Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Viruses ; 13(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34834997

RESUMEN

The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia-Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China's H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Animales , Animales Salvajes/virología , Aves/virología , Modelos Animales de Enfermedad , Perros , Patos/virología , Heces/virología , Gansos/virología , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Japón , Células de Riñón Canino Madin Darby , Mamíferos , Ratones , Epidemiología Molecular , Filogenia , Aves de Corral/virología , Virus Reordenados/aislamiento & purificación , Virus Reordenados/patogenicidad , República de Corea/epidemiología , Virulencia , Replicación Viral
2.
Sci Rep ; 11(1): 22553, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-34799568

RESUMEN

The development of visual tools for the timely identification of spatio-temporal clusters will assist in implementing control measures to prevent further damage. From January 2015 to June 2020, a total number of 1463 avian influenza outbreak farms were detected in Taiwan and further confirmed to be affected by highly pathogenic avian influenza subtype H5Nx. In this study, we adopted two common concepts of spatio-temporal clustering methods, the Knox test and scan statistics, with visual tools to explore the dynamic changes of clustering patterns. Since most (68.6%) of the outbreak farms were detected in 2015, only the data from 2015 was used in this study. The first two-stage algorithm performs the Knox test, which established a threshold of 7 days and identified 11 major clusters in the six counties of southwestern Taiwan, followed by the standard deviational ellipse (SDE) method implemented on each cluster to reveal the transmission direction. The second algorithm applies scan likelihood ratio statistics followed by AGC index to visualize the dynamic changes of the local aggregation pattern of disease clusters at the regional level. Compared to the one-stage aggregation approach, Knox-based and AGC mapping were more sensitive in small-scale spatio-temporal clustering.


Asunto(s)
Algoritmos , Crianza de Animales Domésticos , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/transmisión , Aves de Corral/virología , Agrupamiento Espacio-Temporal , Animales , Gripe Aviar/diagnóstico , Gripe Aviar/virología , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/virología , Taiwán , Factores de Tiempo
3.
Vet Microbiol ; 263: 109268, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34781191

RESUMEN

Low pathogenic avian influenza virus, H5 or H7 subtype, possesses the potential capability to change to highly pathogenic variant, which damages wild waterfowl, domestic poultry, and mammalian hosts. In regular active surveillance of avian influenza virus from wild birds in China in 2020, we isolated six H5 avian influenza viruses, including one H5N2, two H5N3, and three H5N8. Phylogenetic analysis indicated that the H5N2 and H5N3 isolates clustered into Eurasian lineage, whereas the H5N8 viruses were originated in North America. The HA proteins of six viruses carried the cleavage-site motif PQRETR↓GLF, which indicated low pathogenicity of the viruses in chickens. However, the N30D, I43M, and T215A mutations in M1 protein and the P42S, I106M, and C138F residues changed in NS1 protein, implying all viruses could exhibit increased virulence in mice. Viral replication kinetics in mammalian cells demonstrated that the three representative viruses had the ability to replicate in both MDCK cells and A549 cells with low titers. Even though two of three representatives, WS/SX/S3-620/2020(H5N3) and ML/AH/A3-770/2020(H5N8), did not replicate and transmit efficiently in poultry (chickens), they did replicate and transmit efficiently in waterfowl (ducks). Viral pathogenicity in mice indicated that both H5N2 and H5N3 viruses are able to replicate in the nasal turbinates and lungs of mice without prior adaptation, while the H5N8 virus could not. The intercontinental and cross-species transmission of viruses may continuously exist in China, thereby providing constant opportunities for virus reassortment with local resident AIVs. Thus, it is crucial to continuously monitor migration routes for AIVs by systematic surveillance.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Pollos , China , Subtipo H5N2 del Virus de la Influenza A/clasificación , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/clasificación , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Ratones , Filogenia
4.
Viruses ; 13(10)2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34696516

RESUMEN

The first detection of a Highly Pathogenic Avian Influenza (HPAI) H5N8 virus in Bulgaria dates back to December 2016. Since then, many outbreaks caused by HPAI H5 viruses from clade 2.3.4.4B have been reported in both domestic and wild birds in different regions of the country. In this study, we characterized the complete genome of sixteen H5 viruses collected in Bulgaria between 2019 and 2021. Phylogenetic analyses revealed a persistent circulation of the H5N8 strain for four consecutive years (December 2016-June 2020) and the emergence in 2020 of a novel reassortant H5N2 subtype, likely in a duck farm. Estimation of the time to the most recent common ancestor indicates that this reassortment event may have occurred between May 2019 and January 2020. At the beginning of 2021, Bulgaria experienced a new virus introduction in the poultry sector, namely a HPAI H5N8 that had been circulating in Europe since October 2020. The periodical identification in domestic birds of H5 viruses related to the 2016 epidemic as well as a reassortant strain might indicate undetected circulation of the virus in resident wild birds or in the poultry sector. To avoid the concealed circulation and evolution of viruses, and the risk of emergence of strains with pandemic potential, the implementation of control measures is of utmost importance, particularly in duck farms where birds display no clinical signs.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Animales , Animales Salvajes/virología , Aves/virología , Bulgaria/epidemiología , Brotes de Enfermedades/veterinaria , Patos/virología , Historia del Siglo XXI , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/patogenicidad , Gripe Aviar/historia , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología
5.
Viruses ; 13(10)2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34696517

RESUMEN

Influenza viruses represent a continuous threat to both animal and human health. The 2009 H1N1 A influenza pandemic highlighted the importance of a swine host in the adaptation of influenza viruses to humans. Nowadays, one of the most extended strategies used to control swine influenza viruses (SIVs) is the trivalent vaccine application, whose formulation contains the most frequently circulating SIV subtypes H1N1, H1N2, and H3N2. These vaccines do not provide full protection against the virus, allowing its replication, evolution, and adaptation. To better understand the main mechanisms that shape viral evolution, here, the SIV intra-host diversity was analyzed in samples collected from both vaccinated and nonvaccinated animals challenged with the H1N1 influenza A virus. Twenty-eight whole SIV genomes were obtained by next-generation sequencing, and differences in nucleotide variants between groups were established. Substitutions were allocated along all influenza genetic segments, while the most relevant nonsynonymous substitutions were allocated in the NS1 protein on samples collected from vaccinated animals, suggesting that SIV is continuously evolving despite vaccine application. Moreover, new viral variants were found in both vaccinated and nonvaccinated pigs, showing relevant substitutions in the HA, NA, and NP proteins, which may increase viral fitness under field conditions.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/epidemiología , Animales , Brotes de Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Filogenia , Porcinos/virología , Enfermedades de los Porcinos/virología
6.
Prev Vet Med ; 196: 105474, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34564052

RESUMEN

High pathogenicity avian influenza (HPAI) has become a major focus point worldwide due to its zoonotic potential and economic effects resulting from trade restrictions and high mortality rates in poultry. Key ostrich producing provinces of South Africa have experienced three H5N2 HPAI outbreaks (2004, 2006 and 2011) and one H5N8 HPAI (2017) outbreak over the past two decades. The Klein Karoo region in the Western Cape Province, a province with a largely Mediterranean climate, is the predominant ostrich producing region in the country. Understanding the epidemiology of HPAI in ostrich producing areas is an essential first step in developing effective and efficient control measures. This study investigated the spatiotemporal patterns associated with the 2011 (H5N2) and 2017 (H5N8) HPAI outbreaks in the key ostrich producing areas of South Africa. Six hundred and nine and 340 active ostrich farms/holdings were subjected to surveillance during 2011 and 2017 respectively, with over 70 % of these farms located within five local municipalities of the study area. Forty-two and fifty-one farms were affected in the 2011 and 2017 outbreaks respectively. Both HPAI outbreaks occurred predominantly in areas of high ostrich farm density. However, the temporal occurrence, spatial and directional distributions of the outbreaks were different. The 2011 outbreak occurred earlier in the South African autumn months with a predominantly contiguous and stationary distribution, whilst the 2017 outbreak onset was during the winter with a more expansive multidirectional spatial distribution. Results suggest potential dissimilarities in the important risk factors for introduction and possible mode of spread. The 2011 outbreak pattern resembled an outbreak characterised by point introductions with the risk of introduction possibly being linked to high ostrich farm density and common management and husbandry practices in the ostrich industry. In contrast, the 2017 outbreak appeared to have a more propagating mode of transmission. The findings highlight epidemiological features of HPAI outbreak occurrence within ostrich populations that could be used to inform surveillance and control measures including targeted surveillance within high-risk spatial clusters. The study emphasizes the importance of both; implementation of a multi-pronged approach to HPAI control and the need for constant evaluation of the interaction of the host, environment and agent with each outbreak, in order to strengthen disease control.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Struthioniformes , Animales , Brotes de Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Sudáfrica/epidemiología , Análisis Espacio-Temporal , Struthioniformes/virología , Virulencia
7.
BMC Vet Res ; 16(1): 351, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32967673

RESUMEN

BACKGROUND: Aquatic waterfowl, particularly those in the order Anseriformes and Charadriiformes, are the ecological reservoir of avian influenza viruses (AIVs). Dabbling ducks play a recognized role in the maintenance and transmission of AIVs. Furthermore, the pathogenesis of highly pathogenic AIV (HPAIV) in dabbling ducks is well characterized. In contrast, the role of diving ducks in HPAIV maintenance and transmission remains unclear. In this study, the pathogenesis of a North American A/Goose/1/Guangdong/96-lineage clade 2.3.4.4 group A H5N2 HPAIV, A/Northern pintail/Washington/40964/2014, in diving sea ducks (surf scoters, Melanitta perspicillata) was characterized. RESULTS: Intrachoanal inoculation of surf scoters with A/Northern pintail/Washington/40964/2014 (H5N2) HPAIV induced mild transient clinical disease whilst concomitantly shedding high virus titers for up to 10 days post-inoculation (dpi), particularly from the oropharyngeal route. Virus shedding, albeit at low levels, continued to be detected up to 14 dpi. Two aged ducks that succumbed to HPAIV infection had pathological evidence for co-infection with duck enteritis virus, which was confirmed by molecular approaches. Abundant HPAIV antigen was observed in visceral and central nervous system organs and was associated with histopathological lesions. CONCLUSIONS: Collectively, surf scoters, are susceptible to HPAIV infection and excrete high titers of HPAIV from the respiratory and cloacal tracts whilst being asymptomatic. The susceptibility of diving sea ducks to H5 HPAIV highlights the need for additional research and surveillance to further understand the contribution of diving ducks to HPAIV ecology.


Asunto(s)
Patos , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Antígenos Virales , Coinfección/veterinaria , Coinfección/virología , Femenino , Infecciones por Herpesviridae/veterinaria , Gripe Aviar/patología , Masculino , Mardivirus/aislamiento & purificación , Esparcimiento de Virus
8.
Virology ; 550: 8-20, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32861143

RESUMEN

Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H5N2 del Virus de la Influenza A/metabolismo , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Tropismo Viral/genética , Animales , Animales Domésticos/virología , Animales Salvajes/virología , Bolsa de Fabricio/metabolismo , Bolsa de Fabricio/virología , Cloaca/metabolismo , Cloaca/virología , Patos/virología , Águilas/virología , Expresión Génica , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Pulmón/metabolismo , Pulmón/virología , Aves de Corral/virología , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Virulencia
9.
BMC Bioinformatics ; 21(1): 316, 2020 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-32682392

RESUMEN

BACKGROUND: The pandemic threat of influenza has attracted great attention worldwide. To assist public health decision-makers, new suites of tools are needed to rapidly process and combine viral information retrieved from public-domain databases for a better risk assessment. RESULTS: Using our recently developed FluConvert and IniFlu software, we automatically processed and rearranged sequence data by standard viral nomenclature, determined the group-related consensus sequences, and identified group-specific polygenic signatures. The software possesses powerful ability to integrate viral, clinical, and epidemiological data. We demonstrated that both multiple basic amino acids at the cleavage site of the HA gene and also at least 11 more evidence-based viral amino acid substitutions present in global highly pathogenic avian influenza H5N2 viruses during the years 2009-2016 that are associated with viral virulence and human infection. CONCLUSIONS: FluConvert and IniFlu are useful to monitor and assess all subtypes of influenza viruses with pandemic potential. These programs are implemented through command-line and user-friendly graphical interfaces, and identify molecular signatures with virological, epidemiological and clinical significance. FluConvert and IniFlu are available at https://apps.flutures.com or https://github.com/chinrur/FluConvert_IniFlu.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Interfaz Usuario-Computador , Secuencia de Aminoácidos , Animales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Medición de Riesgo , Alineación de Secuencia , Virulencia
10.
Sci Rep ; 10(1): 12700, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728042

RESUMEN

Highly pathogenic avian influenza (HPAI) H5 viruses, of the A/goose/Guangdong/1/1996 lineage, have exhibited substantial geographic spread worldwide since the first detection of H5N1 virus in 1996. Accumulation of mutations in the HA gene has resulted in several phylogenetic clades, while reassortment with other avian influenza viruses has led to the emergence of new virus subtypes (H5Nx), notably H5N2, H5N6, and H5N8. H5Nx viruses represent a threat to both the poultry industry and human health and can cause lethal human disease following virus exposure. Here, HPAI H5N6 and H5N2 viruses (isolated between 2014 and 2017) of the 2.3.4.4 clade were assessed for their capacity to replicate in human respiratory tract cells, and to cause disease and transmit in the ferret model. All H5N6 viruses possessed increased virulence in ferrets compared to the H5N2 virus; however, pathogenicity profiles varied among the H5N6 viruses tested, from mild infection with sporadic virus dissemination beyond the respiratory tract, to severe disease with fatal outcome. Limited transmission between co-housed ferrets was observed with the H5N6 viruses but not with the H5N2 virus. In vitro evaluation of H5Nx virus replication in Calu-3 cells and the identification of mammalian adaptation markers in key genes associated with pathogenesis supports these findings.


Asunto(s)
Hurones/virología , Virus de la Influenza A/patogenicidad , Gripe Humana/transmisión , Infecciones por Orthomyxoviridae/transmisión , Animales , Línea Celular , Modelos Animales de Enfermedad , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/fisiología , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Mutación , Filogenia , Replicación Viral
11.
Infect Genet Evol ; 84: 104375, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32454245

RESUMEN

Highly pathogenic (HP) H5N1, clade 2.2.1, and low pathogenic avian influenza (LPAI) H9N2 viruses, G1-B lineage, are endemic in poultry in Egypt and have co-circulated for almost a decade. Surprisingly, no inter-subtypic reassortment events have been reported from the field during that time. After the introduction of HPAIV H5N8, clade 2.3.4.4b, in Egyptian poultry in 2016, suddenly HP H5N2 reassortants with H9N2 viruses emerged. The current analyses focussed on studying 32 duck flocks, 4 broiler chicken flocks, and 1 turkey flock, suffering from respiratory manifestations with moderate to high mortality reared in two Egyptian governorates during 2019. Real-time RT-PCR substantiated the presence of HP H5N8 in 21 of the 37 investigated flocks with mixed infection of H9N2 in two of them. HP H5N1 was not detected. Full hemagglutinin (HA) sequencing of 10 samples with full-genome sequencing of three of them revealed presence of a single genotype. Very few substituting mutations in the HA protein were detected versus previous Egyptian HA sequences of that clade. Interestingly, amino acid substitutions in the Matrix (M2) and the Neuraminidase (NA) proteins associated with conferring both Amantadine and Oseltamivir resistance were present. Systematic reassortment analysis of all publicly available Egyptian whole genome sequences of HP H5N8 (n = 23), reassortant HP H5N2 (n = 2) and LP H9N2 (n = 53) viruses revealed presence of at least seven different genotypes of HPAI H5Nx viruses of clade 2.3.4.4b in Egypt since 2016. For H9N2 viruses, at least three genotypes were distinguishable. Heat mapping and tanglegram analyses suggested that several internal gene segments in both HP H5Nx and H9N2 viruses originated from avian influenza viruses circulating in wild bird species in Egypt. Based on the limited set of whole genome sequences available, annual replacement patterns of HP H5Nx genotypes emerged and suggested selective advantages of certain genotypes since 2016.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/virología , Filogenia , Animales , Egipto/epidemiología , Genoma Viral , Genotipo , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/mortalidad , Mortalidad , Aves de Corral/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/mortalidad , Enfermedades de las Aves de Corral/virología
12.
Emerg Infect Dis ; 26(1): 129-133, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855539

RESUMEN

We detected a novel reassortant highly pathogenic avian influenza A(H5N2) virus in 3 poultry farms in Egypt. The virus carried genome segments of a pigeon H9N2 influenza virus detected in 2014, a nucleoprotein segment of contemporary chicken H9N2 viruses from Egypt, and hemagglutinin derived from the 2.3.4.4b H5N8 virus clade.


Asunto(s)
Pollos/virología , Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Virus Reordenados , Animales , Patos/virología , Egipto/epidemiología , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Filogenia , Enfermedades de las Aves de Corral/epidemiología , Virus Reordenados/genética
13.
Vet Microbiol ; 231: 183-190, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30955808

RESUMEN

Highly pathogenic avian influenza (HPAI) is a viral disease with devastating consequences to the poultry industry as it results in high morbidity, mortality and international trade restrictions. In the present study, we characterized age-related differences in terms of pathology in commercial white broad breasted turkeys inoculated with A/turkey/Minnesota/12582/2015 (H5N2) HPAIV clade 2.3.4.4A, a virus from the largest HPAI poultry outbreak that affected the Unites States in 2014-2015. Turkeys infected at 6-weeks of age showed inapparent to little clinical signs with rapid disease progression, reaching 100% mortality at 3 days post infection (dpi). In contrast, turkeys infected at 16-weeks of age developed ataxia and lethargy and reached 100% mortality by 5 dpi. Infection in the 6-weeks old turkeys resulted in peracute lesions consistent of extensive hemorrhages, edema and necrosis, but inflammation was not prominent. In the 16-weeks old turkeys, necrosis and hemorrhages in tissues were accompanied by a more prominent subacute inflammatory infiltrate. Both age groups showed presence of avian influenza virus (AIV) nucleoprotein (NP) in multiple cell types including neurons, glial cells, ependymal cells, respiratory epithelial cells, air capillary epithelium and pulmonary macrophages, cardiac myocytes, smooth muscle fibers, pancreatic acini and ductal cells. Cells of the vascular walls stained strongly positive for viral antigens, but no positivity was found in the endothelial cells of any organs. These findings indicate that age is a determinant factor in the progression of the disease and delay of mortality during infection with the H5N2 clade 2.3.4.4A HPAI virus in naïve white broad breasted turkeys.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Pavos/virología , Factores de Edad , Animales , Brotes de Enfermedades , Inmunohistoquímica , Gripe Aviar/mortalidad , Gripe Aviar/patología , Enfermedades de las Aves de Corral/mortalidad , Enfermedades de las Aves de Corral/patología , Esparcimiento de Virus
14.
Transbound Emerg Dis ; 66(3): 1301-1305, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30740920

RESUMEN

European starlings (Sturnus vulgaris), house sparrows (Passer domesticus) and rock pigeons (Columba livia) are all wild birds commonly found in large numbers in and around human dwellings and domestic livestock operations. This study evaluated the susceptibility of these species to three strains of highly pathogenic avian influenza virus (HP AIV) clade 2.3.4.4 isolated in the U.S.. Experimental infection of European starlings and rock pigeons did not result in any overt signs attributable to AIV infection and no virus shedding was detected from the oral and cloacal routes. House sparrows shed by the oral route and exhibited limited mortality. Individuals from all three species seroconverted following infection. These data suggest that none of these birds are a likely potential bridge host for future HP AIV outbreaks but that their seroconversion may be a useful surveillance tool for detection of circulating H5 HP AIV.


Asunto(s)
Brotes de Enfermedades/veterinaria , Reservorios de Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , Animales Salvajes , Aves , Columbidae , Reservorios de Enfermedades/virología , Humanos , Subtipo H5N2 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/inmunología , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Seroconversión , Gorriones , Estorninos , Estados Unidos/epidemiología , Esparcimiento de Virus
15.
Vet Microbiol ; 224: 8-16, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30269795

RESUMEN

Two reassortant H5N2 viruses in which hemagglutinin (HA) was clustered into clade 2.3.4.4, were isolated from apparently healthy waterfowl in live poultry markets in Eastern China in 2016. We used specific pathogen-free chickens, mallard ducks, and BALB/c mice to evaluate the isolates' biological characteristics in different animal models. The newly isolated reassortant H5N2 viruses were able to cause severe disease in chickens and effective contact transmission, only at high doses. Our pathogenicity studies in ducks yielded an interesting result: the intravenous pathogenicity index (IVPI) indicated that isolate A/goose/Eastern China/1106/2016(1106) was low pathogenic and the other isolate A/duck/Eastern China/YD1516/2016(YD1516) was of highly pathogenicity in ducks. However, our 50% duck lethal dose (DLD50) experiment demonstrated that these viruses were all of low pathogenicity (DLD50 > 107.0 EID50) in ducks. Additionally, despite the fact that reassortant H5N2 were of low pathogenicity in mice, they could bind to both avian-type (SAα-2,3 Gal) and human-type (SAα-2,6 Gal) receptors, suggesting that these isolates still present a high risk for human infection. Therefore, it is of great importance to implement continual surveillance of avian influenza virus (AIV) to protect both veterinary and public health.


Asunto(s)
Pollos/virología , Patos/virología , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/genética , Animales , China/epidemiología , Femenino , Genoma Viral , Hemaglutininas/genética , Humanos , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/transmisión , Ratones , Ratones Endogámicos BALB C , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Acoplamiento Viral
16.
PLoS One ; 13(9): e0204262, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30240402

RESUMEN

The spatial spread of highly pathogenic avian influenza (HPAI) H5N2 during the 2015 outbreak in the U.S. state of Minnesota was analyzed through the estimation of a spatial transmission kernel, which quantifies the infection hazard an infectious premises poses to an uninfected premises some given distance away. Parameters were estimated using a maximum likelihood method for the entire outbreak as well as for two phases defined by the daily number of newly detected HPAI-positive premises. The results indicate both a strong dependence of the likelihood of transmission on distance and a significant distance-independent component of outbreak spread for the overall outbreak. The results further suggest that HPAI spread differed during the later phase of the outbreak. The estimated spatial transmission kernel was used to compare the Minnesota outbreak with previous HPAI outbreaks in the Netherlands and Italy to contextualize the Minnesota transmission kernel results and make additional inferences about HPAI transmission during the Minnesota outbreak. Lastly, the spatial transmission kernel was used to identify high risk areas for HPAI spread in Minnesota. Risk maps were also used to evaluate the potential impact of an early marketing strategy implemented by poultry producers in a county in Minnesota during the outbreak, with results providing evidence that the strategy was successful in reducing the potential for HPAI spread.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Animales , Brotes de Enfermedades , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Funciones de Verosimilitud , Minnesota/epidemiología , Modelos Teóricos , Aves de Corral
17.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045988

RESUMEN

Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations.IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production.


Asunto(s)
Genotipo , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar , Enfermedades de las Aves de Corral , Aves de Corral/virología , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Gripe Aviar/genética , América del Norte/epidemiología , Filogeografía , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/genética
18.
Vet Microbiol ; 220: 57-66, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29885802

RESUMEN

The most commonly utilized inactivated influenza vaccines (IIVs) are usually deficient in cross immunity against divergent viruses. On the other hand, live attenuated influenza vaccines (LAIVs) are proved to be more effective in cross-protective immunity. We previously developed a H9N2 LAIV and verified its effective protection against a broad spectrum of H9N2 strains. In the present study, we evaluated its cross-immunity against H5N2 virus, a representative subtype of currently predominant H5 highly pathogenic avian influenza viruses. All chickens vaccinated with this LAIV survived from challenge of H5N2 virus in a lethal dose, and viral proliferation was effectively inhibited, as well as pathological lesions. Vaccination of this LAIV significantly activated H5N2-reactive CD4+ and CD8+ T cells in lungs. These LAIV-activated cross-reactive T cells expanded robustly following H5N2 exposure, and the increasing tendency was temporally correlated with viral clearance. Besides cellular immunity, factors of humoral immunity also play a contributing role in cross-immunity. Passively transferring H9N2 LAIV anti-serum resulted in 100% survival rate to chickens against H5N2 virus. Within components of the anti-serum, cross-binding IgGs against nucleoprotein (NP) of H5N2 virus were found of a contributing role in the cross immunity. These results indicate that this H9N2 LAIV represents a promising strategy for controlling highly pathogenic H5N2 virus in chickens. The cross immunity was partly attributed to LAIV activated H5N2-cross-reactive T cells and partly attributed to cross-binding IgGs against NP.


Asunto(s)
Protección Cruzada/inmunología , Subtipo H5N2 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Pollos , Inmunidad Celular , Inmunidad Humoral , Inmunización Pasiva , Inmunoglobulina G/sangre , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/inmunología , Gripe Aviar/prevención & control , Gripe Aviar/virología , Vacunación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
19.
Biosens Bioelectron ; 112: 209-215, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29709831

RESUMEN

Rapid and sensitive on-site detection of avian influenza virus (AIV) is the key for achieving near real-time surveillance of AIV and reducing the risk of dissemination. However, unlike the laboratory-prepared transparent buffer solutions containing a single type of influenza virus, distinction between real- and false- positive outputs and detection of low concentrations of AIV in stool specimens or cloacal swabs are difficult. Here, we developed a rapid and background-free lateral flow immunoassay (LFA) platform that utilizes near-infrared (NIR)-to-NIR upconversion nanoparticles (UCNPs) to yield a sensor that detects AIV nucleoproteins (NPs) from clinical samples within 20 min. Ca2+ as a heterogeneous dopant ion in the shell enhanced the NIR-to-NIR upconversion photoluminescence (PL) emission without inducing significant changes in the morphology of the UCNPs. In a mixture of opaque stool samples and gold nanoparticles (GNPs), which are components of commercial AIV LFA, the background signal of the stool samples masked the absorption peak of GNPs. However, UCNPs dispersed in the stool samples still show strong emission centered at 800 nm when excited at 980 nm, which enables the NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay (NNLFA) platform to detect 10-times lower viral load than a commercial GNP-based AIV LFA. The detection limit of NNLFA for LPAI H5N2 and HPAI H5N6 viruses was 102 and 103.5 EID50/mL, respectively. Moreover, the viruses were successfully detected within dark brown-colored samples using the NNLFA but not the commercial AIV LFA. Therefore, the rapid and background-free NNLFA platform can be used for sensitive on-site detection of AIV.


Asunto(s)
Técnicas Biosensibles , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/diagnóstico , Animales , Anticuerpos Antivirales/química , Pollos/virología , Inmunoensayo/métodos , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Límite de Detección , Nanopartículas del Metal/química , Espectroscopía Infrarroja Corta
20.
Infect Genet Evol ; 61: 208-214, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29649578

RESUMEN

From November 2015 to August 2016, 81 outbreaks of highly pathogenic (HP) H5 avian influenza virus were detected in poultry farms from South-Western France. These viruses were mainly detected in farms raising waterfowl, but also in chicken or guinea fowl flocks, and did not induce severe signs in waterfowl although they did meet the HP criteria. Three different types of neuraminidases (N1, N2 and N9) were associated with the HP H5 gene. Full genomes sequences of 24 H5HP and 6 LP viruses that circulated in the same period were obtained by next generation sequencing, from direct field samples or after virus isolation in SPF embryonated eggs. Phylogenetic analyses of the eight viral segments confirmed that they were all related to the avian Eurasian lineage. In addition, analyses of the "Time of the Most Recent Common Ancestor" showed that the common ancestor of the H5HP sequences from South-Western France could date back to early 2014 (±1 year). This pre-dated the first detection of H5 HP in poultry farms and was consistent with a silent circulation of these viruses for several months. Finally, the phylogenetic study of the different segments showed that several phylogenetic groups could be established. Twelve genotypes of H5HP were detected implying that at least eleven reassortment events did occur after the H5HP cleavage site emerged. This indicates that a large number of co-infections with both highly pathogenic H5 and other avian influenza viruses must have occurred, a finding that lends further support to prolonged silent circulation.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar/virología , Virus Reordenados , Animales , Francia , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Neuraminidasa/genética , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/virología , Virus Reordenados/genética , Virus Reordenados/patogenicidad , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA