Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114155, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678563

RESUMEN

Cell cycle control relies on a delicate balance of phosphorylation with CDK1 and phosphatases like PP1 and PP2A-B55. Yet, identifying the primary substrate responsible for cell cycle oscillations remains a challenge. We uncover the pivotal role of phospho-regulation in the anaphase-promoting complex/cyclosome (APC/C), particularly through the Apc1-loop300 domain (Apc1-300L), orchestrated by CDK1 and PP2A-B55. Premature activation of PP2A-B55 during mitosis, induced by Greatwall kinase depletion, leads to Apc1-300L dephosphorylation, stalling APC/C activity and delaying Cyclin B degradation. This effect can be counteracted using the B55-specific inhibitor pEnsa or by removing Apc1-300L. We also show Cdc20's dynamic APC/C interaction across cell cycle stages, but dephosphorylation of Apc1-300L specifically inhibits further Cdc20 recruitment. Our study underscores APC/C's central role in cell cycle oscillation, identifying it as a primary substrate regulated by the CDK-PP2A partnership.


Asunto(s)
Proteína Quinasa CDC2 , Ciclo Celular , Proteína Fosfatasa 2 , Animales , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas Cdc20/metabolismo , Mitosis , Fosforilación , Proteína Fosfatasa 2/metabolismo , Células Sf9 , Xenopus
2.
Molecules ; 27(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956818

RESUMEN

Deciphering the protein posttranslational modification (PTM) code is one of the greatest biochemical challenges of our time. Phosphorylation and ubiquitylation are key PTMs that dictate protein function, recognition, sub-cellular localization, stability, turnover and fate. Hence, failures in their regulation leads to various disease. Chemical protein synthesis allows preparation of ubiquitinated and phosphorylated proteins to study their biochemical properties in great detail. However, monitoring these modifications in intact cells or in cell extracts mostly depends on antibodies, which often have off-target binding. Here, we report that the most widely used antibody for ubiquitin (Ub) phosphorylated at serine 65 (pUb) has significant off-targets that appear during mitosis. These off-targets are connected to polo-like kinase 1 (PLK1) mediated phosphorylation of cell cycle-related proteins and the anaphase promoting complex subunit 1 (APC1).


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Ciclo Celular , Mitosis , Procesamiento Proteico-Postraduccional , Ubiquitina , Anticuerpos/genética , Anticuerpos/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Mitosis/genética , Mitosis/fisiología , Fosforilación , Unión Proteica/genética , Unión Proteica/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Serina/genética , Serina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Quinasa Tipo Polo 1
3.
EMBO J ; 40(18): e107516, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34291488

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C), a multi-subunit ubiquitin ligase essential for cell cycle control, is regulated by reversible phosphorylation. APC/C phosphorylation by cyclin-dependent kinase 1 (Cdk1) promotes Cdc20 co-activator loading in mitosis to form active APC/C-Cdc20. However, detailed phospho-regulation of APC/C dynamics through other kinases and phosphatases is still poorly understood. Here, we show that an interplay between polo-like kinase (Plx1) and PP2A-B56 phosphatase on a flexible loop domain of the subunit Apc1 (Apc1-loop500 ) controls APC/C activity and mitotic progression. Plx1 directly binds to the Apc1-loop500 in a phosphorylation-dependent manner and promotes the formation of APC/C-Cdc20 via Apc3 phosphorylation. Upon phosphorylation of loop residue T532, PP2A-B56 is recruited to the Apc1-loop500 and differentially promotes dissociation of Plx1 and PP2A-B56 through dephosphorylation of Plx1-binding sites. Stable Plx1 binding, which prevents PP2A-B56 recruitment, prematurely activates the APC/C and delays APC/C dephosphorylation during mitotic exit. Furthermore, the phosphorylation status of the Apc1-loop500 is controlled by distant Apc3-loop phosphorylation. Our study suggests that phosphorylation-dependent feedback regulation through flexible loop domains within a macromolecular complex coordinates the activity and dynamics of the APC/C during the cell cycle.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Humanos , Fosforilación , Unión Proteica , Quinasa Tipo Polo 1
4.
J Virol ; 95(15): e0097120, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34011540

RESUMEN

HIV-1 encodes several accessory proteins-Nef, Vif, Vpr, and Vpu-whose functions are to modulate the cellular environment to favor immune evasion and viral replication. While Vpr was shown to mediate a G2/M cell cycle arrest and provide a replicative advantage during infection of myeloid cells, the mechanisms underlying these functions remain unclear. In this study, we defined HIV-1 Vpr proximity interaction network using the BioID proximity labeling approach and identified 352 potential Vpr partners/targets, including several complexes, such as the cell cycle-regulatory anaphase-promoting complex/cyclosome (APC/C). Herein, we demonstrate that both the wild type and cell cycle-defective mutants of Vpr induce the degradation of APC1, an essential APC/C scaffolding protein, and show that this activity relies on the recruitment of DCAF1 by Vpr and the presence of a functional proteasome. Vpr forms a complex with APC1, and the APC/C coactivators Cdh1 and Cdc20 are associated with these complexes. Interestingly, we found that Vpr encoded by the prototypic HIV-1 NL4.3 does not interact efficiently with APC1 and is unable to mediate its degradation as a result of a N28S-G41N amino acid substitution. In contrast, we show that APC1 degradation is a conserved feature of several primary Vpr variants from transmitted/founder virus. Functionally, Vpr-mediated APC1 degradation did not impact the ability of the protein to induce a G2 cell cycle arrest during infection of CD4+ T cells or enhance HIV-1 replication in macrophages, suggesting that this conserved activity may be important for other aspects of HIV-1 pathogenesis. IMPORTANCE The function of the Vpr accessory protein during HIV-1 infection remains poorly defined. Several cellular targets of Vpr were previously identified, but their individual degradation does not fully explain the ability of Vpr to impair the cell cycle or promote HIV-1 replication in macrophages. Here, we used the unbiased proximity labeling approach, called BioID, to further define the Vpr proximity interaction network and identified several potentially new Vpr partners/targets. We validated our approach by focusing on a cell cycle master regulator, the APC/C complex, and demonstrated that Vpr mediated the degradation of a critical scaffolding component of APC/C called APC1. Furthermore, we showed that targeting of APC/C by Vpr did not impact the known activity of Vpr. Since degradation of APC1 is a conserved feature of several primary variants of Vpr, it is likely that the interplay between Vpr and APC/C governs other aspects of HIV-1 pathogenesis.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Infecciones por VIH/patología , VIH-1/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Replicación Viral/genética , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Células HEK293 , VIH-1/metabolismo , Células HeLa , Humanos , Macrófagos/virología , Interferencia de ARN , ARN Interferente Pequeño/genética , Espectrometría de Masas en Tándem , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/genética
5.
Mol Biol Cell ; 31(8): 725-740, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31995441

RESUMEN

E2F8 is a transcriptional repressor that antagonizes E2F1 at the crossroads of the cell cycle, apoptosis, and cancer. Previously, we discovered that E2F8 is a direct target of the APC/C ubiquitin ligase. Nevertheless, it remains unknown how E2F8 is dynamically controlled throughout the entirety of the cell cycle. Here, using newly developed human cell-free systems that recapitulate distinct inter-mitotic and G1 phases and a continuous transition from prometaphase to G1, we reveal an interlocking dephosphorylation switch coordinating E2F8 degradation with mitotic exit and the activation of APC/CCdh1. Further, we uncover differential proteolysis rates for E2F8 at different points within G1 phase, accounting for its accumulation in late G1 while APC/CCdh1 is still active. Finally, we demonstrate that the F-box protein Cyclin F regulates E2F8 in G2-phase. Altogether, our data define E2F8 regulation throughout the cell cycle, illuminating an extensive coordination between phosphorylation, ubiquitination and transcription in mammalian cell cycle.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Represoras/metabolismo , Secuencias de Aminoácidos , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Sistema Libre de Células , Ciclinas/metabolismo , Factor de Transcripción E2F1/metabolismo , Fase G1/fisiología , Fase G2/fisiología , Células HeLa , Humanos , Mitosis/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Proteolisis , Proteínas Recombinantes/metabolismo , Ubiquitinación
6.
Nat Commun ; 10(1): 1284, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894546

RESUMEN

The corneal endothelium is vital for transparency and proper hydration of the cornea. Here, we conduct a genome-wide association study of corneal endothelial cell density (cells/mm2), coefficient of cell size variation (CV), percentage of hexagonal cells (HEX) and central corneal thickness (CCT) in 6,125 Icelanders and find associations at 10 loci, including 7 novel. We assess the effects of these variants on various ocular biomechanics such as corneal hysteresis (CH), as well as eye diseases such as glaucoma and corneal dystrophies. Most notably, an intergenic variant close to ANAPC1 (rs78658973[A], frequency = 28.3%) strongly associates with decreased cell density and accounts for 24% of the population variance in cell density (ß = -0.77 SD, P = 1.8 × 10-314) and associates with increased CH (ß = 0.19 SD, P = 2.6 × 10-19) without affecting risk of corneal diseases and glaucoma. Our findings indicate that despite correlations between cell density and eye diseases, low cell density does not increase the risk of disease.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Distrofias Hereditarias de la Córnea/genética , Endotelio Corneal/metabolismo , Glaucoma/genética , Polimorfismo Genético , Adulto , Anciano , Anciano de 80 o más Años , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Estudios de Casos y Controles , Recuento de Células , Tamaño de la Célula , Distrofias Hereditarias de la Córnea/diagnóstico , Distrofias Hereditarias de la Córnea/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Corneal/patología , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Glaucoma/diagnóstico , Glaucoma/patología , Humanos , Presión Intraocular , Masculino , Persona de Mediana Edad , Secuenciación Completa del Genoma
7.
PLoS Genet ; 14(4): e1007339, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29641560

RESUMEN

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Complejo de Señalización de la Axina/metabolismo , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Animales , Animales Modificados Genéticamente , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas del Dominio Armadillo/química , Proteínas del Dominio Armadillo/genética , Proteína Axina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Complejo de Señalización de la Axina/química , Complejo de Señalización de la Axina/genética , Línea Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Transcripción Genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
8.
J Biol Chem ; 293(4): 1178-1191, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29183995

RESUMEN

The Hippo pathway plays important roles in controlling organ size and in suppressing tumorigenesis through large tumor suppressor kinase 1/2 (LATS1/2)-mediated phosphorylation of YAP/TAZ transcription co-activators. The kinase activity of LATS1/2 is regulated by phosphorylation in response to extracellular signals. Moreover, LATS2 protein levels are repressed by the ubiquitin-proteasome system in conditions such as hypoxia. However, the mechanism that removes the ubiquitin modification from LATS2 and thereby stabilizes the protein is not well understood. Here, using tandem affinity purification (TAP), we found that anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase complex, and USP9X, a deubiquitylase, specifically interact with LATS2. We also found that although APC1 co-localizes with LATS2 to intracellular vesicle structures, it does not regulate LATS2 protein levels and activity. In contrast, USP9X ablation drastically diminished LATS2 protein levels. We further demonstrated that USP9X deubiquitinates LATS2 and thus prevents LATS2 degradation by the proteasome. Furthermore, in pancreatic cancer cells, USP9X loss activated YAP and enhanced the oncogenic potential of the cells. In addition, the tumorigenesis induced by the USP9X ablation depended not only on LATS2 repression, but also on YAP/TAZ activity. We conclude that USP9X is a deubiquitylase of the Hippo pathway kinase LATS2 and that the Hippo pathway functions as a downstream signaling cascade that mediates USP9X's tumor-suppressive activity.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Neoplasias/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Ciclo Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Vía de Señalización Hippo , Humanos , Neoplasias/genética , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética
9.
Sci Rep ; 7: 45383, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28350015

RESUMEN

Mitochondrial ATP-Mg/Pi carriers import adenine nucleotides into the mitochondrial matrix and export phosphate to the cytosol. They are calcium-regulated to control the size of the matrix adenine nucleotide pool in response to cellular energetic demands. They consist of three domains: an N-terminal regulatory domain containing four calcium-binding EF-hands, a linker loop domain with an amphipathic α-helix and a C-terminal mitochondrial carrier domain for the transport of substrates. Here, we use thermostability assays to demonstrate that the carrier is regulated by calcium via a locking pin mechanism involving the amphipathic α-helix. When calcium levels in the intermembrane space are high, the N-terminus of the amphipathic α-helix is bound to a cleft in the regulatory domain, leading to substrate transport by the carrier domain. When calcium levels drop, the cleft closes, and the amphipathic α-helix is released to bind to the carrier domain via its C-terminus, locking the carrier in an inhibited state.


Asunto(s)
Antiportadores/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Antiportadores/genética , Proteínas de Unión al Calcio/genética , Humanos , Proteínas Mitocondriales/genética , Dominios Proteicos/genética , Saccharomyces cerevisiae/genética , Transducción de Señal/fisiología
10.
Nature ; 533(7602): 260-264, 2016 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-27120157

RESUMEN

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/química , Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Antígenos CD , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Apoenzimas/metabolismo , Sitios de Unión , Cadherinas/química , Cadherinas/metabolismo , Cadherinas/ultraestructura , Proteínas Cdc20/antagonistas & inhibidores , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestructura , Microscopía por Crioelectrón , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Activación Enzimática , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/ultraestructura , Fosforilación , Unión Proteica , Conformación Proteica , Tosilarginina Metil Éster/farmacología
11.
Science ; 352(6289): 1121-4, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27103671

RESUMEN

Error-free genome duplication and segregation are ensured through the timely activation of ubiquitylation enzymes. The anaphase-promoting complex or cyclosome (APC/C), a multisubunit E3 ubiquitin ligase, is regulated by phosphorylation. However, the mechanism remains elusive. Using systematic reconstitution and analysis of vertebrate APC/Cs under physiological conditions, we show how cyclin-dependent kinase 1 (CDK1) activates the APC/C through coordinated phosphorylation between Apc3 and Apc1. Phosphorylation of the loop domains by CDK1 in complex with p9/Cks2 (a CDK regulatory subunit) controlled loading of coactivator Cdc20 onto APC/C. A phosphomimetic mutation introduced into Apc1 allowed Cdc20 to increase APC/C activity in interphase. These results define a previously unrecognized subunit-subunit communication over a distance and the functional consequences of CDK phosphorylation. Cdc20 is a potential therapeutic target, and our findings may facilitate the development of specific inhibitors.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdh1/metabolismo , Anafase , Animales , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/metabolismo , Activación Enzimática , Humanos , Mutación , Fosforilación , Xenopus
12.
Neurochem Int ; 91: 26-33, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26498254

RESUMEN

Reactive astrocyte proliferation is involved in many central degenerative diseases. The enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoform 3 (PFKFB3), an allosteric activator of 6-phosphofructo-1-kinase (PFK1), controls glycolytic flux. Furthermore, APC/C-Cdh1 plays a crucial role in brain metabolism by regulating PFKFB3 expression. Previous studies have defined the roles of PFKFB3-mediated glycolysis in pathological angiogenesis, cell autophagy, and amyloid plaque deposition in proliferating cells. However, the role of PFKFB3 in reactive astrocyte proliferation after cerebral ischemia is unknown. In this study, we cultured rat primary cortical astrocytes and established an oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic cerebral ischemia in vivo. Astrocyte proliferation was measured by western blotting for proliferating cell nuclear antigen (PCNA) and by EdU incorporation. We found that OGD/R up-regulated PFKFB3 and PFK1 expression, which was accompanied by reactive astrocyte proliferation. Knockdown of PFKFB3 by siRNA transfection significantly inhibited reactive astrocyte proliferation and lactate release, an indicator of glycolysis. We found that PFKFB3 and PFK1 expression were down-regulated and lactate release was decreased when OGD/R-induced astrocyte proliferation was inhibited by a Cdh1-expressing lentivirus. Thus, reactive astrocyte proliferation can be effectively suppressed by down-regulation of PFKFB3 through control of glycolytic flux, which is downstream of APC/C-Cdh1.


Asunto(s)
Astrocitos/metabolismo , Cadherinas/metabolismo , Proliferación Celular , Glucólisis , Fosfofructoquinasa-2/metabolismo , Daño por Reperfusión/metabolismo , Animales , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Cadherinas/biosíntesis , Cadherinas/genética , Hipoxia de la Célula , Técnicas de Silenciamiento del Gen , Glucosa/deficiencia , Ácido Láctico/metabolismo , Fosfofructoquinasa-2/biosíntesis , Fosfofructoquinasa-2/genética , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley
13.
Sci Signal ; 8(392): ra87, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26329581

RESUMEN

The anaphase-promoting complex or cyclosome with the subunit Cdh1 (APC/C(Cdh1)) is an E3 ubiquitin ligase involved in the control of the cell cycle. Here, we identified sporadic mutations occurring in the genes encoding APC components, including Cdh1, in human melanoma samples and found that loss of APC/C(Cdh1) may promote melanoma development and progression, but not by affecting cell cycle regulatory targets of APC/C. Most of the mutations we found in CDH1 were those associated with ultraviolet light (UV)-induced melanomagenesis. Compared with normal human skin tissue and human or mouse melanocytes, the abundance of Cdh1 was decreased and that of the transcription factor PAX3 was increased in human melanoma tissue and human or mouse melanoma cell lines, respectively; Cdh1 abundance was further decreased with advanced stages of human melanoma. PAX3 was a substrate of APC/C(Cdh1) in melanocytes, and APC/C(Cdh1)-mediated ubiquitylation marked PAX3 for proteolytic degradation in a manner dependent on the D-box motif in PAX3. Either mutating the D-box in PAX3 or knocking down Cdh1 prevented the ubiquitylation and degradation of PAX3 and increased proliferation and melanin production in melanocytes. Knocking down Cdh1 in melanoma cells in culture or before implantation in mice promoted doxorubicin resistance, whereas reexpressing wild-type Cdh1, but not E3 ligase-deficient Cdh1 or a mutant that could not interact with PAX3, restored doxorubicin sensitivity in melanoma cells both in culture and in xenografts. Thus, our findings suggest a tumor suppressor role for APC/C(Cdh1) in melanocytes and that targeting PAX3 may be a strategy for treating melanoma.


Asunto(s)
Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proliferación Celular , Melanocitos/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteolisis , Animales , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/genética , Línea Celular Tumoral , Humanos , Melanocitos/patología , Melanoma/genética , Melanoma/patología , Ratones , Proteínas de Neoplasias/genética , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética
14.
Nature ; 522(7557): 450-454, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26083744

RESUMEN

The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Ubiquitinación , Ciclosoma-Complejo Promotor de la Anafase/química , Antígenos CD , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc10 del Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc3 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc8 del Ciclosoma-Complejo Promotor de la Anafase/ultraestructura , Cadherinas/química , Cadherinas/metabolismo , Cadherinas/ultraestructura , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Proteínas F-Box/ultraestructura , Humanos , Lisina/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina/ultraestructura , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/ultraestructura
15.
Proc Natl Acad Sci U S A ; 112(17): 5272-9, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25825779

RESUMEN

For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING-E2∼Ub catalytic modules such as APC11-UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APC(CDH1) and substrate ubiquitination. Unexpectedly, in addition to binding APC11's RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC(CDH1)-UBCH10∼Ub-substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin-RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin-RING-E2 interactions establish APC's specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3-E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/química , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/química , ADN Helicasas/química , Proteínas de Unión al ADN/química , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina/química , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Subunidad Apc11 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Cristalografía por Rayos X , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
16.
Dev Cell ; 31(6): 677-89, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25535916

RESUMEN

Coordinated migration of distinct classes of neurons to appropriate positions leads to the formation of functional neuronal circuitry in the cerebral cortex. The two major classes of cortical neurons, interneurons and projection neurons, utilize distinctly different modes (radial versus tangential) and routes of migration to arrive at their final positions in the cerebral cortex. Here, we show that adenomatous polyposis coli (APC) modulates microtubule (MT) severing in interneurons to facilitate tangential mode of interneuron migration, but not the glial-guided, radial migration of projection neurons. APC regulates the stability and activity of the MT-severing protein p60-katanin in interneurons to promote the rapid remodeling of neuronal processes necessary for interneuron migration. These findings reveal how severing and restructuring of MTs facilitate distinct modes of neuronal migration necessary for laminar organization of neurons in the developing cerebral cortex.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Microtúbulos/metabolismo , Neuronas/fisiología , Alelos , Animales , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/metabolismo , Citoesqueleto/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/metabolismo , Katanina , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...