocols are very sensitive, the germination recording process is laborious, representing a challenge for researchers and impeding high-throughput screens. Here, we developed an automatic seed census tool to count and discriminate germinated seeds (GS) from non-GS. We combined deep learning, a powerful data-driven framework that can accelerate the procedure and increase its accuracy, for object detection with computer vision latest development based on the Faster Region-based Convolutional Neural Network algorithm. Our method showed an accuracy of 94% in counting seeds of Striga hermonthica and reduced the required time from approximately 5 min to 5 s per image. Our proposed software, SeedQuant, will be of great help for seed germination bioassays and enable high-throughput screening for germination stimulants/inhibitors. SeedQuant is an open-source software that can be further trained to count different types of seeds for research purposes.


Asunto(s)
Germinación/efectos de los fármacos , Orobanchaceae/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/parasitología , Malezas/crecimiento & desarrollo , Programas Informáticos , Sorghum/parasitología , Striga/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/parasitología , Toma de Decisiones Asistida por Computador , Aprendizaje Profundo
4.
Plant Physiol ; 185(4): 1353-1373, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793958

RESUMEN

Chemical signals known as strigolactones (SLs) were discovered more than 50 years ago as host-derived germination stimulants of parasitic plants in the Orobanchaceae. Strigolactone-responsive germination is an essential adaptation of obligate parasites in this family, which depend upon a host for survival. Several species of obligate parasites, including witchweeds (Striga, Alectra spp.) and broomrapes (Orobanche, Phelipanche spp.), are highly destructive agricultural weeds that pose a significant threat to global food security. Understanding how parasites sense SLs and other host-derived stimulants will catalyze the development of innovative chemical and biological control methods. This review synthesizes the recent discoveries of strigolactone receptors in parasitic Orobanchaceae, their signaling mechanism, and key steps in their evolution.


Asunto(s)
Germinación/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/efectos de los fármacos , Malezas/efectos de los fármacos , Malezas/parasitología , Striga/crecimiento & desarrollo , Striga/parasitología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Raíces de Plantas/crecimiento & desarrollo , Malezas/crecimiento & desarrollo
5.
Plant Signal Behav ; 16(3): 1855845, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33300428

RESUMEN

In the model plant Arabidopsis thaliana, two mutually antagonistic hormones regulate germination: abscisic acid (ABA) which promotes dormancy and gibberellins (GA) which breaks dormancy. Mutants auxotrophic for or insensitive to GA do not germinate. However, changes in the signaling flux through other hormone pathways will permit GA-independent germination. These changes include increased brassinosteroid (BR) signaling and decreased ABA signaling. Recently, strigolactone (SL) was also shown to enable GA-independent germination, provided the seeds express the SL receptor ShHTL7 from the parasitic plant Striga hermonthica. Here we show that a mutation which reduces sensitivity to BR (bri1-6) prevents ShHTL7 from promoting GA-independent germination. Further, we show that neither ShHTL7 nor the constitutive karrikin signaling mutant smax1-2 confer insensitivity to ABA. These results suggest ShHTL7 requires functional BR perception to bypass the GA requirement for germination.


Asunto(s)
Brasinoesteroides/metabolismo , Germinación , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Striga/crecimiento & desarrollo , Striga/metabolismo , Fenotipo
6.
J Agric Food Chem ; 68(40): 11077-11087, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32924502

RESUMEN

The broomrapes (Orobanche and Phelipanche spp.) and witchweeds (Striga spp.) are a class of parasitic weeds, which are distributed widely in the tropical, subtropical, and temperate areas of the globe. Since they have completely consistent lifecycles with the host plants, it is difficult to control them selectively through using the conventional herbicides. Inducing suicidal germination of these weed seeds by small molecular signaling agents proved to be a promising strategy for the management of parasitic weeds. As a class of naturally occurring terpenoid metabolites, strigolactones (SLs) show significant biological activities including stimulation germination of weed seeds, inhibition of shoot-branching, and so on. However, the widespread application of these natural SLs is greatly limited by their extremely low natural abundance and complex molecular structures. Design and synthesis of the simplified analogues as natural SLs alternatives provide a viable avenue for the efficient control of these parasitic weeds. We herein disclose the development of a novel class of SLs analogues derived from dihydroflavonoids as potent seed germinators of parasitic weeds. It was shown that one of them displayed a higher potential toward the seed germination of the broomrapes than the positive control GR24. The structure-activity relationship of these SLs analogues was further validated on the basis of the binding affinity experiment to strigolactone receptor protein HTL7 by using a YLG fluorescent probe method.


Asunto(s)
Flavonoides/química , Herbicidas/química , Compuestos Heterocíclicos con 3 Anillos/química , Lactonas/química , Orobanche/efectos de los fármacos , Striga/efectos de los fármacos , Flavonoides/farmacología , Germinación/efectos de los fármacos , Herbicidas/síntesis química , Herbicidas/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Orobanche/crecimiento & desarrollo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Striga/crecimiento & desarrollo , Relación Estructura-Actividad
7.
Cell Mol Life Sci ; 77(6): 1103-1113, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31587093

RESUMEN

The genus Striga, also called "witchweed", is a member of the family Orobanchaceae, which is a major family of root-parasitic plants. Striga can lead to the formation of seed stocks in the soil and to explosive expansion with enormous seed production and stability once the crops they parasitize are cultivated. Understanding the molecular mechanism underlying the communication between Striga and their host plants through natural seed germination stimulants, "strigolactones (SLs)", is required to develop the technology for Striga control. This review outlines recent findings on the SL perception mechanism, which have been accumulated in Striga hermonthica by the similarity of the protein components that regulate SL signaling in nonparasitic model plants, including Arabidopsis and rice. HTL/KAI2 homologs were identified as SL receptors in the process of Striga seed germination. Recently, this molecular basis has further promoted the development of various types of SL agonists/antagonists as seed germination stimulants or inhibitors. Such chemical compounds are also useful to elucidate the dynamic behavior of SL receptors and the regulation of SL signaling.


Asunto(s)
Productos Agrícolas/parasitología , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Striga/crecimiento & desarrollo , Control de Malezas , Germinación/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Lactonas/agonistas , Lactonas/antagonistas & inhibidores , Reguladores del Crecimiento de las Plantas/agonistas , Reguladores del Crecimiento de las Plantas/antagonistas & inhibidores , Raíces de Plantas/parasitología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/fisiología , Transducción de Señal/efectos de los fármacos , Striga/efectos de los fármacos , Striga/fisiología , Control de Malezas/métodos
8.
Science ; 362(6420): 1301-1305, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30545887

RESUMEN

The parasitic plant Striga hermonthica has been causing devastating damage to the crop production in Africa. Because Striga requires host-generated strigolactones to germinate, the identification of selective and potent strigolactone agonists could help control these noxious weeds. We developed a selective agonist, sphynolactone-7, a hybrid molecule originated from chemical screening, that contains two functional modules derived from a synthetic scaffold and a core component of strigolactones. Cooperative action of these modules in the activation of a high-affinity strigolactone receptor ShHTL7 allows sphynolactone-7 to provoke Striga germination with potency in the femtomolar range. We demonstrate that sphynolactone-7 is effective for reducing Striga parasitism without impinging on host strigolactone-related processes.


Asunto(s)
Germinación/efectos de los fármacos , Herbicidas/farmacología , Lactonas/metabolismo , Malezas/efectos de los fármacos , Striga/efectos de los fármacos , Productos Agrícolas , Herbicidas/química , Malezas/fisiología , Semillas/efectos de los fármacos , Striga/crecimiento & desarrollo
10.
PLoS One ; 12(9): e0182655, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902851

RESUMEN

The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere's chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins' role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network laying the foundation for the precise temporal and spatial control underlying rhizosphere architecture.


Asunto(s)
Arabidopsis , Interacciones Huésped-Parásitos , Fenómenos Fisiológicos de las Plantas , Percepción de Quorum/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/parasitología , Benzoquinonas/farmacología , Señalización del Calcio/efectos de los fármacos , Interacciones Huésped-Parásitos/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/parasitología , Oxidación-Reducción , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Especies Reactivas de Oxígeno/metabolismo , Striga/efectos de los fármacos , Striga/crecimiento & desarrollo , Striga/fisiología
12.
Nat Chem Biol ; 12(9): 724-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27428512

RESUMEN

Striga spp. (witchweed) is an obligate parasitic plant that attaches to host roots to deplete them of nutrients. In Sub-Saharan Africa, the most destructive Striga species, Striga hermonthica, parasitizes major food crops affecting two-thirds of the arable land and over 100 million people. One potential weakness in the Striga infection process is the way it senses the presence of a host crop. Striga only germinates in the presence of the plant hormone strigolactone, which exudes from a host root. Hence small molecules that perturb strigolactone signaling may be useful tools for disrupting the Striga lifecycle. Here we developed a chemical screen to suppress strigolactone signaling in the model plant Arabidopsis. One compound, soporidine, specifically inhibited a S. hermonthica strigolactone receptor and inhibited the parasite's germination. This indicates that strigolactone-based screens using Arabidopsis are useful in identifying lead compounds to combat Striga infestations.


Asunto(s)
Germinación/efectos de los fármacos , Piperidinas/farmacología , Receptores de Superficie Celular/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Striga/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Lactonas/farmacología , Estructura Molecular , Piperidinas/química , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Superficie Celular/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Striga/crecimiento & desarrollo
13.
J Agric Food Chem ; 64(25): 5188-96, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27267731

RESUMEN

Crop attack by parasitic weeds such as Striga and Orobanche occurs through developmental processes triggered by host chemodetection. Seeds of those weed species remain dormant in the soil until germination is triggered by host root exudates. The development of haustorium, a parasitic plant organ that invades the host to withdraw its nutrients, is also initiated in Orobanchaceae by host molecular cues. The induction of haustorium development by exogenous signals has previously been reported for Striga but not for Orobanche species. In this work, we demonstrate that sphaeropsidone and epi-sphaeropsidone, two phytotoxic cyclohexene oxides isolated from the fungus Diplodia cupressi, a causal agent of cypress canker, induce haustorium development in radicles of the parasitic weeds Striga hermonthica, Orobanche crenata, and Orobanche cumana. This is the first report of chemical stimulation of haustorium development in radicles of Orobanche in the absence of host. In addition, SAR studies were carried out by testing the haustorium-inducing activity of the natural cyclohexene oxides, seven already known and four new hemisynthetic derivatives, in O. cumana, O. crenata, and S. hermonthica, to find a molecular specificity model required for haustorium induction. The results suggested that the haustorium-inducing activity is due to the possibility to convert the natural sphaeropsidone and natural and hemisynthetic derivatives in the corresponding 3-methoxyquinone and that the stereochemistry at C-5 also seems to affect this activity.


Asunto(s)
Diterpenos/química , Diterpenos/farmacología , Orobanche/efectos de los fármacos , Malezas/efectos de los fármacos , Striga/efectos de los fármacos , Ascomicetos/química , Germinación/efectos de los fármacos , Orobanche/crecimiento & desarrollo , Malezas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Striga/crecimiento & desarrollo , Relación Estructura-Actividad
14.
Pest Manag Sci ; 72(11): 2048-2053, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26929041

RESUMEN

BACKGROUND: We previously reported that a series of phenoxyfuranone compounds, designated 'debranones', mimic strigolactone (SL) activity. 4-Bromodebranone (4BD) is a functionally selective SL mimic that reduces the number of shoot branches on rice more potently than GR24, a typical synthetic SL analogue, but does not induce seed germination in the root-parasitic plant Striga hermonthica. To enhance the selective activity of debranones in stimulating the seed germination of root-parasitic plants, we prepared several analogues of 4BD in which the chlorine atom was substituted with an H atom at the o-, m- or p-position on the phenyl ring (designated 2-, 3-, or 4-chlorodebranone, respectively) or had a bicyclic group instead of the phenyl ring. We evaluated the biological activities of the compounds with rice tillering assays and S. hermonthica seed germination assays. RESULTS: Both assays showed that the substituent position affected debranone efficiency, and among the monochlorodebranones, 2-chlorodebranone was more effective than the other two isomers in both assays. When the activities of the bicyclic debranones were compared in the same two assays, one was more active than GR24 in the rice tillering assay. This debranone also stimulated the germination of S. hermonthica seeds. Thus, some debranone derivatives induced the germination of S. hermonthica seeds, although their activities were still ∼1/20 that of GR24. CONCLUSION: These results strongly suggest that further and rigorous structure-activity relationship studies of the debranones will identify derivatives that more potently stimulate the suicidal germination of S. hermonthica seeds. © 2016 Society of Chemical Industry.


