Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Vet Res ; 55(1): 86, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970119

RESUMEN

H7N9 subtype avian influenza viruses (AIVs) cause 1567 human infections and have high mortality, posing a significant threat to public health. Previously, we reported that two avian-derived H7N9 isolates (A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013) exhibit different pathogenicities in mice. To understand the genetic basis for the differences in virulence, we constructed a series of mutant viruses based on reverse genetics. We found that the PB2-E627K mutation alone was not sufficient to increase the virulence of H7N9 in mice, despite its ability to enhance polymerase activity in mammalian cells. However, combinations with PB1-V719M and/or PA-N444D mutations significantly enhanced H7N9 virulence. Additionally, these combined mutations augmented polymerase activity, thereby intensifying virus replication, inflammatory cytokine expression, and lung injury, ultimately increasing pathogenicity in mice. Overall, this study revealed that virulence in H7N9 is a polygenic trait and identified novel virulence-related residues (PB2-627K combined with PB1-719M and/or PA-444D) in viral ribonucleoprotein (vRNP) complexes. These findings provide new insights into the molecular mechanisms underlying AIV pathogenesis in mammals, with implications for pandemic preparedness and intervention strategies.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Mutación , Infecciones por Orthomyxoviridae , Proteínas Virales , Animales , Ratones , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/virología , Infecciones por Orthomyxoviridae/veterinaria , Virulencia , Femenino , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ratones Endogámicos BALB C , Replicación Viral
2.
J Gen Virol ; 105(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980150

RESUMEN

Between 2013 and 2017, the A/Anhui/1/13-lineage (H7N9) low-pathogenicity avian influenza virus (LPAIV) was epizootic in chickens in China, causing mild disease, with 616 fatal human cases. Despite poultry vaccination, H7N9 has not been eradicated. Previously, we demonstrated increased pathogenesis in turkeys infected with H7N9, correlating with the emergence of the L217Q (L226Q H3 numbering) polymorphism in the haemagglutinin (HA) protein. A Q217-containing virus also arose and is now dominant in China following vaccination. We compared infection and transmission of this Q217-containing 'turkey-adapted' (ty-ad) isolate alongside the H7N9 (L217) wild-type (wt) virus in different poultry species and investigated the zoonotic potential in the ferret model. Both wt and ty-ad viruses demonstrated similar shedding and transmission in turkeys and chickens. However, the ty-ad virus was significantly more pathogenic than the wt virus in turkeys but not in chickens, causing 100 and 33% mortality in turkeys respectively. Expanded tissue tropism was seen for the ty-ad virus in turkeys but not in chickens, yet the viral cell receptor distribution was broadly similar in the visceral organs of both species. The ty-ad virus required exogenous trypsin for in vitro replication yet had increased replication in primary avian cells. Replication was comparable in mammalian cells, and the ty-ad virus replicated successfully in ferrets. The L217Q polymorphism also affected antigenicity. Therefore, H7N9 infection in turkeys can generate novel variants with increased risk through altered pathogenicity and potential HA antigenic escape. These findings emphasize the requirement for enhanced surveillance and understanding of A/Anhui/1/13-lineage viruses and their risk to different species.


Asunto(s)
Pollos , Hurones , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Pavos , Animales , Pavos/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Pollos/virología , Virulencia , China/epidemiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Esparcimiento de Virus , Replicación Viral , Zoonosis/virología , Gripe Humana/virología , Gripe Humana/transmisión
3.
Virology ; 597: 110121, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917688

RESUMEN

The H7 subtype avian influenza viruses are circulating widely worldwide, causing significant economic losses to the poultry industry and posing a serious threat to human health. In 2019, H7N2 and H7N9 co-circulated in Chinese poultry, yet the risk of H7N2 remained unclear. We isolated and sequenced four H7N2 viruses from chickens, revealing them as novel reassortants with H7N9-derived HA, M, NS genes and H9N2-derived PB2, PB1, PA,NP, NA genes. To further explore the key segment of pathogenicity, H7N2-H7N9NA and H7N2-H9N2HA single-substitution were constructed. Pathogenicity study showed H7N2 isolates to be highly pathogenic in chickens, with H7N2-H7N9NA slightly weaker than H7N2-Wild type. Transcriptomic analysis suggested that H7N9-derived HA genes primarily drove the high pathogenicity of H7N2 isolates, eliciting a strong inflammatory response. These findings underscored the increased threat posed by reassorted H7N2 viruses to chickens, emphasizing the necessity of long-term monitoring of H7 subtype avian influenza viruses.


Asunto(s)
Pollos , Subtipo H7N2 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Gripe Aviar , Virus Reordenados , Animales , Pollos/virología , Gripe Aviar/virología , Gripe Aviar/transmisión , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Virus Reordenados/patogenicidad , Virus Reordenados/genética , Subtipo H7N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N2 del Virus de la Influenza A/genética , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/transmisión , Virulencia , Filogenia , Subtipo H9N2 del Virus de la Influenza A/genética , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/fisiología , China
4.
Emerg Microbes Infect ; 13(1): 2373314, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38922326

RESUMEN

The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.


Asunto(s)
Antivirales , Subtipo H7N9 del Virus de la Influenza A , Neuraminidasa , Infecciones por Orthomyxoviridae , Oseltamivir , Replicación Viral , Animales , Oseltamivir/farmacología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/efectos de los fármacos , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Neuraminidasa/genética , Neuraminidasa/metabolismo , Perros , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , Humanos , Ratones , Infecciones por Orthomyxoviridae/virología , Células de Riñón Canino Madin Darby , Células A549 , Ratones Endogámicos C57BL , Farmacorresistencia Viral/genética , Sustitución de Aminoácidos , Gripe Humana/virología , Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Femenino , Proteínas Virales/genética , Proteínas Virales/metabolismo
5.
J Med Virol ; 96(6): e29687, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783821

RESUMEN

Pregnancy heightens susceptibility to influenza A virus (IAV) infection, thereby increasing the risk of severe pneumonia and maternal mortality. It also raises the chances of adverse outcomes in offspring, such as fetal growth restriction, preterm birth, miscarriage, and stillbirth in offsprings. However, the underlying mechanisms behind these effects remain largely unknown. Syncytiotrophoblast cells, crucial in forming the placental barrier, nutrient exchange and hormone secretion, have not been extensively studied for their responses to IAV. In our experiment, we used Forskolin-treated BeWo cells to mimic syncytiotrophoblast cells in vitro, and infected them with H1N1, H5N1 and H7N9 virus stains. Our results showed that syncytiotrophoblast cells, with their higher intensity of sialic acid receptors, strongly support IAV infection and replication. Notably, high-dose viral infection and prolonged exposure resulted in a significant decrease in fusion index, as well as gene and protein expression levels associated with trophoblast differentiation, ß-human chorionic gonadotropin secretion, estrogen and progesterone biosynthesis, and nutrient transport. In pregnant BALB/c mice infected with the H1N1 virus, we observed significant decreases in trophoblast differentiation and hormone secretion gene expression levels. IAV infection also resulted in preterm labor, fetal growth restriction, and increased maternal and fetal morbidity and mortality. Our findings indicate that IAV infection in syncytiotrophoblastic cells can result in adverse pregnancy outcomes by altering trophoblast differentiation, suppressing of ß-hCG secretion, and disrupting placental barrier function.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae , Resultado del Embarazo , Trofoblastos , Femenino , Trofoblastos/virología , Embarazo , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Ratones , Infecciones por Orthomyxoviridae/virología , Gripe Humana/virología , Línea Celular , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Complicaciones Infecciosas del Embarazo/virología , Placenta/virología , Replicación Viral
6.
Emerg Microbes Infect ; 13(1): 2343912, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38629574

RESUMEN

Human infections with the H7N9 influenza virus have been eliminated in China through vaccination of poultry; however, the H7N9 virus has not yet been eradicated from poultry. Carefully analysis of H7N9 viruses in poultry that have sub-optimal immunity may provide a unique opportunity to witness the evolution of highly pathogenic avian influenza virus in the context of vaccination. Between January 2020 and June 2023, we isolated 16 H7N9 viruses from samples we collected during surveillance and samples that were sent to us for disease diagnosis. Genetic analysis indicated that these viruses belonged to a single genotype previously detected in poultry. Antigenic analysis indicated that 12 of the 16 viruses were antigenically close to the H7-Re4 vaccine virus that has been used since January 2022, and the other four viruses showed reduced reactivity with the vaccine. Animal studies indicated that all 16 viruses were nonlethal in mice, and four of six viruses showed reduced virulence in chickens upon intranasally inoculation. Importantly, the H7N9 viruses detected in this study exclusively bound to the avian-type receptors, having lost the capacity to bind to human-type receptors. Our study shows that vaccination slows the evolution of H7N9 virus by preventing its reassortment with other viruses and eliminates a harmful characteristic of H7N9 virus, namely its ability to bind to human-type receptors.


Asunto(s)
Pollos , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Vacunación , Animales , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Pollos/virología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/administración & dosificación , Gripe Aviar/virología , Gripe Aviar/prevención & control , Gripe Aviar/inmunología , Ratones , Humanos , China , Evolución Molecular , Gripe Humana/prevención & control , Gripe Humana/virología , Gripe Humana/inmunología , Ratones Endogámicos BALB C , Virulencia , Filogenia , Femenino , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/prevención & control , Aves de Corral/virología
7.
J Virol ; 98(3): e0194423, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421166

RESUMEN

Since the first human infection reported in 2013, H7N9 avian influenza virus (AIV) has been regarded as a serious threat to human health. In this study, we sought to identify the virulence determinant of the H7N9 virus in mammalian hosts. By comparing the virulence of the SH/4664 H7N9 virus, a non-virulent H9N2 virus, and various H7N9-H9N2 hybrid viruses in infected mice, we first pinpointed PB2 as the primary viral factor accounting for the difference between H7N9 and H9N2 in mammalian virulence. We further analyzed the in vivo effects of individually mutating H7N9 PB2 residues different from the closely related H9N2 virus and consequently found residue 473, alongside the well-known residue 627, to be critical for the virulence of the H7N9 virus in mice and the activity of its reconstituted viral polymerase in mammalian cells. The importance of PB2-473 was further strengthened by studying reverse H7N9 substitutions in the H9N2 background. Finally, we surprisingly found that species-specific usage of ANP32A, a family member of host factors connecting with the PB2-627 polymorphism, mediates the contribution of PB2 473 residue to the mammalian adaption of AIV polymerase, as the attenuating effect of PB2 M473T on the viral polymerase activity and viral growth of the H7N9 virus could be efficiently complemented by co-expression of chicken ANP32A but not mouse ANP32A and ANP32B. Together, our studies uncovered the PB2 473 residue as a novel viral host range determinant of AIVs via species-specific co-opting of the ANP32 host factor to support viral polymerase activity.IMPORTANCEThe H7N9 avian influenza virus has been considered to have the potential to cause the next pandemic since the first case of human infection reported in 2013. In this study, we identified PB2 residue 473 as a new determinant of mouse virulence and mammalian adaptation of the viral polymerase of the H7N9 virus and its non-pathogenic H9N2 counterparts. We further demonstrated that the variation in PB2-473 is functionally linked to differential co-opting of the host ANP32A protein in supporting viral polymerase activity, which is analogous to the well-known PB2-627 polymorphism, albeit the two PB2 positions are spatially distant. By providing new mechanistic insight into the PB2-mediated host range determination of influenza A viruses, our study implicated the potential existence of multiple PB2-ANP32 interfaces that could be targets for developing new antivirals against the H7N9 virus as well as other mammalian-adapted influenza viruses.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Proteínas Nucleares , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Subtipo H7N9 del Virus de la Influenza A/metabolismo , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A , Gripe Humana/virología , Mamíferos , Proteínas Nucleares/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Virulencia , Replicación Viral
8.
Viruses ; 13(11)2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34835080

RESUMEN

Zoonotic infection with avian influenza viruses (AIVs) of subtype H7, such as H7N9 and H7N4, has raised concerns worldwide. During the winter of 2020-2021, five novel H7 low pathogenic AIVs (LPAIVs) containing different neuraminidase (NA) subtypes, including two H7N3, an H7N8, and two H7N9, were detected in wild bird feces in South Korea. Complete genome sequencing and phylogenetic analysis showed that the novel H7Nx AIVs were reassortants containing two gene segments (hemagglutinin (HA) and matrix) that were related to the zoonotic Jiangsu-Cambodian H7 viruses causing zoonotic infection and six gene segments originating from LPAIVs circulating in migratory birds in Eurasia. A genomic constellation analysis demonstrated that all H7 isolates contained a mix of gene segments from different viruses, indicating that multiple reassortment occurred. The well-known mammalian adaptive substitution (E627K and D701N) in PB2 was not detected in any of these isolates. The detection of multiple reassortant H7Nx AIVs in wild birds highlights the need for intensive surveillance in both wild birds and poultry in Eurasia.


Asunto(s)
Subtipo H7N3 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/virología , Animales , Animales Salvajes/virología , Aves/genética , Aves/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N3 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N3 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/epidemiología , Filogenia , República de Corea/epidemiología
9.
Viruses ; 13(10)2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34696486

RESUMEN

H7 low pathogenic avian influenza viruses (LPAIVs) can mutate into highly pathogenic avian influenza viruses (HPAIVs). In addition to avian species, H7 avian influenza viruses (AIVs) also infect humans. In this study, two AIVs, H7N9 (20X-20) and H7N7 (34X-2), isolated from the feces of wild birds in South Korea in 2021, were genetically analyzed. The HA cleavage site of the two H7 Korean viruses was confirmed to be ELPKGR/GLF, indicating they are LPAIVs. There were no amino acid substitutions at the receptor-binding site of the HA gene of two H7 Korean viruses compared to that of A/Anhui/1/2013 (H7N9), which prefer human receptors. In the phylogenetic tree analysis, the HA gene of the two H7 Korean viruses shared the highest nucleotide similarity with the Korean H7 subtype AIVs. In addition, the HA gene of the two H7 Korean viruses showed high nucleotide similarity to that of the A/Jiangsu/1/2018(H7N4) virus, which is a human influenza virus originating from avian influenza virus. Most internal genes (PB2, PB1, PA, NP, NA, M, and NS) of the two H7 Korean viruses belonged to the Eurasian lineage, except for the M gene of 34X-2. This result suggests that active reassortment occurred among AIVs. In pathogenicity studies of mice, the two H7 Korean viruses replicated in the lungs of mice. In addition, the body weight of mice infected with 34X-2 decreased 7 days post-infection (dpi) and inflammation was observed in the peribronchiolar and perivascular regions of the lungs of mice. These results suggest that mammals can be infected with the two H7 Korean AIVs. Our data showed that even low pathogenic H7 AIVs may infect mammals, including humans, as confirmed by the A/Jiangsu/1/2018(H7N4) virus. Therefore, continuous monitoring and pathogenicity assessment of AIVs, even of LPAIVs, are required.


Asunto(s)
Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Animales , Animales Salvajes/virología , Aves/genética , Aves/virología , Heces/virología , Femenino , Subtipo H7N7 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N7 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos BALB C , Filogenia , República de Corea/epidemiología , Virulencia
10.
Viruses ; 13(6)2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207098

RESUMEN

In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region.


Asunto(s)
Pollos/virología , Brotes de Enfermedades/veterinaria , Patos/virología , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Mutación , Polimorfismo Genético , Adaptación Fisiológica/genética , Animales , Cloaca/virología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Estados Unidos/epidemiología , Virulencia , Replicación Viral
11.
Emerg Microbes Infect ; 10(1): 1191-1199, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34049471

RESUMEN

The ongoing COVID-19 pandemic has led to more than 159 million confirmed cases with over 3.3 million deaths worldwide, but it remains mystery why most infected individuals (∼98%) were asymptomatic or only experienced mild illness. The same mystery applies to the deadly 1918 H1N1 influenza pandemic, which has puzzled the field for a century. Here we discuss dual potential properties of the 1918 H1N1 pandemic viruses that led to the high fatality rate in the small portion of severe cases, while about 98% infected persons in the United States were self-limited with mild symptoms, or even asymptomatic. These variations now have been postulated to be impacted by polymorphisms of the sialic acid receptors in the general population. Since coronaviruses (CoVs) also recognize sialic acid receptors and cause severe acute respiratory syndrome epidemics and pandemics, similar principles of influenza virus evolution and pandemicity may also apply to CoVs. A potential common principle of pathogen/host co-evolution of influenza and CoVs under selection of host sialic acids in parallel with different epidemic and pandemic influenza and coronaviruses is discussed.


Asunto(s)
COVID-19/patología , Gripe Humana/patología , Receptores de Superficie Celular/genética , Receptores Virales/genética , Ácidos Siálicos/metabolismo , Enfermedades Asintomáticas , Evolución Biológica , COVID-19/mortalidad , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/mortalidad , Receptores de Superficie Celular/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2/genética , Saliva/metabolismo , Saliva/virología
12.
Vet Microbiol ; 255: 109019, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33676094

RESUMEN

PA-X is a novel discovered accessory protein encoded by the PA mRNA of the influenza A virus. Accumulated studies have demonstrated the crucial role of this protein in regulating the virulence of various subtypes of influenza virus, including H1N1, H5N1, H9N2, H1N2, H3N8 and H3N2 virus. However, the role of PA-X protein in regulating the virulence of the highly pathogenic avian H7N9 virus was unknown. In this study, we firstly generated two recombinant H7N9 viruses which have lower PA-X expression level than the parental H7N9 virus. We then systematically compared their difference in virus replication, polymerase activity, virulence and virus-induced host immune responses in mice. The results showed that the PA-X deficient viruses significantly increased viral replication in madin darby canine kidney cells and slightly increased viral replication in mouse lung. In addition, loss of PA-X expression significantly increased viral polymerase activity and alleviated the host-shutoff activity mediated by the parental PA protein. However, in contrast with the usual function of PA-X in regulating the virulence in different subtype influenza virus, no obvious effect on viral virulence in mice was observed by H7N9 PA-X protein. Furthermore, among the 12 kinds of cytokines and 2 kinds of complement derived components that we tested, the PA-X deficiency viruses only induced significantly higher expression levels of MX1 than the parental virus. Altogether, these results showed that PA-X has little effect on viral virulence and viral induced innate immune response of the H7N9 subtype virus. Our study adds further information for the growing understanding of the complexity of PA-X in regulating viral virulence and host innate immune response of different influenza virus.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Proteínas Represoras/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Perros , Femenino , Eliminación de Gen , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/patología , Virulencia , Factores de Virulencia , Replicación Viral
13.
Emerg Microbes Infect ; 10(1): 472-480, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33657971

RESUMEN

Pandemic influenza, typically caused by the reassortment of human and avian influenza viruses, can result in severe or fatal infections in humans. Timely identification of potential pandemic viruses must be a priority in influenza virus surveillance. However, the range of host species responsible for the generation of novel pandemic influenza viruses remains unclear. In this study, we conducted serological surveys for avian and human influenza virus infections in farmed mink and determined the susceptibility of mink to prevailing avian and human virus subtypes. The results showed that farmed mink were commonly infected with human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Correlational analysis indicated that transmission of human influenza viruses occurred from humans to mink, and that feed source was a probable route of avian influenza virus transmission to farmed mink. Animal experiments showed that mink were susceptible and permissive to circulating avian and human influenza viruses, and that human influenza viruses (H3N2 and H1N1/pdm), but not avian viruses, were capable of aerosol transmission among mink. These results indicate that farmed mink could be highly permissive "mixing vessels" for the reassortment of circulating human and avian influenza viruses. Therefore, to reduce the risk of emergence of novel pandemic viruses, feeding mink with raw poultry by-products should not be permitted, and epidemiological surveillance of influenza viruses in mink farms should be urgently implemented.


Asunto(s)
Virus de la Influenza A/patogenicidad , Visón/virología , Infecciones por Orthomyxoviridae/transmisión , Animales , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/inmunología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H9N2 del Virus de la Influenza A/inmunología , Subtipo H9N2 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/inmunología , Visón/inmunología , Pruebas de Neutralización , Infecciones por Orthomyxoviridae/inmunología , Virus Reordenados/inmunología , Virus Reordenados/patogenicidad
14.
Vet Microbiol ; 254: 109000, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33515926

RESUMEN

The first avian H7N9 influenza outbreak in spring of 2013 emerged in an unprecedented transmission from infected poultry to humans in the Yangtze delta area, eastern China, posing a dual challenge to public health and poultry industry. However, the mechanism for how avian H7N9 influenza virus adapts to mammalian hosts has not been clearly understood. Here, to identify adaptive changes that confer enhanced virulence of H7N9 virus in mammals, we generated a mouse-adapted H7N9 variant virus (S8) by serial lung-to-lung passages of the wild-type SDL124 virus in mice and compared their phenotype in vivo and in vitro. Sequence analysis showed that the two viruses differed by 27 amino acids distributed among six genes, containing changes in PB2 (E627K, D701N) and HA (Q226L) genes. The 50% mouse lethal dose (MLD50) of S8 reduced about 500 folds, to be moderately pathogenic to mice when compared to that of low pathogenic wild-type SDL124. Moreover, S8 replicated efficiently in mouse lungs and displayed expanded tissue tropism, and induced a greater degree of pulmonary edema and higher level of inflammatory cell infiltration in bronchoalveolar lavage fluids than SDL124 did. Interestingly, the mouse adapted S8 virus obtained strong affinity for human-like (SAα-2,6 Gal) receptor during the adaptation in mice. Correspondingly, compared with SDL124 virus, S8 virus showed higher replication efficiency in mammalian cells, whereas lower replication ability in avian cells. Taken together, these findings suggest that these mutations synergistically elevate the ability of H7N9 virus to disseminate to multiple organs and subsequently enhance the virulence of H7N9 virus in mammalian hosts.


Asunto(s)
Adaptación Fisiológica/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Pulmón/microbiología , Mutación , Ácidos Siálicos/metabolismo , Células A549 , Animales , Perros , Femenino , Humanos , Lesión Pulmonar/virología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Análisis de Secuencia de ADN , Pase Seriado , Proteínas Virales/genética , Tropismo Viral , Virulencia/genética , Replicación Viral
15.
Infect Dis Poverty ; 10(1): 4, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407876

RESUMEN

BACKGROUND: Emergency Operations Center (EOC) is a place to provide response to public health emergencies. Chinese Center for Disease Control and Prevention (China CDC)'s EOC was officially established in 2016, which has been the core department for the public health emergencies and risk response. In recent years, we have been continuously improving the function of EOC through many incidents. In the study, we hope to share the construction status, operation management experience of China CDC's EOC and the response process in the human avian influenza A (H7N9) outbreak. MAIN TEXT: The China CDC's EOC mainly focus on building the five core elements including sites/places and facilities, information and data, plans and procedures, training and exercises, and logistics. Based on summarizing previous emergency response, the China CDC's EOC established its own incident management and the standardized response procedures. The event-specific data, context-specific data and event management data could be obtained through various source. The logistics department of the EOC also provides comprehensive support. The well-trained staff is another necessary conditions for its operation. Through sharing the response process of H7N9 outbreak, it further explains the EOC's functions in the five phases of outbreak response, such as the formulation of the incident response framework, monitoring, personnel dispatch and resource mobilization. CONCLUSIONS: The EOC contributes to faster and more efficient responses during emergencies which enable a greater reduction in morbidity and mortality. Compared with the traditional incident response process, under the command and coordination of China CDC's EOC, each group involved in the response has a clearer goal, responsibilities and tasks at each stage. Meanwhile, each group also gave full play to its own expertise and advantages. As a whole, incident response tended to be more specialized and precise, which generally improves the efficiency of incident response. However, different countries and regions have different response processes to the events. We still suggested that appropriate emergency operation plan should be made according to the complexity of incident response in the region when constructing response mechanism, through our experience. And the China CDC's EOC is still at growing and groping phase.


Asunto(s)
Planificación en Desastres/organización & administración , Servicios Médicos de Urgencia/normas , Gripe Humana/epidemiología , China/epidemiología , Brotes de Enfermedades , Humanos , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/patología , Administración en Salud Pública
16.
Virol J ; 18(1): 14, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430903

RESUMEN

BACKGROUND: To identify site-specific features of amino acid substitutions that confer enhanced H7N9 virulence in humans, we independently generated mammalian-adapted variants of A/Anhui/1/2013 (AH-H7N9) and A/Shanghai/2/2013 (SH-H7N9) by serial passaging in Madin-Darby canine kidney (MDCK) cells. METHODS: Virus was respectively extracted from cell culture supernatant and cells, and was absolutely quantified by using real-time polymerase chain reaction. Viral RNAs were extracted and subjected to sequencing for identifying mutations. Then, site-specific mutations introduced by viral passaging were selected for further constructing HA7 or NA9 mutant plasmids, which were used to generate recombinant viruses. The interaction between the recombinant HA and receptors, H7N9-pseudotyped viruses and receptors were detected. RESULTS: Both subtypes displayed high variability in replicative capability and virulence during serial passaging. Analysis of viral genomes revealed multiple amino acid mutations in the hemagglutinin 7 (HA7) (A135T [AH-H7N9], T71I [SH-H7N9], T157I [SH-H7N9], T71I-V223I [SH-H7N9], T71I-T157I-V223I [SH-H7N9], and T71I-T157I-V223I-T40I [SH-H7N9]), and NA9 (N171S [AH-H7N9] and G335S [AH-H7N9]) proteins in various strains of the corresponding subtypes. Notably, quite a few amino acid substitutions indeed collectively strengthened the interactions between H7N9 strains and sialic acid receptors. Moreover, some of the amino acid substitutions identified were highly and specifically cytopathogenic to MDCK cells. CONCLUSIONS: This study demonstrated that AH-H7N9 and SH-H7N9 subtypes can acquire enhanced receptor affinity for sialic receptors through novel amino acid substitutions. Such changes in affinitive interactions are conferred by site-specific mutations of HA7 proteins that affect the virulence and pathology of the virus strain, and/or limited compatibility between the host and the virus strain.


Asunto(s)
Sustitución de Aminoácidos , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Animales , China , Efecto Citopatogénico Viral , Perros , Subtipo H7N9 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Mutación , Pase Seriado , Virulencia , Replicación Viral
17.
Artículo en Inglés | MEDLINE | ID: mdl-31964650

RESUMEN

High-pathogenicity avian influenza (HPAI) viruses have arisen from low-pathogenicity avian influenza (LPAI) viruses via changes in the hemagglutinin proteolytic cleavage site, which include mutation of multiple nonbasic to basic amino acids, duplication of basic amino acids, or recombination with insertion of cellular or viral amino acids. Between 1959 and 2019, a total of 42 natural, independent H5 (n = 15) and H7 (n = 27) LPAI to HPAI virus conversion events have occurred in Europe (n = 16), North America (n = 9), Oceania (n = 7), Asia (n = 5), Africa (n = 4), and South America (n = 1). Thirty-eight of these HPAI outbreaks were limited in the number of poultry premises affected and were eradicated. However, poultry outbreaks caused by A/goose/Guangdong/1/1996 (H5Nx), Mexican H7N3, and Chinese H7N9 HPAI lineages have continued. Active surveillance and molecular detection and characterization efforts will provide the best opportunity for early detection and eradication from domestic birds.


Asunto(s)
Subtipo H7N3 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/historia , Animales , Evolución Molecular , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Gripe Aviar/epidemiología , Gripe Aviar/genética , Aves de Corral
18.
Genomics ; 113(1 Pt 2): 716-727, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33049361

RESUMEN

Influenza A virus is a single-stranded RNA virus that can cause great mortality and economic loss worldwide. Circular RNAs (circRNAs) are non-coding RNAs that have been shown to have important functions in the regulation of biological processes. However, their functions during the influenza A virus infection process remain unclear. Herein, RNA sequencing technology was used to identify circRNAs expressed in mouse lungs during infection with H7N9/PB2-627 K/701D (H7N9/Wild-type) virus and PB2 mutant viruses (H7N9/PB2-627E/701D and H7N9/PB2-627E/701 N). We identified 7126 circRNAs at different genomic locations during H7N9 influenza virus and its mutant virus infections, of which 186 were differentially expressed. Enrichment analysis revealed that the differentially expressed circRNAs were associated with the viral infection process. Our study shows that circRNA expression profiles were altered following H7N9 influenza A virus infection and the differentially expressed circRNAs may have an important immune-regulating function during viral infection.


Asunto(s)
Pulmón/metabolismo , Neumonía Viral/metabolismo , ARN Circular/genética , Animales , Femenino , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Neumonía Viral/genética , Neumonía Viral/virología , ARN Circular/metabolismo
19.
Transbound Emerg Dis ; 68(2): 846-856, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32706427

RESUMEN

The genome composition of a given avian influenza virus is the primary determinant of its potential for cross-species transmission from birds to humans. Here, we introduce a viral genome-based computational tool that can be used to evaluate the human infectivity of avian isolates of influenza A H7N9 viruses, which can enable prediction of the potential risk of these isolates infecting humans. This tool, which is based on a novel class weight-biased logistic regression (CWBLR) algorithm, uses the sequences of the eight genome segments of an H7N9 strain as the input and gives the probability of this strain infecting humans (reflecting its human infectivity). We examined the replication efficiency and the pathogenicity of several H7N9 avian isolates that were predicted to have very low or high human infectivity by the CWBLR model in cell culture and in mice, and found that the strains with high predicted human infectivity replicated more efficiently in mammalian cells and were more infective in mice than those that were predicted to have low human infectivity. These results demonstrate that our CWBLR model can serve as a powerful tool for predicting the human infectivity and cross-species transmission risks of H7N9 avian strains.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Animales , Aves , Genoma Viral , Humanos , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Zoonosis
20.
Infect Dis Poverty ; 9(1): 163, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33261654

RESUMEN

BACKGROUND: There is an urgent need to better understand the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for that the coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. This paper was to differentiate COVID-19 from other respiratory infectious diseases such as avian-origin influenza A (H7N9) and influenza A (H1N1) virus infections. METHODS: We included patients who had been hospitalized with laboratory-confirmed infection by SARS-CoV-2 (n = 83), H7N9 (n = 36), H1N1 (n = 44) viruses. Clinical presentation, chest CT features, and progression of patients were compared. We used the Logistic regression model to explore the possible risk factors. RESULTS: Both COVID-19 and H7N9 patients had a longer duration of hospitalization than H1N1 patients (P < 0.01), a higher complication rate, and more severe cases than H1N1 patients. H7N9 patients had higher hospitalization-fatality ratio than COVID-19 patients (P = 0.01). H7N9 patients had similar patterns of lymphopenia, neutrophilia, elevated alanine aminotransferase, C-reactive protein, lactate dehydrogenase, and those seen in H1N1 patients, which were all significantly different from patients with COVID-19 (P < 0.01). Either H7N9 or H1N1 patients had more obvious symptoms, like fever, fatigue, yellow sputum, and myalgia than COVID-19 patients (P < 0.01). The mean duration of viral shedding was 9.5 days for SARS-CoV-2 vs 9.9 days for H7N9 (P = 0.78). For severe cases, the meantime from illness onset to severity was 8.0 days for COVID-19 vs 5.2 days for H7N9 (P < 0.01), the comorbidity of chronic heart disease was more common in the COVID-19 patients than H7N9 (P = 0.02). Multivariate analysis showed that chronic heart disease was a possible risk factor (OR > 1) for COVID-19, compared with H1N1 and H7N9. CONCLUSIONS: The proportion of severe cases were higher for H7N9 and SARS-CoV-2 infections, compared with H1N1. The meantime from illness onset to severity was shorter for H7N9. Chronic heart disease was a possible risk factor for COVID-19.The comparison may provide the rationale for strategies of isolation and treatment of infected patients in the future.


Asunto(s)
COVID-19/patología , COVID-19/virología , Gripe Humana/patología , Gripe Humana/virología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/mortalidad , Niño , Preescolar , Comorbilidad , Progresión de la Enfermedad , Femenino , Hospitalización , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Humana/diagnóstico , Gripe Humana/mortalidad , Pulmón/diagnóstico por imagen , Pulmón/patología , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/patogenicidad , Esparcimiento de Virus , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...