Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pulm Pharmacol Ther ; 84: 102286, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38191068

RESUMEN

Pulmonary fibrosis is a progressive and debilitating lung disease characterized by the excessive accumulation of extracellular matrix (ECM) components within the lung parenchyma. However, the underlying mechanism remains largely elusive, and the treatment options available for pulmonary fibrosis are limited. Interleukin 5 receptor, alpha (IL5RA) is a well-established regulator of eosinophil activation, involved in eosinophil-mediated anti-parasitic activities and allergic reactions. Recent studies have indicated additional roles of IL5RA in lung epithelium and fibroblasts. Nevertheless, its involvement in pulmonary fibrosis remains unclear. In present study, we employed single-cell analyses alongside molecular and cellular assays to unveil the expression of IL5RA in lung epithelial cells. Moreover, using both in vitro and in vivo models, we demonstrated a notable upregulation of epithelial IL5RA during the progression of pulmonary fibrosis. This upregulated IL5RA expression subsequently promotes epithelial-mesenchymal transition (EMT), leading to the generation of mesenchymal phenotype with augmented capability for ECM production. Importantly, our findings uncovered that the pro-fibrotic function of IL5RA is mediated by Jak2/STAT3 signaling cascades. Inhibiting IL5RA has the potential to deactivate Jak2/STAT3 and suppress the downstream EMT process and ECM production, thereby offering a promising therapeutic strategy for pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Humanos , Transición Epitelial-Mesenquimal/fisiología , Fibrosis , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Receptores de Interleucina-5/metabolismo , Factor de Transcripción STAT3/metabolismo
2.
Cell Mol Immunol ; 19(10): 1117-1129, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35982175

RESUMEN

Interleukin 5 (IL-5) plays crucial roles in type 2-high asthma by mediating eosinophil maturation, activation, chemotaxis and survival. Inhibition of IL-5 signaling is considered a strategy for asthma treatment. Here, we identified MARCH2 and MARCH3 as critical negative regulators of IL-5-triggered signaling. MARCH2 and MARCH3 associate with the IL-5 receptor α chain (IL-5Rα) and mediate its K27-linked polyubiquitination at K379 and K383, respectively, and its subsequent lysosomal degradation. Deficiency of MARCH2 or MARCH3 modestly increases the level of IL-5Rα and enhances IL-5-induced signaling, whereas double knockout of MARCH2/3 has a more dramatic effect. March2/3 double knockout markedly increases the proportions of eosinophils in the bone marrow and peripheral blood in mice. Double knockout of March2/3 aggravates ovalbumin (OVA)-induced eosinophilia and causes increased inflammatory cell infiltration, peribronchial mucus secretion and production of Th2 cytokines. Neutralization of Il-5 attenuates OVA-induced airway inflammation and the enhanced effects of March2/3 double deficiency. These findings suggest that MARCH2 and MARCH3 play redundant roles in targeting IL-5Rα for degradation and negatively regulating allergic airway inflammation.


Asunto(s)
Asma , Eosinofilia , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Eosinófilos , Inflamación/metabolismo , Interleucina-5/metabolismo , Interleucina-5/farmacología , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Ligasas/metabolismo , Ligasas/farmacología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/farmacología , Ubiquitina/metabolismo
3.
Ann Allergy Asthma Immunol ; 128(1): 53-60.e3, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34391897

RESUMEN

BACKGROUND: Our previous studies revealed the presence of interleukin-5 (IL-5) receptor alpha chain (IL-5Rα, CD125) on neutrophils in a murine model of influenza and in the lung fluid of children with severe asthma. OBJECTIVE: To further evaluate the functional characteristics and effects of clinical factors and inflammatory variables on neutrophil surface IL-5Rα abundance in lung fluid and blood. METHODS: IL-5Rα expression was quantified by flow cytometry performed on purified neutrophils from blood and bronchoalveolar lavage fluid samples obtained from healthy controls and individuals with asthma. Expression was further confirmed by immunohistochemistry. Functional signaling through the IL-5Rα was evaluated by measurement of IL-5-inducible modulation of neutrophil surface CD62L and IL-5Rα expression. RESULTS: IL-5Rα was consistently present but at a variable magnitude on blood and lung neutrophils. Expression on lung neutrophils was significantly higher than that on blood cells (p"?>P < .001) where their expression was higher in the presence of airway pathogens, especially with respiratory viruses. Increased receptor expression occurred in response to the translocation of preformed receptors from intracellular stores. Receptors were functional as revealed by IL-5-mediated down-regulation of CD62L and the feed-forward up-regulation of reception expression. CONCLUSION: In addition to the expression on eosinophils and basophils, the IL-5Rα is consistently and abundantly expressed on the surface of blood and especially air space neutrophils. These observations support the concept that some of the efficacy of IL-5/IL-5R-targeting biologics observed in asthma may reflect their ability to target neutrophilic air space inflammation.


Asunto(s)
Asma , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Neutrófilos , Humanos , Interleucina-5 , Pulmón , Neutrófilos/metabolismo
4.
J Leukoc Biol ; 108(1): 151-168, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386457

RESUMEN

Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.


Asunto(s)
Eosinófilos/inmunología , Virus de la Influenza A/inmunología , Animales , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos Virales/inmunología , Asma/inmunología , Asma/patología , Asma/virología , Células de la Médula Ósea/patología , Linfocitos T CD8-positivos/inmunología , Respiración de la Célula/genética , Pollos , Desmetilación del ADN , Perros , Eosinófilos/metabolismo , Epigénesis Genética , Femenino , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pulmón/patología , Pulmón/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Fenotipo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Proteínas de Dominio T Box/metabolismo , Transcriptoma/genética , Regulación hacia Arriba
5.
Int J Mol Sci ; 21(11)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466530

RESUMEN

Type 2 innate lymphoid cells (ILC2s) and their adaptive counterpart type 2 T helper (TH2) cells respond to interleukin-33 (IL-33) by producing IL-5, which is a crucial cytokine for eosinophil development in the bone marrow. The aim of this study was to determine if bone marrow ILC2s, TH cells, and eosinophils are locally regulated by IL-33 in terms of number and activation upon exposure to the common aeroallergen house dust mite (HDM). Mice that were sensitized and challenged with HDM by intranasal exposures induced eosinophil development in the bone marrow with an initial increase of IL5Rα+ eosinophil progenitors, following elevated numbers of mature eosinophils and the induction of airway eosinophilia. Bone marrow ILC2s, TH2, and eosinophils all responded to HDM challenge by increased IL-33 receptor (ST2) expression. However, only ILC2s, but not TH cells, revealed increased ST2 expression at the onset of eosinophil development, which significantly correlated with the number of eosinophil progenitors. In summary, our findings suggest that airway allergen challenges with HDM activates IL-33-responsive ILC2s, TH cells, and eosinophils locally in the bone marrow. Targeting the IL-33/ST2 axis in allergic diseases including asthma may be beneficial by decreasing eosinophil production in the bone marrow.


Asunto(s)
Antígenos Dermatofagoides/inmunología , Células de la Médula Ósea/inmunología , Eosinófilos/inmunología , Interleucina-33/inmunología , Células Th2/inmunología , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Células Cultivadas , Eosinófilos/citología , Subunidad alfa del Receptor de Interleucina-5/genética , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Activación de Linfocitos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Th2/citología
6.
Ann Allergy Asthma Immunol ; 125(3): 294-303.e1, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32304877

RESUMEN

BACKGROUND: Severe asthma (SA) often requires subspecialist management and treatment with biologic therapies or maintenance systemic corticosteroids (mSCS). OBJECTIVE: To describe contemporary, real-world biologic and mSCS use among US subspecialist-treated patients with SA. METHODS: CHRONICLE is an ongoing, noninterventional study of US adults with SA treated by allergists/immunologists or pulmonologists. Eligible patients are receiving biologics or mSCS or are uncontrolled on high-dosage inhaled corticosteroids with additional controllers. Biologic and mSCS use patterns and patient characteristics were summarized for patients enrolled between February 2018 and February 2019. RESULTS: Among protocol-eligible patients, 58% and 12% were receiving biologics and mSCS, respectively, with 7% receiving both. Among 796 enrolled, most were women (67%), non-Hispanic white (71%), of suburban residence (50%), and had elevated body mass index (median: 31). Respiratory and nonrespiratory comorbidities were highly prevalent. With biologics (n = 557), 51% were anti-immunoglobulin E and 48% were anti-interleukin (IL)-5/IL-5Rα; from May 2018, 76% of initiations were anti-IL-5/IL-5Rα. In patients receiving mSCS, median prednisone-equivalent daily dose was 10 mg. Multivariate logistic regression found that patients of hospital clinics, sites with fewer nonphysician staff, and with a recorded concurrent chronic obstructive pulmonary disease diagnosis were less likely to receive biologics and more likely to receive mSCS. CONCLUSION: In this real-world sample of US subspecialist-treated patients with SA not controlled by high-dosage inhaled corticosteroids with additional controllers, mSCS use was infrequent and biologic use was common, with similar prevalence of anti-immunoglobulin E and anti-IL-5/IL-5Rα biologics. Treatment differences associated with patient and site characteristics should be investigated to ensure equitable access to biologics and minimize mSCS use. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03373045.


Asunto(s)
Corticoesteroides/uso terapéutico , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Asma/metabolismo , Femenino , Humanos , Inmunoglobulina E/metabolismo , Interleucina-5/metabolismo , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto Joven
7.
J Allergy Clin Immunol ; 145(6): 1574-1584, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32199912

RESUMEN

BACKGROUND: The cause of severe nasal polyposis in aspirin-exacerbated respiratory disease (AERD) is unknown. Elevated antibody levels have been associated with disease severity in nasal polyps, but upstream drivers of local antibody production in nasal polyps are undetermined. OBJECTIVE: We sought to identify upstream drivers and phenotypic properties of local antibody-expressing cells in nasal polyps from subjects with AERD. METHODS: Sinus tissue was obtained from subjects with AERD, chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP), CRS without nasal polyps, and controls without CRS. Tissue antibody levels were quantified via ELISA and immunohistochemistry and were correlated with disease severity. Antibody-expressing cells were profiled with single-cell RNA sequencing, flow cytometry, and immunofluorescence, with IL-5Rα function determined through IL-5 stimulation and subsequent RNA sequencing and quantitative PCR. RESULTS: Tissue IgE and IgG4 levels were elevated in AERD compared with in controls (P < .01 for IgE and P < .001 for IgG4 vs CRSwNP). Subjects with AERD whose nasal polyps recurred rapidly had higher IgE levels than did subjects with AERD, with slower regrowth (P = .005). Single-cell RNA sequencing revealed increased IL5RA, IGHG4, and IGHE in antibody-expressing cells from patients with AERD compared with antibody-expressing cells from patients with CRSwNP. There were more IL-5Rα+ plasma cells in the polyp tissue from those with AERD than in polyp tissue from those with CRSwNP (P = .026). IL-5 stimulation of plasma cells in vitro induced changes in a distinct set of transcripts. CONCLUSIONS: Our study identifies an increase in antibody-expressing cells in AERD defined by transcript enrichment of IL5RA and IGHG4 or IGHE, with confirmed surface expression of IL-5Rα and functional IL-5 signaling. Tissue IgE and IgG4 levels are elevated in AERD, and higher IgE levels are associated with faster nasal polyp regrowth. Our findings suggest a role for IL-5Rα+ antibody-expressing cells in facilitating local antibody production and severe nasal polyps in AERD.


Asunto(s)
Aspirina/efectos adversos , Inmunoglobulina E/metabolismo , Inmunoglobulina G/metabolismo , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pólipos Nasales/metabolismo , Sinusitis/metabolismo , Adulto , Anciano , Anticuerpos/metabolismo , Femenino , Humanos , Interleucina-5/metabolismo , Masculino , Persona de Mediana Edad , Pólipos Nasales/inducido químicamente , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Análisis de Secuencia de ARN/métodos , Sinusitis/inducido químicamente , Adulto Joven
8.
Front Immunol ; 11: 593748, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488590

RESUMEN

Patients with severe eosinophilic asthma (SEA; characterized by persistent eosinophilia in blood and airway tissues) experience frequent asthma exacerbations with poor clinical outcomes. Interleukin 5 (IL-5) and IL-5 receptor alpha subunit (IL-5α) play key roles in eosinophilia maintenance, and relevant therapeutic strategies include the development of antibodies (Abs) against IL-5 or IL-5α to control eosinophilia. Benralizumab, an anti-IL-5α Ab that depletes eosinophils mainly via Ab-dependent cell-mediated cytotoxicity and through blockage of IL-5 function on eosinophils, has been clinically approved for patients with SEA. Here, we report engineering of a new humanized anti-IL-5Rα Ab with potent biological activity. We first raised murine Abs against human IL-5Rα, humanized a leading murine Ab, and then further engineered the humanized Abs to enhance their affinity for IL-5Rα using the yeast surface display technology. The finally engineered version of the Ab, 5R65.7, with affinity (KD ≈ 4.64 nM) stronger than that of a clinically relevant benralizumab analogue (KD ≈ 26.8 nM) showed improved neutralizing activity toward IL-5-dependent cell proliferation in a reporter cell system. Domain level Ab epitope mapping revealed that 5R65.7 recognizes membrane-proximal domain 3 of IL-5Rα, distinct from domain I epitope of the benralizumab analogue. In ex vivo assays with peripheral eosinophils from patients with SEA and healthy donors, 5R65.7 manifested more potent biological activities than the benralizumab analogue did, including inhibition of IL-5-dependent proliferation of eosinophils and induction of eosinophil apoptosis through autologous natural-killer-cell-mediated Ab-dependent cell-mediated cytotoxicity. Our study provides a potent anti-IL-5Rα Ab, 5R65.7, which is worthy of further testing in preclinical and clinical trials against SEA as a potential alternative to the current therapeutic arsenal.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Subunidad alfa del Receptor de Interleucina-5/antagonistas & inhibidores , Animales , Antiasmáticos/efectos adversos , Antiasmáticos/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Asma/complicaciones , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Estudios de Casos y Controles , Eosinófilos/efectos de los fármacos , Eosinófilos/inmunología , Eosinófilos/metabolismo , Mapeo Epitopo/métodos , Epítopos/inmunología , Humanos , Inmunización , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Ratones , Proteínas Recombinantes
9.
Int J Chron Obstruct Pulmon Dis ; 14: 1045-1051, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31190789

RESUMEN

Many patients with chronic obstructive pulmonary disease (COPD) continue to experience exacerbations despite receiving standard-of-care treatments. Novel approaches to COPD treatment focus on understanding and targeting molecular mechanisms of airway inflammation, airway obstruction, remodeling and lung destruction. Several identified phenotypes and endotypes of COPD will pave the future path for a more personalized approach to therapy. Although well known to be associated with neutrophilic inflammation, COPD may also be driven by eosinophilic inflammation both at stable states and during exacerbation. Targeting eosinophilic inflammation has been successful in managing severe eosinophilic asthma and may hold promise in certain phenotypes of COPD. The most promising biologic treatments at an advanced stage of development are agents blocking interleukin (IL)-5 or its receptor. This review examines our current understanding of the eosinophilic inflammation in COPD and the rationale for IL-5 targeting agents.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Eosinófilos/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-5/antagonistas & inhibidores , Interleucina-5/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Animales , Antiinflamatorios/efectos adversos , Anticuerpos Monoclonales Humanizados/efectos adversos , Eosinófilos/metabolismo , Interleucina-5/metabolismo , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pulmón/metabolismo , Pulmón/fisiopatología , Terapia Molecular Dirigida , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento
11.
J Pharm Biomed Anal ; 148: 280-287, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29059618

RESUMEN

Eosinophilic asthma is characterized by the eosinophilic inflammation with the allergen independent activation of Th2 lymphocytes. Since IL-5 plays an important role in the maturation, survival and migration of eosinophils, hence the pathogenesis of eosinophilic asthma, biotherapeutics targeting IL-5/IL-5Rα have been developed and/or marketed, including Mepolizumab, Reslizumab, and Benralizumab. Accurate determination of bioactivity is crucial for the safety and efficacy of therapeutic antibodies. The current mode of action (MOA) based method used in the quality control and stability tests for anti-IL-5 mAbs is anti-proliferation assay, which is tedious with long duration and high variation. We describe here the development and validation of a reporter gene assay (RGA), based on an IL-5-dependent TF-1 cell line variant we established that stably expresses the luciferase reporter under the control of STAT5 response elements. After careful optimization, we demonstrate the excellent specificity, precision, accuracy and linearity of the established RGA. Our study also proves that the assay is superior on precision, sensitivity and assay simplicity to the anti-proliferation assay. The established RGA is also applicable to another anti-IL-5Rα mAb. These results show for the first time that this novel RGA, based on the IL-5-IL-5R-STAT5 pathway, can be a valuable supplement to the anti-proliferation assay and employed in the bioactivity determination of anti-IL-5/anti-IL-5Rα biotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Bioensayo/métodos , Genes Reporteros/genética , Interleucina-5/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Luciferasas/genética , Factor de Transcripción STAT5/metabolismo , Sensibilidad y Especificidad
12.
J Infect Dis ; 216(11): 1444-1451, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29029332

RESUMEN

We have previously reported that myeloid-derived suppressor cells (MDSC), which are a heterogeneous population of immunosuppressive immature myeloid cells, expanded during chronic Staphylococcus aureus infection and promoted bacterial persistence by inhibiting effector T cells. Two major MDSC subsets, including monocytic MDSC and granulocytic MDSC, have been described to date. Here, we identified a new subset of MDSC (Eo-MDSC) in S. aureus-infected mice that phenotypically resembles eosinophils. Eo-MDSC exhibit eosinophilic cytoplasmic granules and express CD11b, the eosinophil marker Syglec-F, variable levels of CCR3, and low levels of interleukin-5Rα. Furthermore, Eo-MDSC accumulated at the site of infection and exerted a potent immunosuppressive effect on T-cell responses that was mediated by nitric oxide-dependent depletion of l-arginine. Increases in the number of Eo-MDSC by adoptive transfer caused a significant exacerbation of infection in S. aureus-infected mice. This study sheds new light on the heterogeneity and complexity of MDSC during chronic infection.


Asunto(s)
Eosinófilos/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/microbiología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/metabolismo , Traslado Adoptivo , Animales , Arginina , Antígeno CD11b/metabolismo , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Citocinas/biosíntesis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Tolerancia Inmunológica/inmunología , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/patología , Óxido Nítrico , Fenotipo , Receptores CCR3/metabolismo , Bazo/microbiología , Bazo/patología , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología , Linfocitos T/efectos de los fármacos , Linfocitos T Reguladores
13.
J Physiol Biochem ; 73(2): 259-266, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28132394

RESUMEN

The primary features of Alzheimer's disease (AD) are extracellular amyloid plaques consisting mainly of deposits of amyloid ß (Aß) peptides and intracellular neurofibrillary tangles (NFTs). Sets of evidence suggest that interleukin-5 (IL-5) is involved in the pathogenesis of AD. Herein, we investigated the protective role of IL-5 in PC12 cells, to provide new insights into understanding this disease. Western blot was employed to assess the protein levels of Bax and phospho-tau as well as phospho-JAK2; MTT assay was performed to decipher cell viability. Treatment of IL-5 decreased Aß25-35-induced tau phosphorylation and apoptosis, effects blunted by JAK2 inhibition. IL-5 prevents Aß25-35-evoked tau protein hyperphosphorylation and apoptosis through JAK2 signaling.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apoptosis , Subunidad alfa del Receptor de Interleucina-5/agonistas , Interleucina-5/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas tau/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-5/antagonistas & inhibidores , Subunidad alfa del Receptor de Interleucina-5/genética , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/química , Janus Quinasa 2/metabolismo , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Células PC12 , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Pirrolidinas/farmacología , Interferencia de ARN , Ratas , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología
14.
Int Immunopharmacol ; 43: 140-146, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27992791

RESUMEN

BACKGROUND: Radix Rehmanniae Preparata is a traditional Chinese herbal medicine used to treat asthma, and catalpol is one of the main active ingredients in this herb. In the present study, the effects of catalpol on asthma and the underlying mechanism were explored. METHODS: Mice with ovalbumin (OVA)-induced asthma were given 5 or 10mg/kg catalpol from Day 15 to Day 28 (intraperitoneal injection). Histopathologic changes were detected by Hematoxylin and Eosin staining and Periodic Acid Schiff staining. The levels of IgE, interleukin (IL)-4, IL-5 and eotaxin were measured by ELISA. The numbers of lymphocytes, monocytes, basophils and eosinophils in the bronchoalveolar lavage fluid were determined by Wright-Giemsa staining. The expression and distribution of eotaxin and C-C chemokine receptor 3 (CCR3) were detected by immunohistochemistry and immunofluorescence. The expression of interleukin-5 receptor α (IL-5Rα) was detected by Western blot assay. RESULTS: Catalpol inhibited OVA-induced inflammation and IgE secretion in the lung. OVA-induced type 2 inflammation was suppressed by catalpol as evidenced by decreased levels of IL-4 and IL-5. Moreover, catalpol inhibited the aberrant eosinophil infiltration in the lungs, and also suppressed OVA-induced elevation of eosinophil chemokine eotaxin and its receptor CCR3. In addition, IL-5Rα expression in the bone marrow cells derived from catalpol-treated asthmatic mice was lower than that from the untreated asthmatic mice. CONCLUSION: Our study demonstrated that catalpol attenuated OVA-induced asthma and inhibit the infiltration of inflammatory cells, especially eosinophils, into the lung. This study suggests that catalpol may become a promising drug for the treatment of asthma.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Medicamentos Herbarios Chinos/uso terapéutico , Eosinófilos/efectos de los fármacos , Glucósidos Iridoides/uso terapéutico , Pulmón/efectos de los fármacos , Animales , Movimiento Celular/efectos de los fármacos , Quimiocina CCL11/metabolismo , Eosinófilos/inmunología , Humanos , Inmunoglobulina E/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Receptores CCR3/metabolismo
15.
Oncotarget ; 8(2): 2037-2043, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27682872

RESUMEN

Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment).We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.


Asunto(s)
Antituberculosos/uso terapéutico , Linfocitos B/efectos de los fármacos , Proteína Ligando Fas/genética , Subunidad alfa del Receptor de Interleucina-5/genética , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores/metabolismo , Biomarcadores Farmacológicos , Estudios de Casos y Controles , Monitoreo de Drogas/métodos , Proteína Ligando Fas/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Masculino , Proyectos Piloto , Pronóstico , ARN Mensajero/efectos de los fármacos , Resultado del Tratamiento , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/inmunología
16.
J Immunol ; 197(9): 3445-3453, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27683753

RESUMEN

Eosinophils are important in the pathogenesis of many diseases, including asthma, eosinophilic esophagitis, and eczema. Whereas IL-5 is crucial for supporting mature eosinophils (EoMs), the signals that support earlier eosinophil lineage events are less defined. The IL-33R, ST2, is expressed on several inflammatory cells, including eosinophils, and is best characterized for its role during the initiation of allergic responses in peripheral tissues. Recently, ST2 expression was described on hematopoietic progenitor subsets, where its function remains controversial. Our findings demonstrate that IL-33 is required for basal eosinophil homeostasis, because both IL-33- and ST2-deficient mice exhibited diminished peripheral blood eosinophil numbers at baseline. Exogenous IL-33 administration increased EoMs in both the bone marrow and the periphery in wild-type and IL-33-deficient, but not ST2-deficient, mice. Systemic IL-5 was also increased under this treatment, and blocking IL-5 with a neutralizing Ab ablated the IL-33-induced EoM expansion. The homeostatic hypereosinophilia seen in IL-5-transgenic mice was significantly lower with ST2 deficiency despite similar elevations in systemic IL-5. Finally, in vitro treatment of bone marrow cells with IL-33, but not IL-5, led to specific early expansion of IL-5Rα-expressing precursor cells. In summary, our findings establish a basal defect in eosinophilopoiesis in IL-33- and ST2-deficient mice and a mechanism whereby IL-33 supports EoMs by driving both systemic IL-5 production and the expansion of IL-5Rα-expressing precursor cells.


Asunto(s)
Eosinófilos/fisiología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Interleucina-5/metabolismo , Neutrófilos/fisiología , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Regulación de la Expresión Génica , Hematopoyesis , Homeostasis , Humanos , Proteína 1 Similar al Receptor de Interleucina-1/genética , Interleucina-33/genética , Interleucina-5/genética , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
18.
J Immunol ; 195(6): 2529-39, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26276876

RESUMEN

IL-5 is a major therapeutic target to reduce eosinophilia. However, all of the eosinophil-activating cytokines, such as IL-5, IL-3, and GM-CSF, are typically present in atopic diseases, including allergic asthma. As a result of the functional redundancy of these three cytokines on eosinophils and the loss of IL-5R on airway eosinophils, it is important to take IL-3 and GM-CSF into account to efficiently reduce tissue eosinophil functions. Moreover, these three cytokines signal through a common ß-chain receptor but yet differentially affect protein production in eosinophils. Notably, the increased ability of IL-3 to induce the production of proteins, such as semaphorin-7A, without affecting mRNA levels suggests a unique influence of IL-3 on translation. The purpose of this study was to identify the mechanisms by which IL-3 distinctively affects eosinophil function compared with IL-5 and GM-CSF, with a focus on protein translation. Peripheral blood eosinophils were used to study intracellular signaling and protein translation in cells activated with IL-3, GM-CSF, or IL-5. We establish that, unlike GM-CSF or IL-5, IL-3 triggers prolonged signaling through activation of ribosomal protein S6 (RPS6) and the upstream kinase 90-kDa ribosomal S6 kinase (p90S6K). Blockade of p90S6K activation inhibited phosphorylation of RPS6 and IL-3-enhanced semaphorin-7A translation. Furthermore, in an allergen-challenged environment, in vivo phosphorylation of RPS6 and p90S6K was enhanced in human airway compared with circulating eosinophils. Our findings provide new insights into the mechanisms underlying differential activation of eosinophils by IL-3, GM-CSF, and IL-5. These observations identify IL-3 and its downstream intracellular signals as novel targets that should be considered to modulate eosinophil functions.


Asunto(s)
Eosinófilos/fisiología , Interleucina-3/inmunología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteína S6 Ribosómica/metabolismo , Asma/inmunología , Células Cultivadas , Activación Enzimática , Eosinofilia/inmunología , Eosinófilos/citología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Humanos , Hipersensibilidad/inmunología , Interleucina-5/inmunología , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Fosforilación , ARN Mensajero/biosíntesis , Proteína S6 Ribosómica/genética , Proteínas Quinasas S6 Ribosómicas/antagonistas & inhibidores , Semaforinas/biosíntesis , Semaforinas/genética , Transducción de Señal/genética
19.
Ann Allergy Asthma Immunol ; 114(4): 299-307.e2, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25704963

RESUMEN

BACKGROUND: Chronic rhinosinusitis with nasal polyps (CRSwNP) is frequently associated with asthma. Mucosal eosinophil (EO) infiltrate has been found to correlate with asthma and disease severity but not necessarily in every patient. Other multifactorial immune processes are required to determine disease endotypes and response to treatment. OBJECTIVE: To evaluate EO immunomodulation for migration and survival in accordance with inflammatory protein profiles and asthmatic status in CRSwNP. METHODS: Ninety-three patients (47 with asthma) with CRSwNP were included. Each patient was staged clinically according to symptom severity and polyp size. Nasal secretions were collected to establish a cytokine profile. The EOs were purified from blood samples and nasal polyps to delineate specific immunophenotypes by flow cytometry and determine in vitro EO survival in relation to asthmatic status. RESULTS: The CRSwNP in patients with asthma was characterized by eosinophilia and a high level of interleukin (IL)-5 in nasal secretions. Although EOs exhibited activation profiles after mucosal migration, there was relative down-expression of IL-5 receptor-α (IL-5Rα) on nasal EOs in patients with asthma. The EO culture with IL-5 and IL-9 showed an antiapoptotic effect in patients with asthma through IL-5Rα modulation. CONCLUSION: Mucosal eosinophilia seems to be induced by EO nasal trapping through modulation of adhesion receptors. In patients with asthma, EO involvement is enhanced by the antiapoptotic synergistic action of T-helper cell type 2 cytokines on IL-5Rα expression. This study shows for the first time that IL-9 is involved in EO homeostasis in CRSwNP and could explain the low benefit of anti-IL-5 therapy for some patients with asthma and nasal polyposis.


Asunto(s)
Asma/inmunología , Eosinófilos/inmunología , Pólipos Nasales/inmunología , Rinitis/inmunología , Sinusitis/inmunología , Asma/complicaciones , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Enfermedad Crónica , Progresión de la Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Interleucina-5/metabolismo , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Interleucina-9/metabolismo , Masculino , Persona de Mediana Edad , Pólipos Nasales/complicaciones , Rinitis/complicaciones , Sinusitis/complicaciones
20.
Int Arch Allergy Immunol ; 161 Suppl 2: 98-106, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711860

RESUMEN

BACKGROUND: Elicitation of contact hypersensitivity requires antigen-specific immunoglobulin M (IgM) antibodies that trigger recruitment of effector T cells to the local tissue. These antigen-specific IgM antibodies are produced by B-1-like 'initiator B cells'. In this study, we compared susceptibility to hapten-induced contact hypersensitivity between BALB/c and C57BL/6 mice. METHODS: BALB/c and C57BL/6 mice were sensitized by painting oxazolone onto the skin and were challenged on the ears with the same hapten on day 4. Ear thickness and serum hapten-specific IgM levels were measured at 24 h post-challenge. Peritoneal cells were harvested and the numbers of B cell subpopulations were counted. Interleukin (IL)-5 was intraperitoneally injected into BALB/c and C57BL/6 mice, and the change in numbers of B cell subpopulations and serum IgM levels was monitored. RESULTS: Oxazolone induced stronger ear swelling and specific IgM responses in BALB/c mice than in C57BL/6 mice. BALB/c mice had higher numbers of peritoneal B-1 cells than C57BL/6 mice at steady state. IL-5 injection increased the number of peritoneal B-1 cells and serum IgM levels more significantly in BALB/ mice than in C57BL/6 mice. CONCLUSIONS: BALB/c mice exhibit higher susceptibility to hapten-induced contact hypersensitivity than C57BL/6 mice, most likely because they have a higher number of B-1 cells, leading to massive production of hapten-specific IgM antibodies upon contact sensitization. The differences in the number of B-1 cells and IgM responses between the two strains of mice may be attributed to the difference in responsiveness of B-1 cells to IL-5.


Asunto(s)
Linfocitos B/inmunología , Dermatitis por Contacto/inmunología , Interleucina-5/metabolismo , Animales , Antígenos/inmunología , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Dermatitis por Contacto/metabolismo , Susceptibilidad a Enfermedades , Femenino , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Subunidad alfa del Receptor de Interleucina-5/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Cavidad Peritoneal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...