Asunto(s)
Furanos/farmacología , Oryza/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Striga/efectos de los fármacos , Germinación/efectos de los fármacos , Lactonas/farmacología , Oryza/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Striga/crecimiento & desarrollo
15.
Pest Manag Sci ; 72(11): 2035-2042, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26732430

RESUMEN

BACKGROUND: Purple witchweed (Striga hermonthica), Orobanchaceae, is an obligate root-parasitic weed of important cereal crops. The parasite is a copious seed producer, and a huge seed bank develops soon after the onset of the initial infestation. To germinate, a Striga seed requires a pretreatment in a moist warm environment and a subsequent exposure to an exogenous stimulant. One approach to reduce the seed bank is artificially to induce germination of the seeds in the absence of or away from the host roots. A newly developed germination stimulant for S. hermonthica, designated as T-010, was evaluated for efficacy in greenhouse and field experiments under artificial Striga infestation. RESULTS: T-010 displayed germination-inducing activity in soil. Formulated T-010 applied at 0.1, 1 and 10 kg ai ha-1 to potted soil containing S. hermonthica seeds, previously conditioned by judicious irrigation, reduced Striga emergence by 94-100%. Results of a field trial showed that formulated T-010, at the same rates as for the pot experiment, delayed and reduced Striga emergence by 33% and increased sorghum shoot and head dry weight by 18.7-40.2% and 187-241% respectively. CONCLUSION: These findings demonstrated, for the first time, the technical feasibility of suicidal germination for controlling S. hermonthica. Optimising structure, formulation and application protocol of germination stimulants should be the main goal for further improvement of the technology. © 2016 Society of Chemical Industry.


Asunto(s)
Carbamatos/farmacología , Malezas/efectos de los fármacos , Striga/efectos de los fármacos , Control de Malezas/métodos , Productos Agrícolas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Lactonas/química , Lactonas/farmacología , Malezas/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo , Striga/crecimiento & desarrollo
16.
Science ; 350(6257): 203-7, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26450211

RESUMEN

Strigolactones are naturally occurring signaling molecules that affect plant development, fungi-plant interactions, and parasitic plant infestations. We characterized the function of 11 strigolactone receptors from the parasitic plant Striga hermonthica using chemical and structural biology. We found a clade of polyspecific receptors, including one that is sensitive to picomolar concentrations of strigolactone. A crystal structure of a highly sensitive strigolactone receptor from Striga revealed a larger binding pocket than that of the Arabidopsis receptor, which could explain the increased range of strigolactone sensitivity. Thus, the sensitivity of Striga to strigolactones from host plants is driven by receptor sensitivity. By expressing strigolactone receptors in Arabidopsis, we developed a bioassay that can be used to identify chemicals and crops with altered strigolactone levels.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Receptores de Superficie Celular/química , Striga/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Dominio Catalítico , Germinación/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Datos de Secuencia Molecular , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Estructura Secundaria de Proteína , Receptores de Superficie Celular/clasificación , Receptores de Superficie Celular/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Striga/genética , Striga/crecimiento & desarrollo , Relación Estructura-Actividad
17.
Bioorg Med Chem ; 23(18): 6100-10, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26320663

RESUMEN

Bioconversion of GR24, the most widely used synthetic strigolactone (SL), by hydroponically grown sorghum (Sorghum bicolor) and biological activities of hydroxylated GR24 stereoisomers were studied. Analysis of extracts and exudates of sorghum roots previously fed with a racemic and diastereomeric mixture of GR24, using liquid chromatography-tandem mass spectrometry with multiple reaction monitoring (MRM), confirmed uptake of GR24 and suggested its conversion to mono-hydroxylated products. Two major GR24 metabolites, 7-hydroxy-GR24 and 8-hydroxy-GR24, were identified in the root extracts and exudates by direct comparison of chromatographic behavior with a series of synthetic mono-hydroxylated GR24 analogues. Separate feeding experiments with each of the GR24 stereoisomers revealed that the hydroxylated products were derived from 2'-epi-GR24, an evidence of sterical recognition of the GR24 molecule by sorghum. Trans-4-hydroxy-GR24 isomers derived from all GR24 stereoisomers were detected in the exudates as minor metabolites. The synthetic hydroxy-GR24 isomers induced germination of Striga hermonthica in decreasing order of C-8>C-7>C-6>C-5>C-4. In contrast the stereoisomers having the same configuration of orobanchol, irrespective of position of hydroxylation, induced germination of Striga gesnerioides. The results confirm previous reports on structural requirements of SLs and ascribe a critical role to hydroxylation, but not to the position of the hydroxyl group in the AB part of the molecule, in induction of S. gesnerioides seed germination.


Asunto(s)
Lactonas/química , Sorghum/química , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Germinación/efectos de los fármacos , Hidroxilación , Lactonas/síntesis química , Lactonas/farmacología , Espectrometría de Masas , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Sorghum/metabolismo , Estereoisomerismo , Striga/crecimiento & desarrollo , Striga/metabolismo
18.
Science ; 349(6250): 864-8, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-26293962

RESUMEN

Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of α/ß hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.


Asunto(s)
Germinación , Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Semillas/crecimiento & desarrollo , Striga/crecimiento & desarrollo , Fluoresceínas/química , Fluoresceínas/metabolismo , Fluorescencia , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Hidrolasas/metabolismo , Hidrólisis , Imagen Molecular/métodos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Semillas/metabolismo , Transducción de Señal , Striga/metabolismo
19.
Plant Sci ; 225: 9-14, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25017154

RESUMEN

Strigolactones produced by various plant species are involved in the development of different plant parts. They are also exuded by plant roots to the rhizosphere, where they are involved in the induction of seed germination of the parasitic plants Striga and Orobanche, hyphal branching of the symbiotic arbuscular mycorrhizal fungi (AMF), and the symbiotic interaction with Rhizobium. In the present discussion paper, the essentialness of strigolactones as communication signals in these plant interactions is discussed in view of the existence of other plant-derived substances that are able to promote these plant interactions. In addition, the importance of strigolactones for determination of interaction specificity is discussed based on current knowledge on strigolactone composition, perception and delivery. The different activities of strigolactones in plant development and in the rhizosphere suggest their possible use in agriculture. However, despite efforts made in this direction, there is no current, practical implementation. Possible reasons for the encountered difficulties and suggested solutions to promote strigolactone use in agriculture are discussed.


Asunto(s)
Lactonas/metabolismo , Micorrizas/crecimiento & desarrollo , Enfermedades de las Plantas , Raíces de Plantas/metabolismo , Plantas/metabolismo , Rhizobium , Rizosfera , Orobanche/crecimiento & desarrollo , Desarrollo de la Planta , Nodulación de la Raíz de la Planta , Transducción de Señal , Striga/crecimiento & desarrollo , Simbiosis
20.
New Phytol ; 202(2): 531-541, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24483232

RESUMEN

Seed germination of Striga spp. (witchweeds), one of the world's most destructive parasitic weeds, cannot be induced by light but is specifically induced by strigolactones. It is not known whether Striga uses the same components for strigolactone signaling as host plants, whether it has endogenous strigolactone biosynthesis and whether there is post-germination strigolactone signaling in Striga. Strigolactones could not be detected in in vitro grown Striga, while for host-grown Striga, the strigolactone profile is dominated by a subset of the strigolactones present in the host. Branching of in vitro grown Striga is affected by strigolactone biosynthesis inhibitors. ShMAX2, the Striga ortholog of Arabidopsis MORE AXILLARY BRANCHING 2 (AtMAX2) - which mediates strigolactone signaling - complements several of the Arabidopsis max2-1 phenotypes, including the root and shoot phenotype, the High Irradiance Response and the response to strigolactones. Seed germination of max2-1 complemented with ShMAX2 showed no complementation of the Very Low Fluence Response phenotype of max2-1. Results provide indirect evidence for ShMAX2 functions in Striga. A putative role of ShMAX2 in strigolactone-dependent seed germination of Striga is discussed.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Portadoras/genética , Germinación/genética , Lactonas/metabolismo , Tallos de la Planta/metabolismo , Semillas/metabolismo , Striga/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Genes de Plantas , Luz , Mutación , Fenotipo , Raíces de Plantas , Brotes de la Planta , Tallos de la Planta/crecimiento & desarrollo , Malezas , Semillas/crecimiento & desarrollo , Transducción de Señal , Striga/crecimiento & desarrollo , Striga/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA