Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Front Immunol ; 15: 1372904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742116

RESUMEN

Introduction: The California purple sea urchin, Strongylocentrotus purpuratus, relies solely on an innate immune system to combat the many pathogens in the marine environment. One aspect of their molecular defenses is the SpTransformer (SpTrf) gene family that is upregulated in response to immune challenge. The gene sequences are highly variable both within and among animals and likely encode thousands of SpTrf isoforms within the sea urchin population. The native SpTrf proteins bind foreign targets and augment phagocytosis of a marine Vibrio. A recombinant (r)SpTrf-E1-Ec protein produced by E. coli also binds Vibrio but does not augment phagocytosis. Methods: To address the question of whether other rSpTrf isoforms function as opsonins and augment phagocytosis, six rSpTrf proteins were expressed in insect cells. Results: The rSpTrf proteins are larger than expected, are glycosylated, and one dimerized irreversibly. Each rSpTrf protein cross-linked to inert magnetic beads (rSpTrf::beads) results in different levels of surface binding and phagocytosis by phagocytes. Initial analysis shows that significantly more rSpTrf::beads associate with cells compared to control BSA::beads. Binding specificity was verified by pre-incubating the rSpTrf::beads with antibodies, which reduces the association with phagocytes. The different rSpTrf::beads show significant differences for cell surface binding and phagocytosis by phagocytes. Furthermore, there are differences among the three distinct types of phagocytes that show specific vs. constitutive binding and phagocytosis. Conclusion: These findings illustrate the complexity and effectiveness of the sea urchin innate immune system driven by the natSpTrf proteins and the phagocyte cell populations that act to neutralize a wide range of foreign pathogens.


Asunto(s)
Fagocitos , Fagocitosis , Proteínas Recombinantes , Animales , Fagocitosis/inmunología , Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Unión Proteica , Strongylocentrotus purpuratus/inmunología , Strongylocentrotus purpuratus/genética , Inmunidad Innata , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Erizos de Mar/inmunología , Vibrio/inmunología , Proteínas Opsoninas/metabolismo , Proteínas Opsoninas/inmunología
2.
Genes (Basel) ; 15(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38397211

RESUMEN

The SpTransformer (SpTrf) gene family in the purple sea urchin, Strongylocentrotus purpuratus, encodes immune response proteins. The genes are clustered, surrounded by short tandem repeats, and some are present in genomic segmental duplications. The genes share regions of sequence and include repeats in the coding exon. This complex structure is consistent with putative local genomic instability. Instability of the SpTrf gene cluster was tested by 10 days of growth of Escherichia coli harboring bacterial artificial chromosome (BAC) clones of sea urchin genomic DNA with inserts containing SpTrf genes. After the growth period, the BAC DNA inserts were analyzed for size and SpTrf gene content. Clones with multiple SpTrf genes showed a variety of deletions, including loss of one, most, or all genes from the cluster. Alternatively, a BAC insert with a single SpTrf gene was stable. BAC insert instability is consistent with variations in the gene family composition among sea urchins, the types of SpTrf genes in the family, and a reduction in the gene copy number in single coelomocytes. Based on the sequence variability among SpTrf genes within and among sea urchins, local genomic instability of the family may be important for driving sequence diversity in this gene family that would be of benefit to sea urchins in their arms race with marine microbes.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Cromosomas Artificiales Bacterianos/genética , Familia de Multigenes , ADN , Erizos de Mar/genética , Inestabilidad Genómica
3.
BMC Microbiol ; 24(1): 11, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38172649

RESUMEN

BACKGROUND: Spotting disease infects a variety of sea urchin species across many different marine locations. The disease is characterized by discrete lesions on the body surface composed of discolored necrotic tissue that cause the loss of all surface appendages within the lesioned area. A similar, but separate disease of sea urchins called bald sea urchin disease (BSUD) has overlapping symptoms with spotting disease, resulting in confusions in distinguishing the two diseases. Previous studies have focus on identifying the underlying causative agent of spotting disease, which has resulted in the identification of a wide array of pathogenic bacteria that vary based on location and sea urchin species. Our aim was to investigate the spotting disease infection by characterizing the microbiomes of the animal surface and various tissues. RESULTS: We collected samples of the global body surface, the lesion surface, lesioned and non-lesioned body wall, and coelomic fluid, in addition to samples from healthy sea urchins. 16S rRNA gene was amplified and sequenced from the genomic DNA. Results show that the lesions are composed mainly of Cyclobacteriaceae, Cryomorphaceae, and a few other taxa, and that the microbial composition of lesions is the same for all infected sea urchins. Spotting disease also alters the microbial composition of the non-lesioned body wall and coelomic fluid of infected sea urchins. In our closed aquarium systems, sea urchins contracted spotting disease and BSUD separately and therefore direct comparisons could be made between the microbiomes from diseased and healthy sea urchins. CONCLUSION: Results show that spotting disease and BSUD are separate diseases with distinct symptoms and distinct microbial compositions.


Asunto(s)
Microbiota , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , ARN Ribosómico 16S/genética , Erizos de Mar/genética , Bacterias/genética
4.
Am Nat ; 202(4): 571-586, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792925

RESUMEN

AbstractOrganisms experience environments that vary across both space and time. Such environmental heterogeneity shapes standing genetic variation and may influence species' capacity to adapt to rapid environmental change. However, we know little about the kind of genetic variation that is involved in local adaptation to environmental variability. To address this gap, we sequenced the whole genomes of 140 purple sea urchins (Strongylocentrotus purpuratus) from seven populations that vary in their degree of pH variability. Despite no evidence of global population structure, we found a suite of single-nucleotide polymorphisms (SNPs) tightly correlated with local pH variability (outlier SNPs), which were overrepresented in regions putatively involved in gene regulation (long noncoding RNA and enhancers), supporting the idea that variation in regulatory regions is important for local adaptation to variability. In addition, outliers in genes were found to be (i) enriched for biomineralization and ion homeostasis functions related to low pH response, (ii) less central to the protein-protein interaction network, and (iii) underrepresented among genes highly expressed during early development. Taken together, these results suggest that loci that underlie local adaptation to pH variability in purple sea urchins fall in regions with potentially low pleiotropic effects (based on analyses involving regulatory regions, network centrality, and expression time) involved in low pH response (based on functional enrichment).


Asunto(s)
Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Polimorfismo de Nucleótido Simple , Genoma , Erizos de Mar/genética
5.
Genetics ; 225(2)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37551428

RESUMEN

Transcriptional regulatory elements (TREs) are the primary nodes that control developmental gene regulatory networks. In embryo stages, larvae, and adult differentiated red spherule cells of the sea urchin Strongylocentrotus purpuratus, transcriptionally engaged TREs are detected by Precision Run-On Sequencing (PRO-seq), which maps genome-wide at base pair resolution the location of paused or elongating RNA polymerase II (Pol II). In parallel, TRE accessibility is estimated by the Assay for Transposase-Accessible Chromatin using Sequencing (ATAC-seq). Our analysis identifies surprisingly early and widespread TRE accessibility in 4-cell cleavage embryos that is not necessarily followed by concurrent or subsequent transcription. TRE transcriptional differences identified by PRO-seq provide more contrast among embryonic stages than ATAC-seq accessibility differences, in agreement with the apparent excess of accessible but inactive TREs during embryogenesis. Global TRE accessibility reaches a maximum around the 20-hour late blastula stage, which coincides with the consolidation of major embryo regionalizations and peak histone variant H2A.Z expression. A transcriptional potency model based on labile nucleosome TRE occupancy driven by DNA sequences and the prevalence of histone variants is proposed in order to explain the basal accessibility of transcriptionally inactive TREs during embryogenesis. However, our results would not reconcile well with labile nucleosome models based on simple A/T sequence enrichment. In addition, a large number of distal TREs become transcriptionally disengaged during developmental progression, in support of an early Pol II paused model for developmental gene regulation that eventually resolves in transcriptional activation or silencing. Thus, developmental potency in early embryos may be facilitated by incipient accessibility and transcriptional pause at TREs.


Asunto(s)
Histonas , Strongylocentrotus purpuratus , Animales , Histonas/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Nucleosomas , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Cromatina/genética , Erizos de Mar/genética , Erizos de Mar/metabolismo , Elementos Reguladores de la Transcripción
6.
Front Endocrinol (Lausanne) ; 14: 1195733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305042

RESUMEN

Thyroid hormones (THs) are small amino acid derived signaling molecules with broad physiological and developmental functions in animals. Specifically, their function in metamorphic development, ion regulation, angiogenesis and many others have been studied in detail in mammals and some other vertebrates. Despite extensive reports showing pharmacological responses of invertebrate species to THs, little is known about TH signaling mechanisms outside of vertebrates. Previous work in sea urchins suggests that non-genomic mechanisms are activated by TH ligands. Here we show that several THs bind to sea urchin (Strongylocentrotus purpuratus) cell membrane extracts and are displaced by ligands of RGD-binding integrins. A transcriptional analysis across sea urchin developmental stages shows activation of genomic and non-genomic pathways in response to TH exposure, suggesting that both pathways are activated by THs in sea urchin embryos and larvae. We also provide evidence associating TH regulation of gene expression with TH response elements in the genome. In ontogeny, we found more differentially expressed genes in older larvae compared to gastrula stages. In contrast to gastrula stages, the acceleration of skeletogenesis by thyroxine in older larvae is not fully inhibited by competitive ligands or inhibitors of the integrin membrane receptor pathway, suggesting that THs likely activate multiple pathways. Our data confirms a signaling function of THs in sea urchin development and suggests that both genomic and non-genomic mechanisms play a role, with genomic signaling being more prominent during later stages of larval development.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Ligandos , Regulación de la Expresión Génica , Tiroxina , Aminoácidos , Integrinas , Larva , Mamíferos
7.
Biol Reprod ; 108(6): 960-973, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36943312

RESUMEN

Sea urchins are usually gonochoristic, with all of their five gonads either testes or ovaries. Here, we report an unusual case of hermaphroditism in the purple sea urchin, Strongylocentrotus purpuratus. The hermaphrodite is self-fertile, and one of the gonads is an ovotestis; it is largely an ovary with a small segment containing fully mature sperm. Molecular analysis demonstrated that each gonad producedviable gametes, and we identified for the first time a somatic sex-specific marker in this phylum: Doublesex and mab-3 related transcription factor 1 (DMRT1). This finding also enabled us to analyze the somatic tissues of the hermaphrodite, and we found that the oral tissues (including gut) were out of register with the aboral tissues (including tube feet) enabling a genetic lineage analysis. Results from this study support a genetic basis of sex determination in sea urchins, the viability of hermaphroditism, and distinguish gonad determination from somatic tissue organization in the adult.


Asunto(s)
Trastornos del Desarrollo Sexual , Strongylocentrotus purpuratus , Animales , Femenino , Adulto , Masculino , Humanos , Semen , Erizos de Mar , Gónadas , Trastornos del Desarrollo Sexual/genética
8.
Proc Biol Sci ; 290(1993): 20221897, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36809801

RESUMEN

The recent collapse of predatory sunflower sea stars (Pycnopodia helianthoides) owing to sea star wasting disease (SSWD) is hypothesized to have contributed to proliferation of sea urchin barrens and losses of kelp forests on the North American west coast. We used experiments and a model to test whether restored Pycnopodia populations may help recover kelp forests through their consumption of nutritionally poor purple sea urchins (Strongylocentrotus purpuratus) typical of barrens. Pycnopodia consumed 0.68 S. purpuratus d-1, and our model and sensitivity analysis shows that the magnitude of recent Pycnopodia declines is consistent with urchin proliferation after modest sea urchin recruitment, and even small Pycnopodia recoveries could generally lead to lower densities of sea urchins that are consistent with kelp-urchin coexistence. Pycnopodia seem unable to chemically distinguish starved from fed urchins and indeed have higher predation rates on starved urchins owing to shorter handling times. These results highlight the importance of Pycnopodia in regulating purple sea urchin populations and maintaining healthy kelp forests through top-down control. The recovery of this important predator to densities commonly found prior to SSWD, whether through natural means or human-assisted reintroductions, may therefore be a key step in kelp forest restoration at ecologically significant scales.


Asunto(s)
Asteraceae , Helianthus , Kelp , Strongylocentrotus purpuratus , Animales , Humanos , Cadena Alimentaria , Estrellas de Mar , Conducta Predatoria , Bosques , Erizos de Mar/fisiología , Ecosistema
9.
Cells ; 12(2)2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36672206

RESUMEN

Thyroid Hormones (THs) are a class of signaling molecules produced by coupling iodine with tyrosine residues. In vertebrates, extensive data support their important role in a variety of processes such as metabolism, development and metamorphosis. On the other hand, in invertebrates, the synthesis and role of the THs have been, so far, poorly investigated, thus limiting our understanding of the function and evolution of this important animal signaling pathway. In sea urchins, for example, while several studies focused on the availability and function of external sources of iodotyrosines, preliminary evidence suggests that an endogenous TH pathway might be in place. Here, integrating available literature with an in silico analysis, various homologous genes of the vertebrate TH molecular toolkit have been identified in the sea urchin Strongylocentrotus purpuratus. They include genes involved in the synthesis (Sp-Pxdn), metabolism (Sp-Dios), transport (Sp-Ttrl, Sp-Mct7/8/10) and response (Sp-Thr, Sp-Rxr and Sp-Integrin αP) to thyroid hormones. To understand the cell type(s) involved in TH synthesis and/or response, we studied the spatial expression of the TH toolkit during urchin development. Exploiting single-cell transcriptomics data in conjunction with in situ hybridization and immunohistochemistry, we identified cell types that are potentially producing or responding to THs in the sea urchin. Finally, growing sea urchin embryos until the larva stage with and without a source of inorganic iodine, we provided evidence that iodine organification is important for larval skeleton growth.


Asunto(s)
Yodo , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Erizos de Mar , Vertebrados/genética , Larva/metabolismo , Hormonas Tiroideas/metabolismo , Yodo/metabolismo
10.
Dev Biol ; 495: 21-34, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587799

RESUMEN

Septate junctions (SJs) evolved as cell-cell junctions that regulate the paracellular barrier and integrity of epithelia in invertebrates. Multiple morphological variants of SJs exist specific to different epithelia and/or phyla but the biological significance of varied SJ morphology is unclear because the knowledge of the SJ associated proteins and their functions in non-insect invertebrates remains largely unknown. Here we report cell-specific expression of nine candidate SJ genes in the early life stages of the sea urchin Strongylocentrotus purpuratus. By use of in situ RNA hybridization and single cell RNA-seq we found that the expression of selected genes encoding putatively SJ associated transmembrane and cytoplasmic scaffold molecules was dynamically regulated during epithelial development in the embryos and larvae with different epithelia expressing different cohorts of SJ genes. We focused a functional analysis on SpMesh, a homolog of the Drosophila smooth SJ component Mesh, which was highly enriched in the endodermal epithelium of the mid- and hindgut. Functional perturbation of SpMesh by both CRISPR/Cas9 mutagenesis and vivo morpholino-mediated knockdown shows that loss of SpMesh does not disrupt the formation of the gut epithelium during gastrulation. However, loss of SpMesh resulted in a severely reduced gut-paracellular barrier as quantitated by increased permeability to 3-5 â€‹kDa FITC-dextran. Together, these studies provide a first look at the molecular SJ physiology during the development of a marine organism and suggest a shared role for Mesh-homologous proteins in forming an intestinal barrier in invertebrates. Results have implications for consideration of the traits underlying species-specific sensitivity of marine larvae to climate driven ocean change.


Asunto(s)
Proteínas de Drosophila , Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Uniones Estrechas/genética , Uniones Estrechas/metabolismo , Epitelio/metabolismo , Uniones Intercelulares/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo , Larva/genética , Larva/metabolismo
11.
Dev Comp Immunol ; 139: 104580, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36306972

RESUMEN

Toll-like receptor signaling is an evolutionarily conserved pathway to induce the expression of immune mediators in response to encounters with pathogens. MyD88 is a central adapter connecting the intracellular domain of the receptors to downstream kinases. Here, we conducted a comprehensive assessment of the MyD88 family in an echinoderm, Strongylocentrotus purpuratus. Of five SpMyD88s only two closely related proteins, SpMyD88A and SpMyD88B, are functional in mammalian cell lines as their overexpression facilitates the activation of the downstream transcription factor NF-κB. This requires the presence of the endogenous mammalian MyD88s, and domain swapping indicated that the death domains of S. purpuratus MyD88 are unable to efficiently connect to the respective domains of the vertebrate IRAK kinases. This suggests that the interaction surfaces between the signaling mediators in this conserved signaling pathway are not as conserved as previously thought but were likely shaped and evolved by pathogenic selection over evolutionary timescales.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Strongylocentrotus purpuratus/genética , Mamíferos
12.
Front Immunol ; 13: 940852, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119116

RESUMEN

The sea urchin, Strongylocentrotus purpuratus has seven described populations of distinct coelomocytes in the coelomic fluid that are defined by morphology, size, and for some types, by known functions. Of these subtypes, the large phagocytes are thought to be key to the sea urchin cellular innate immune response. The concentration of total coelomocytes in the coelomic fluid increases in response to pathogen challenge. However, there is no quantitative analysis of how the respective coelomocyte populations change over time in response to immune challenge. Accordingly, coelomocytes collected from immunoquiescent, healthy sea urchins were evaluated by flow cytometry for responses to injury and to challenge with either heat-killed Vibrio diazotrophicus, zymosan A, or artificial coelomic fluid, which served as the vehicle control. Responses to the initial injury of coelomic fluid collection or to injection of V. diazotrophicus show significant increases in the concentration of large phagocytes, small phagocytes, and red spherule cells after one day. Responses to zymosan A show decreases in the concentration of large phagocytes and increases in the concentration of small phagocytes. In contrast, responses to injections of vehicle result in decreased concentration of large phagocytes. When these changes in coelomocytes are evaluated based on proportions rather than concentration, the respective coelomocyte proportions are generally maintained in response to injection with V. diazotrophicus and vehicle. However, this is not observed in response to zymosan A and this lack of correspondence between proportions and concentrations may be an outcome of clearing these large particles by the large phagocytes. Variations in coelomocyte populations are also noted for individual sea urchins evaluated at different times for their responses to immune challenge compared to the vehicle. Together, these results demonstrate that the cell populations in sea urchin immune cell populations undergo dynamic changes in vivo in response to distinct immune stimuli and to injury and that these changes are driven by the responses of the large phagocyte populations.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Inmunidad Innata , Fagocitos , Erizos de Mar , Zimosan/farmacología
13.
Proc Biol Sci ; 289(1981): 20221249, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36043281

RESUMEN

Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and pCO2. We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus, to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and pCO2. Adults were conditioned to controlled non-upwelling (high temperature, low pCO2) or upwelling (low temperature, high pCO2) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus, emphasizing the importance of adaptive evolution and phenotypic plasticity in organismal responses to global change.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Dióxido de Carbono , Frío , Variación Genética , Larva/genética , Erizos de Mar , Strongylocentrotus purpuratus/genética
14.
Mar Pollut Bull ; 175: 113385, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35121213

RESUMEN

Plastic additives are utilized during the production of plastic to modify the attributes and stability of the polymer. As oceanic plastic waste degrades, these additives can leach, and are harmful to global marine ecosystems. Despite the high abundance of additives leached into the marine environment, little is known about their direct impact on marine zooplankton. Here we test for impacts of four plastic additives, UV-327, Irganox 1010, DEHP, and methylparaben, all commonly used in plastic manufacturing, on purple sea urchin (Strongylocentrotus purpuratus) larval growth and survival in a serial dose response for 4 days. Methylparaben, UV-327, and Irganox 1010 significantly reduced larval body length by about 5% for at least one dose. In contrast, all compounds reduced larval survival by 20-70% with strongest effects at intermediate rather than high doses. Our results highlight that plastic additives should be tested for their effects on marine organisms.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Organismos Acuáticos , Ecosistema , Larva , Plásticos/metabolismo , Strongylocentrotus purpuratus/metabolismo
15.
Elife ; 112022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35212624

RESUMEN

The gene regulatory network (GRN) that underlies echinoderm skeletogenesis is a prominent model of GRN architecture and evolution. KirrelL is an essential downstream effector gene in this network and encodes an Ig-superfamily protein required for the fusion of skeletogenic cells and the formation of the skeleton. In this study, we dissected the transcriptional control region of the kirrelL gene of the purple sea urchin, Strongylocentrotus purpuratus. Using plasmid- and bacterial artificial chromosome-based transgenic reporter assays, we identified key cis-regulatory elements (CREs) and transcription factor inputs that regulate Sp-kirrelL, including direct, positive inputs from two key transcription factors in the skeletogenic GRN, Alx1 and Ets1. We next identified kirrelL cis-regulatory regions from seven other echinoderm species that together represent all classes within the phylum. By introducing these heterologous regulatory regions into developing sea urchin embryos we provide evidence of their remarkable conservation across ~500 million years of evolution. We dissected in detail the kirrelL regulatory region of the sea star, Patiria miniata, and demonstrated that it also receives direct inputs from Alx1 and Ets1. Our findings identify kirrelL as a component of the ancestral echinoderm skeletogenic GRN. They support the view that GRN subcircuits, including specific transcription factor-CRE interactions, can remain stable over vast periods of evolutionary history. Lastly, our analysis of kirrelL establishes direct linkages between a developmental GRN and an effector gene that controls a key morphogenetic cell behavior, cell-cell fusion, providing a paradigm for extending the explanatory power of GRNs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Strongylocentrotus purpuratus , Animales , Equinodermos/genética , Redes Reguladoras de Genes , Erizos de Mar/genética , Estrellas de Mar/genética , Strongylocentrotus purpuratus/genética , Factores de Transcripción/metabolismo
16.
Dev Comp Immunol ; 130: 104352, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35065955

RESUMEN

The sea urchin, Strongylocentrotus purpuratus, possesses at least seven distinguishable cell populations in the coelomic fluid, which vary in morphology, size, and function. Of these, the large phagocytes, small phagocytes, and red spherule cells are thought to be key to the echinoid immune response. Because there are currently no effective and rapid means of evaluating sea urchin coelomocytes, we developed a flow cytometry based approach to identify these subsets from unseparated, unstained, live cells. In particular our gating strategy distinguishes between the large phagocytes, small phagocytes, red spherule cells, and a mixed population of vibratile cells and colorless spherule cells. This flow cytometry based analysis increases the speed and improves the reliability of coelomocyte analysis compared to differential cell counts by microscopy.


Asunto(s)
Strongylocentrotus purpuratus , Animales , Citometría de Flujo , Fagocitos , Reproducibilidad de los Resultados , Erizos de Mar
17.
PLoS One ; 16(12): e0261926, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34962963

RESUMEN

Gene regulatory network (GRN) inference can now take advantage of powerful machine learning algorithms to complement traditional experimental methods in building gene networks. However, the dynamical nature of embryonic development-representing the time-dependent interactions between thousands of transcription factors, signaling molecules, and effector genes-is one of the most challenging arenas for GRN prediction. In this work, we show that successful GRN predictions for a developmental network from gene expression data alone can be obtained with the Priors Enriched Absent Knowledge (PEAK) network inference algorithm. PEAK is a noise-robust method that models gene expression dynamics via ordinary differential equations and selects the best network based on information-theoretic criteria coupled with the machine learning algorithm Elastic Net. We test our GRN prediction methodology using two gene expression datasets for the purple sea urchin, Stronglyocentrotus purpuratus, and cross-check our results against existing GRN models that have been constructed and validated by over 30 years of experimental results. Our results find a remarkably high degree of sensitivity in identifying known gene interactions in the network (maximum 81.58%). We also generate novel predictions for interactions that have not yet been described, which provide a resource for researchers to use to further complete the sea urchin GRN. Published ChIPseq data and spatial co-expression analysis further support a subset of the top novel predictions. We conclude that GRN predictions that match known gene interactions can be produced using gene expression data alone from developmental time series experiments.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/genética , Algoritmos , Animales , Fenómenos Bioquímicos , Inmunoprecipitación de Cromatina , Femenino , Aprendizaje Automático , Masculino , Sensibilidad y Especificidad , Biología de Sistemas , Factores de Transcripción/genética , Transcriptoma
18.
Front Immunol ; 12: 744783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867968

RESUMEN

The generation of large immune gene families is often driven by evolutionary pressure exerted on host genomes by their pathogens, which has been described as the immunological arms race. The SpTransformer (SpTrf) gene family from the California purple sea urchin, Strongylocentrotus purpuratus, is upregulated upon immune challenge and encodes the SpTrf proteins that interact with pathogens during an immune response. Native SpTrf proteins bind both bacteria and yeast, and augment phagocytosis of a marine Vibrio, while a recombinant SpTrf protein (rSpTrf-E1) binds a subset of pathogens and a range of pathogen associated molecular patterns. In the sequenced sea urchin genome, there are four SpTrf gene clusters for a total of 17 genes. Here, we report an in-depth analysis of these genes to understand the sequence complexities of this family, its genomic structure, and to derive a putative evolutionary history for the formation of the gene clusters. We report a detailed characterization of gene structure including the intron type and UTRs with conserved transcriptional start sites, the start codon and multiple stop codons, and locations of polyadenylation signals. Phylogenetic and percent mismatch analyses of the genes and the intergenic regions allowed us to predict the last common ancestral SpTrf gene and a theoretical evolutionary history of the gene family. The appearance of the gene clusters from the theoretical ancestral gene may have been driven by multiple duplication and deletion events of regions containing SpTrf genes. Duplications and ectopic insertion events, indels, and point mutations in the exons likely resulted in the extant genes and family structure. This theoretical evolutionary history is consistent with the involvement of these genes in the arms race in responses to pathogens and suggests that the diversification of these genes and their encoded proteins have been selected for based on the survival benefits of pathogen binding and host protection.


Asunto(s)
Inmunidad Innata/genética , Inmunidad Innata/inmunología , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/inmunología , Animales , Genoma , Filogenia
19.
Elife ; 102021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34821556

RESUMEN

Identifying the molecular fingerprint of organismal cell types is key for understanding their function and evolution. Here, we use single-cell RNA sequencing (scRNA-seq) to survey the cell types of the sea urchin early pluteus larva, representing an important developmental transition from non-feeding to feeding larva. We identify 21 distinct cell clusters, representing cells of the digestive, skeletal, immune, and nervous systems. Further subclustering of these reveal a highly detailed portrait of cell diversity across the larva, including the identification of neuronal cell types. We then validate important gene regulatory networks driving sea urchin development and reveal new domains of activity within the larval body. Focusing on neurons that co-express Pdx-1 and Brn1/2/4, we identify an unprecedented number of genes shared by this population of neurons in sea urchin and vertebrate endocrine pancreatic cells. Using differential expression results from Pdx-1 knockdown experiments, we show that Pdx1 is necessary for the acquisition of the neuronal identity of these cells. We hypothesize that a network similar to the one orchestrated by Pdx1 in the sea urchin neurons was active in an ancestral cell type and then inherited by neuronal and pancreatic developmental lineages in sea urchins and vertebrates.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso/crecimiento & desarrollo , Strongylocentrotus purpuratus/crecimiento & desarrollo , Animales , Larva/genética , Larva/crecimiento & desarrollo , Fenómenos Fisiológicos del Sistema Nervioso , RNA-Seq , Análisis de la Célula Individual , Strongylocentrotus purpuratus/genética
20.
Curr Issues Mol Biol ; 43(2): 978-995, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34563039

RESUMEN

This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative abundances (20%) than the purple urchins (2%). At the genus level, Vibrio was dominant in both green (~9%) and purple (~10%) urchins, whereas Psychromonas was prevalent only in purple urchins (~24%). An enrichment of Roseobacter and Ruegeria was found in the green urchins, whereas purple urchins revealed a higher abundance of Shewanella, Photobacterium, and Bacteroides (q-value < 0.01). Analysis of key metabolic genes at the KEGG-Level-2 categories revealed genes for amino acids (~20%), nucleotides (~5%), cofactors and vitamins (~6%), energy (~5%), carbohydrates (~13%) metabolisms, and an abundance of genes for assimilatory nitrogen reduction pathway in both urchins. Overall, the results from this study revealed the differences in the microbial community and genes designated for the metabolic processes in the nutrient-rich sea urchin gut digesta, suggesting their likely importance to the host and their environment.


Asunto(s)
Bacterias/genética , Biología Computacional , Microbioma Gastrointestinal/genética , Lytechinus/microbiología , Metagenómica , Strongylocentrotus purpuratus/microbiología , Animales , Bacterias/clasificación , Bacterias/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA