RESUMEN
Rationale: Understanding the immune mechanisms associated with liver transplantation (LT), particularly the involvement of tissue-resident memory T cells (TRMs), represents a significant challenge. Methods: This study employs a multi-omics approach to analyse liver transplant samples from both human (n = 17) and mouse (n = 16), utilizing single-cell RNA sequencing, bulk RNA sequencing, and immunological techniques. Results: Our findings reveal a comprehensive T cell-centric landscape in LT across human and mouse species, involving 235,116 cells. Notably, we found a substantial increase in CD8+ TRMs within rejected grafts compared to stable ones. The elevated presence of CD8+ TRMs is characterised by a distinct expression profile, featuring upregulation of tissue-residency markers (CD69, CXCR6, CD49A and CD103+/-,), immune checkpoints (PD1, CTLA4, and TIGIT), cytotoxic markers (GZMB and IFNG) and proliferative markers (PCNA and TOP2A) during rejection. Furthermore, there is a high expression of transcription factors such as EOMES and RUNX3. Functional assays and analyses of cellular communication underscore the active role of CD8+ TRMs in interacting with other tissue-resident cells, particularly Kupffer cells, especially during rejection episodes. Conclusions: These insights into the distinctive activation and interaction patterns of CD8+ TRMs suggest their potential utility as biomarkers for graft rejection, paving the way for novel therapeutic strategies aimed at enhancing graft tolerance and improving overall transplant outcomes.
Asunto(s)
Linfocitos T CD8-positivos , Rechazo de Injerto , Trasplante de Hígado , Células T de Memoria , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Rechazo de Injerto/inmunología , Animales , Ratones , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Memoria Inmunológica , Masculino , Ratones Endogámicos C57BL , Antígenos CD/metabolismo , Antígenos CD/genética , Femenino , Persona de Mediana Edad , Proteínas de Dominio T BoxRESUMEN
NK cells are cytotoxic innate immune cells involved in antitumor immunity, and they provide a treatment option for patients with acute myeloid leukemia (AML). In this issue of the JCI, Cubitt et al. investigated the role of CD8α, a coreceptor present on approximately 40% of human NK cells. IL-15 stimulation of CD8α- NK cells induced CD8α expression via the RUNX3 transcription factor, driving formation of a unique induced CD8α (iCD8α+) population. iCD8α+ NK cells displayed higher proliferation, metabolic activity, and antitumor cytotoxic function compared with preexisting CD8α+ and CD8α- subsets. Therefore, CD8α expression can be used to define a potential dynamic spectrum of NK cell expansion and function. Because these cells exhibit enhanced tumor control, they may be used to improve in NK cell therapies for patients with AML.
Asunto(s)
Antígenos CD8 , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Interleucina-15 , Células Asesinas Naturales , Leucemia Mieloide Aguda , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/inmunología , Interleucina-15/inmunología , Interleucina-15/metabolismo , Interleucina-15/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismoRESUMEN
With the increasing age of the population worldwide, the incidence rate of Parkinson's disease (PD) is increasing annually. Currently, the treatment strategy for PD only improves clinical symptoms. No effective treatment strategy can slow down the progression of the disease. In the present study, whole transcriptome sequencing was used to obtain the mRNA and miRNA expression profiles in a PD mouse model, which revealed the pathogenesis of PD. The transcription factor RUNX3 upregulated the miR-186-3p expression in the PD model. Furthermore, the high miR-186-3p expression in PD can be targeted to inhibit the DAT expression, resulting in a decrease in the dopamine content of dopaminergic neurons. Moreover, miR-186-3p can be targeted to inhibit the IGF1R expression and prevent the activation of the IGF1R-P-PI3K-P-AKT pathway, thus increasing the apoptosis of dopaminergic neurons by regulating the cytochrome c-Bax-cleaved caspase-3 pathway. Our research showed that the RUNX3-miR-186-3p-DAT-IGF1R axis plays a key role in the pathogenesis of PD, and miR-186-3p is a potential target for the treatment of PD.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Modelos Animales de Enfermedad , MicroARNs , Enfermedad de Parkinson , Receptor IGF Tipo 1 , MicroARNs/genética , MicroARNs/metabolismo , Animales , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ratones Endogámicos C57BL , Masculino , Apoptosis/genética , Transducción de Señal , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Secuencia de BasesRESUMEN
Background: Cancer-associated fibroblasts (CAFs) are the primary stromal cells found in tumor microenvironment, and display high plasticity and heterogeneity. By using single-cell RNA-seq technology, researchers have identified various subpopulations of CAFs, particularly highlighting a recently identified subpopulation termed antigen-presenting CAFs (apCAFs), which are largely unknown. Methods: We collected datasets from public databases for 9 different solid tumor types to analyze the role of apCAFs in the tumor microenvironment. Results: Our data revealed that apCAFs, likely originating mainly from normal fibroblast, are commonly found in different solid tumor types and generally are associated with anti-tumor effects. apCAFs may be associated with the activation of CD4+ effector T cells and potentially promote the survival of CD4+ effector T cells through the expression of C1Q molecules. Moreover, apCAFs exhibited highly enrichment of transcription factors RUNX3 and IKZF1, along with increased glycolytic metabolism. Conclusions: Taken together, these findings offer novel insights into a deeper understanding of apCAFs and the potential therapeutic implications for apCAFs targeted immunotherapy in cancer.
Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Análisis de la Célula Individual , Microambiente Tumoral , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , TranscriptomaRESUMEN
Breast cancer severely affects women health. 70% of breast cancer are estrogen receptor positive. Breast cancer stem cells are a group of tumor with plasticity, causing tumor relapse and metastasis. RUNX3 is a tumor suppressor frequently inactivated in estrogen receptor positive breast cancer. However, the mechanism of how RUNX3 is involved in the regualation of cancer stem cell traits in estrogen receptor positive breast cancer remains elusive. In this study, we utilized cut-tag assay to investigate the binding profile RUNX3 in BT474 and T47D cell, and confirmed EXOSC4 as the bona-fide target of RUNX3; RUNX3 could bind to the promoter are of EXOSC4 to suppress its expression. Furthermore, EXOSC4 could increase the colony formation, cell invasion and mammosphere formation ability of breast cancer cells and upregulate the the expression of SOX2 and ALDH1. Consistent with these findings, EXOSC4 was associated with poorer survival for Luminal B/Her2 breast cancer patiens. At last, we confirmed that EXOSC4 mediated the tumor suppressive role of RUNX3 in breast cancer cells. In conclusion, we demonstrate that RUNX3 directly binds to the promoter region of EXOSC4, leading to the suppression of EXOSC4 expression and exerting a tumor-suppressive effect in estrogen receptor postivive breast cancer cells.
Asunto(s)
Neoplasias de la Mama , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Regiones Promotoras Genéticas , Femenino , Humanos , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/metabolismo , Retinal-Deshidrogenasa/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/genéticaRESUMEN
BACKGROUND: Oral lichen planus (OLP) is a common T cell-mediated oral mucosal immune inflammatory disease. Intraepithelial lymphocytes (IELs) are a unique subset of T cells that play an important role in regulating immune response. This study aims to investigate the phenotype and the differentiation mechanism of IELs in OLP. METHODS: The expression of CD4, CD8α, CD8ß, T-helper-inducing POZ/Krueppel-like factor (ThPOK), and RUNX family transcription factor 3 (Runx3) in the epithelium and peripheral blood mononuclear cells (PBMCs) of OLP was determined by immunofluorescence and immunohistochemistry. Then, the correlations among them were analyzed. Naïve CD4+ T cells were sorted from blood of OLP patients and stimulated with retinoic acid (RA) and transforming growth factor-ß1 (TGF-ß1). Then the expression of CD4, CD8α, CD8ß, ThPOK, and Runx3 was investigated by immunocytochemistry. RESULTS: CD8α expression and CD8αα+ cells were upregulated in the epithelium of OLP, whereas they were downregulated in PBMCs of OLP. CD8ß was not expressed in the epithelium of OLP. CD4, CD8α, and Runx3 expression and CD4+CD8α+ cells were increased, whereas ThPOK expression was decreased in the epithelium of OLP. CD8α expression was positively correlated with Runx3 expression, whereas ThPOK expression was negatively correlated with Runx3 expression. After RA and TGF-ß1 stimulation, CD8α and Runx3 expression was upregulated, and ThPOK expression was downregulated in naïve CD4+ T cells. CONCLUSION: CD4+CD8αα+ IELs may be the dominant phenotype of IELs in OLP, and the differentiation of CD4+CD8αα+ IELs in OLP is negatively regulated by ThPOK and positively regulated by Runx3.
Asunto(s)
Antígenos CD8 , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Linfocitos Intraepiteliales , Liquen Plano Oral , Fenotipo , Humanos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Liquen Plano Oral/metabolismo , Liquen Plano Oral/inmunología , Liquen Plano Oral/patología , Femenino , Persona de Mediana Edad , Masculino , Adulto , Linfocitos Intraepiteliales/inmunología , Antígenos CD4 , Factores de Transcripción , Anciano , Linfocitos T CD4-Positivos , Mucosa Bucal/metabolismo , Mucosa Bucal/inmunología , Mucosa Bucal/patología , Diferenciación Celular , Proteínas de Unión al ADNRESUMEN
Radiation enteritis remains a major challenge for radiotherapy against abdominal and pelvic malignancies. Nevertheless, there is no approved effective therapy to alleviate irradiation (IR)-induced gastrointestinal (GI) toxicity. In the current study, Cannabidiol (CBD) was found to mitigate intestinal injury by GPX4-mediated ferroptosis resistance upon IR exposure. RNA-sequencing was employed to investigate the underlying mechanism involved in the radio-protective effect of CBD, wherein runt-related transcription factor 3 (RUNX3) and its target genes were changed significantly. Further experiment showed that the transactivation of GPX4 triggered by the direct binding of RUNX3 to its promoter region, or by stimulating the transcriptional activity of NF-κB via RUNX3-mediated LILRB3 upregulation was critical for the anti-ferroptotic effect of CBD upon IR injury. Specially, CBD was demonstrated to be a molecular glue skeleton facilitating the heterodimerization of RUNX3 with its transcriptional chaperone core-biding factor ß (CBFß) thereby promoting their nuclear localization and the subsequent transactivation of GPX4 and LILRB3. In short, our study provides an alternative strategy to counteract IR-induced enteritis during the radiotherapy on abdominal/pelvic neoplasms.
Asunto(s)
Cannabidiol , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Subunidad beta del Factor de Unión al Sitio Principal , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Activación Transcripcional , Cannabidiol/farmacología , Humanos , Animales , Activación Transcripcional/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ratones , Subunidad beta del Factor de Unión al Sitio Principal/metabolismo , Subunidad beta del Factor de Unión al Sitio Principal/genética , Intestinos/efectos de la radiación , Intestinos/patología , Multimerización de Proteína/efectos de los fármacos , FN-kappa B/metabolismo , FN-kappa B/genéticaRESUMEN
Long noncoding RNA MIR17HG was involved with the progression of non-small-cell lung cancer (NSCLC), but specific mechanisms of MIR17HG-mediated immune escape of NSCLC cells were still unknown. The present study investigated the function of MIR17HG on regulatory T cell (Treg)-mediated immune escape and the underlying mechanisms in NSCLC. Expression of MIR17HG and miR-17-5p in NSCLC tissue samples were detected using quantitative real-time PCR (qRT-PCR). A549 and H1299 cells were transfected with sh-MIR17HG, miR-17-5p inhibitor, or sh-MIR17HG + miR-17-5p inhibitor, followed by cocultured with Tregs. Cell proliferation was measured using 5-ethynyl-20-deoxyuridine (Edu) staining assay and cell counting kit-8 (CCK-8) assay. Flow cytometry was used for determining positive numbers of FOXP3+CD4+/CD25+/CD8+ Tregs. Through subcutaneous injection with transfected A549 cells, a xenograft nude mouse model was established. Weights and volumes of xenograft tumors were evaluated. Additionally, the expressions of immune-related factors including transforming growth factor beta (TGF-ß), vascular endothelial growth factor A (VEGF-A), interleukin-10 (IL-10), IL-4, and interferon-gamma (IFN-γ) in cultured cells, were evaluated by enzyme-linked immunosorbent assay and western blot analysis. Then, miR-17-5p was decreased and MIR17HG was enhanced in both NSCLC tissues and cell lines. MIR17HG knockdown significantly suppressed cell proliferation, tumorigenicity, and immune capacity of Tregs in A549 and H1299 cells, whereas sh-MIR17HG significantly reduced expression levels of VEGF-A, TGF-ß, IL-4, and IL-10 but promoted the IFN-γ level in vitro and in vivo. Moreover, downregulation of miR-17-5p significantly reversed the effects of sh-MIR17HG. Additionally, we identified that runt- related transcription factor 3 (RUNX3) was a target of miR-17-5p, and sh-MIR17HG and miR-17-5p mimics downregulated RUNX3 expression. In conclusion, downregulation of MIR17HG suppresses tumorigenicity and Treg-mediated immune escape in NSCLC through downregulating the miR-17-5p/RUNX3 axis, indicating that this axis contains potential biomarkers for NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Regulación hacia Abajo , Neoplasias Pulmonares , Ratones Desnudos , MicroARNs , ARN Largo no Codificante , Linfocitos T Reguladores , Animales , Humanos , Ratones , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ratones Endogámicos BALB C , MicroARNs/genética , ARN Largo no Codificante/genética , Linfocitos T Reguladores/inmunología , Escape del Tumor/genéticaRESUMEN
Objective: Asthma is a chronic heterogeneous airway disease, and imbalanced T-helper type 1 (Th1) and Th2 cell-mediated inflammation contribute to its pathogenesis. Although it has been suggested that androgen and estrogen were involved in development of asthma, the underlying mechanisms remained largely unclear. Studies have demonstrated that Runx3 could promote naive CD4+ T cells to differentiate into Th1 cells. Hence, our study aimed to explore the potential regulatory mechanism of androgen and estrogen on asthma via modulating Runx3. Methods: First, clinical assessments and pulmonary function tests were conducted on 35 asthma patients and 24 healthy controls. The concentrations of androgen, estrogen, and androgen estrogen ratios were assessed in peripheral blood samples of asthma patients and healthy controls. Then, a murine asthma model was established to explore the effects of estrogen and androgen (alone or in combination) on asthma. Third, an in vitro assay was used to explore the mechanism of combination of androgen and estrogen in asthma. Results: We observed decreased androgen and increased estrogen levels in asthma patients compared with healthy controls. In mice with experimental asthma, there were increased serum concentrations of estrogen and decreased serum concentrations of androgen, intervention with combination of androgen and estrogen alleviated airway inflammations, increased Runx3 expressions and elevated Th1 differentiation. In CD4+ T cells co-cultured with bronchial epithelial cells (BECs), treatment with androgen plus estrogen combination promoted Th1 differentiation, which was mitigated by Runx3 knockdown in BECs and enhanced by Runx3 overexpression. Conclusion: These findings suggest that androgen estrogen combination modulate the Th1/Th2 balance via regulating the expression of Runx3 in BECs, thereby providing experimental evidence supporting androgen and estrogen combination as a novel therapy for asthma.
Asunto(s)
Andrógenos , Asma , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Estrógenos , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Andrógenos/sangre , Asma/tratamiento farmacológico , Asma/inmunología , Asma/sangre , Estudios de Casos y Controles , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Modelos Animales de Enfermedad , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Células Th2/efectos de los fármacosRESUMEN
Runt-related transcription factor (RUNX) family members play critical roles in the development of multiple organs. Mammalian RUNX family members, consisting of RUNX1, RUNX2, and RUNX3, have distinct tissue-specific expression and function. In this study, we examined the spatiotemporal expression patterns of RUNX family members in developing kidneys and analyzed the role of RUNX1 during kidney development. In the developing mouse kidney, RUNX1 protein was strongly expressed in the ureteric bud (UB) tip and weakly expressed in the distal segment of the renal vesicle (RV), comma-shaped body (CSB), and S-shaped body (SSB). In contrast, RUNX2 protein was restricted to the stroma, and RUNX3 protein was only expressed in immune cells. We also analyzed the expression of RUNX family members in the cynomolgus monkey kidney. We found that expression patterns of RUNX2 and RUNX3 were conserved between rodents and primates, whereas RUNX1 was only expressed in the UB tip, not in the RV, CSB, or SSB of cynomolgus monkeys, suggesting a species differences. We further evaluated the roles of RUNX1 using two different conditional knockout mice: Runx1f/f:HoxB7-Cre and Runx1f/f:R26-CreERT2 and found no abnormalities in the kidney. Our findings showed that RUNX1, which is mainly expressed in the UB tip, is not essential for kidney development.
Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Riñón , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Riñón/metabolismo , Riñón/embriología , Riñón/crecimiento & desarrollo , Ratones , Macaca fascicularis , Regulación del Desarrollo de la Expresión Génica , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/metabolismo , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
AIM: The impaired function of tubular mitochondria is critical in diabetic kidney disease (DKD) progression. RUNX3 is down-regulated in DKD models. We intend to explore the effects of RUNX3 on mitochondrial dysfunction and renal tubule injury in DKD and related mechanisms. METHODS: The development of diabetes models involved injecting mice with streptozotocin while treating HK-2 cells with high glucose (HG). By using immunohistochemical techniques, the renal localizations of RUNX3 were identified. Levels of adenosine triphosphate (ATP), mitochondrial membrane potential, and biochemical index were detected by appropriate kits. Reactive oxygen species (ROS) generation was assessed with dihydroethidium and MitoSOX Red staining. Apoptosis was assessed by flow cytometry and TUNEL. RUNX3 ubiquitination was measured. RESULTS: RUNX3 was mainly present in renal tubules. Overexpressing RUNX3 increased Mfn2, Mfn1, ATP levels, and mitochondrial membrane potential, reduced Drp1 and ROS levels and cell apoptosis, as well as Cyt-C release into the cytoplasm. RUNX3 overexpression displayed a reduction in urinary albumin to creatinine ratio, Hemoglobin A1c, serum creatinine, and blood urea nitrogen. Overexpressing TLR4 attenuated the inhibitory effect of RUNX3 overexpression on mitochondrial dysfunction and cell apoptosis. HG promoted RUNX3 ubiquitination and SMURF2 expression. RUNX3 knockdown cancelled the inhibitory effect of SMURF2 on mitochondrial dysfunction and cell apoptosis. CONCLUSION: SMURF2 interference inhibits RUNX3 ubiquitination and TLR4/NF-κB signalling pathway, thereby alleviating renal tubule injury.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Diabetes Mellitus Experimental , Nefropatías Diabéticas , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Apoptosis , Línea Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/prevención & control , Túbulos Renales/metabolismo , Túbulos Renales/patología , Potencial de la Membrana Mitocondrial , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genéticaRESUMEN
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory intestinal disease that affects people around the world. The primary cause of IBD is an imbalance in the host immune response to intestinal flora. Several human genes, including IL10, STAT3, IRGM, ATG16L1, NOD2 and RUNX3, are associated with inappropriate immune responses in IBD. It has been reported that homozygous Runx3-knockout (ko) mice spontaneously develop colitis. However, the high mortality rate in these mice within the first two weeks makes it challenging to study the role of Runx3 in colitis. To address this issue, a spontaneous colitis (SC) mouse model carrying a C-terminal truncated form of Runx3 with Tyr319stop point mutation has been generated. After weaning, SC mice developed spontaneous diarrhea and exhibited prominent enlargement of the colon, accompanied by severe inflammatory cell infiltration. Results of immunofluorescence staining showed massive CD4+ T cell infiltration in the inflammatory colon of SC mice. Colonic IL-17A mRNA expression and serum IL-17A level were increased in SC mice. CD4+ T cells from SC mice produced stronger IL-17A than those from wildtype mice in Th17-skewing conditions in vitro. In addition, the percentages of Foxp3+ Treg cells as well as the RORγt+Foxp3+ Treg subset, known for its role in suppressing Th17 response in the gut, were notably lower in colon lamina propria of SC mice than those in WT mice. Furthermore, transfer of total CD4+ T cells from SC mice, but not from wildtype mice, into Rag1-ko host mice resulted in severe autoimmune colitis. In conclusion, the C-terminal truncated Runx3 caused autoimmune colitis associated with Th17/Treg imbalance. The SC mouse model is a feasible approach to investigate the effect of immune response on spontaneous colitis.
Asunto(s)
Colitis , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Modelos Animales de Enfermedad , Linfocitos T Reguladores , Células Th17 , Animales , Células Th17/inmunología , Linfocitos T Reguladores/inmunología , Ratones , Colitis/inmunología , Colitis/inducido químicamente , Colitis/genética , Colitis/etiología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Ratones Noqueados , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/etiología , Ratones Endogámicos C57BL , Interleucina-17/metabolismo , Interleucina-17/genética , Colon/patología , Colon/inmunologíaRESUMEN
Class switch recombination (CSR) diversifies the effector functions of antibodies and involves complex regulation of transcription and DNA damage repair. Here, we show that the deubiquitinase USP7 promotes CSR to immunoglobulin A (IgA) and suppresses unscheduled IgG switching in mature B cells independent of its role in DNA damage repair, but through modulating switch region germline transcription. USP7 depletion impairs Sα transcription, leading to abnormal activation of Sγ germline transcription and increased interaction with the CSR center via loop extrusion for unscheduled IgG switching. Rescue of Sα transcription by transforming growth factor ß (TGF-ß) in USP7-deleted cells suppresses Sγ germline transcription and prevents loop extrusion toward IgG CSR. Mechanistically, USP7 protects transcription factor RUNX3 from ubiquitination-mediated degradation to promote Sα germline transcription. Our study provides evidence for active transcription serving as an anchor to impede loop extrusion and reveals a functional interplay between USP7 and TGF-ß signaling in promoting RUNX3 expression for efficient IgA CSR.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Inmunoglobulina A , Cambio de Clase de Inmunoglobulina , Activación Transcripcional , Peptidasa Específica de Ubiquitina 7 , Animales , Humanos , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Ratones Endogámicos C57BL , Estabilidad Proteica , Factor de Crecimiento Transformador beta/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , UbiquitinaciónRESUMEN
We have recently reported that transcription factor Runx3 is required for pulmonary generation of CD8+ cytotoxic T lymphocytes (CTLs) that play a crucial role in the clearance of influenza A virus (IAV). To understand the underlying mechanisms, we determined the effects of Runx3 knockout (KO) on CD8+ T cell local expansion and phenotypes using an inducible general Runx3 KO mouse model. We found that in contrast to the lungs, Runx3 general KO promoted enlargement of lung-draining mediastinal lymph node (mLN) and enhanced CD8+ and CD4+ T cell expansion during H1N1 IAV infection. We further found that Runx3 deficiency greatly inhibited core 2 O-glycosylation of selectin ligand CD43 on activated CD8+ T cells but minimally affected the cell surface expression of CD43, activation markers (CD44 and CD69) and cell adhesion molecules (CD11a and CD54). Runx3 KO had a minor effect on lung effector CD8+ T cell death by IAV infection. Our findings indicate that Runx3 differently regulates CD8+ T cell expansion in mLNs and lungs by H1N1 IAV infection. Runx3 is required for CD43 core 2 O-glycosylation on activated CD8+ T cells, and the involved Runx3 signal pathway may mediate CD8+ T cell phenotype for pulmonary generation of CTLs.
Asunto(s)
Linfocitos T CD8-positivos , Subunidad alfa 3 del Factor de Unión al Sitio Principal , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Proliferación Celular , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Glicosilación , Subtipo H1N1 del Virus de la Influenza A/inmunología , Leucosialina/metabolismo , Pulmón/virología , Pulmón/metabolismo , Pulmón/inmunología , Pulmón/patología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/inmunología , Activación de Linfocitos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virologíaRESUMEN
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Asunto(s)
Subunidad alfa 3 del Factor de Unión al Sitio Principal , Herpesvirus Humano 8 , Infección Latente , Humanos , Línea Celular Tumoral , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/fisiología , FN-kappa B/metabolismo , Activación Viral , Latencia del Virus , Replicación Viral , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismoRESUMEN
The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.
Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Diferenciación Celular , Linaje de la Célula , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Ratones , Factores de Transcripción/metabolismo , Transcriptoma , MultiómicaRESUMEN
Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.
Asunto(s)
Antígenos CD28 , Esclerosis Múltiple , Humanos , Encéfalo/patología , Antígenos CD28/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Granzimas/metabolismo , Esclerosis Múltiple/genéticaRESUMEN
Oncogenic K-RAS mutations occur in approximately 25% of human lung cancers and are most frequently found in codon 12 (G12C, G12V, and G12D). Mutated K-RAS inhibitors have shown beneficial results in many patients; however, the inhibitors specifically target K-RASG12C and acquired resistance is a common occurrence. Therefore, new treatments targeting all kinds of oncogenic K-RAS mutations with a durable response are needed. RUNX3 acts as a pioneer factor of the restriction (R)-point, which is critical for the life and death of cells. RUNX3 is inactivated in most K-RAS-activated mouse and human lung cancers. Deletion of mouse lung Runx3 induces adenomas (ADs) and facilitates the development of K-Ras-activated adenocarcinomas (ADCs). In this study, conditional restoration of Runx3 in an established K-Ras-activated mouse lung cancer model regressed both ADs and ADCs and suppressed cancer recurrence, markedly increasing mouse survival. Runx3 restoration suppressed K-Ras-activated lung cancer mainly through Arf-p53 pathway-mediated apoptosis and partly through p53-independent inhibition of proliferation. This study provides in vivo evidence supporting RUNX3 as a therapeutic tool for the treatment of K-RAS-activated lung cancers with a durable response.
Asunto(s)
Adenocarcinoma , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma/patología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Genes ras , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Recurrencia Local de Neoplasia/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Osteosarcoma (OS) is characterized by TP53 mutations in humans. In mice, loss of p53 triggers OS development, and osteoprogenitor-specific p53-deleted mice are widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms underlying the initiation or progression of OS following or parallel to p53 inactivation remain largely unknown. Here, we examined the role of transcription factors involved in adipogenesis (adipo-TFs) in p53-deficient OS and identified a novel tumor suppressive molecular mechanism mediated by C/ebpα. C/ebpα specifically interacts with Runx3, a p53 deficiency-dependent oncogene, and, in the same manner as p53, decreases the activity of the oncogenic axis of OS, Runx3-Myc, by inhibiting Runx3 DNA binding. The identification of a novel molecular role for C/ebpα in p53-deficient osteosarcomagenesis underscores the importance of the Runx-Myc oncogenic axis as a therapeutic target for OS.
Asunto(s)
Neoplasias Óseas , Proteína alfa Potenciadora de Unión a CCAAT , Osteosarcoma , Animales , Humanos , Ratones , Neoplasias Óseas/genética , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Osteosarcoma/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
MYC is one of the most commonly dysregulated proto-oncogenes in cancer. MYC promotes cancer initiation and maintenance by regulating multiple biological processes, such as proliferation and stem cell function. Here, we show that developmental regulator RUNX3 targets MYC protein for rapid degradation through the glycogen synthase kinase-3 beta-F-box/WD repeat-containing protein 7 (GSK3ß-FBXW7) proteolytic pathway. The evolutionarily conserved Runt domain of RUNX3 interacts directly with the basic helix-loop-helix leucine zipper of MYC, resulting in the disruption of MYC/MAX and MYC/MIZ-1 interactions, enhanced GSK3ß-mediated phosphorylation of MYC protein at threonine-58 and its subsequent degradation via the ubiquitin-proteasomal pathway. We therefore uncover a previously unknown mode of MYC destabilization by RUNX3 and provide an explanation as to why RUNX3 inhibits early-stage cancer development in gastrointestinal and lung mouse cancer models.