Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(49): 8562-8577, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37845033

RESUMEN

Pathogenic variants in SCN1B have been linked to severe developmental epileptic encephalopathies including Dravet syndrome. Scn1b knock-out (KO) mice model SCN1B loss-of-function (LOF) disorders, demonstrating seizures, developmental delays, and early death. SCN1B encodes the protein ß1, an ion channel auxiliary subunit that also has roles in cell adhesion, neurite outgrowth, and gene expression. The goal of this project is to better understand of how loss of Scn1b alters information processing in the brain, resulting in seizures and associated cognitive dysfunction. Using slice electrophysiology in the CA1 region of the hippocampus from male and female Scn1b KO mice and wild-type (WT) littermates, we found that processing of physiologically relevant patterned Schaffer collateral (SC) stimulation produces larger, prolonged depolarizations and increased spiking in KO neurons compared with WTs. KO neurons exhibit enhanced intrinsic excitability, firing more action potentials with current injection. Interestingly, SC stimulation produces smaller, more facilitating excitatory and IPSCs in KO pyramidal neurons, but larger postsynaptic potentials (PSPs) with the same stimulation. We also found reduced intrinsic firing of parvalbumin (PV)-expressing interneurons and disrupted recruitment of both parvalbumin-expressing and somatostatin (SST)-expressing interneurons in response to patterned synaptic stimulation. Neuronal information processing relies on the interplay between synaptic properties, intrinsic properties that amplify or suppress incoming synaptic signals, and firing properties that produce cellular output. We found changes at each of these levels in Scn1b KO pyramidal neurons, resulting in fundamentally altered cellular information processing in the hippocampus that likely contributes to the complex phenotypes of SCN1B-linked epileptic encephalopathies.SIGNIFICANCE STATEMENT Genetic developmental epileptic encephalopathies have limited treatment options, in part because of our lack of understanding of how genetic changes result in dysfunction at the cellular and circuit levels. SCN1B is a gene linked to Dravet syndrome and other developmental epileptic encephalopathies, and Scn1b knock-out (KO) mice phenocopy the human disease, allowing us to study underlying neurophysiological changes. Here, we found changes at all levels of neuronal information processing in brains lacking Scn1b, including intrinsic excitability, synaptic properties, and synaptic integration, resulting in greatly enhanced input/output functions of the hippocampus. Our study shows that loss of Scn1b results in a complex array of cellular and network changes that fundamentally alters information processing in the hippocampus.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Ratones , Animales , Masculino , Femenino , Humanos , Ratones Noqueados , Parvalbúminas/metabolismo , Hipocampo/metabolismo , Células Piramidales/fisiología , Epilepsia/genética , Epilepsias Mioclónicas/genética , Convulsiones , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
2.
Sci Rep ; 13(1): 8887, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264112

RESUMEN

Voltage gated sodium channels (VGSCs) are required for action potential initiation and propagation in mammalian neurons. As with other ion channel families, VGSC density varies between neurons. Importantly, sodium current (INa) density variability is reduced in pyramidal neurons of Scn1b null mice. Scn1b encodes the VGSC ß1/ ß1B subunits, which regulate channel expression, trafficking, and voltage dependent properties. Here, we investigate how variable INa density in cortical layer 6 and subicular pyramidal neurons affects spike patterning and network synchronization. Constitutive or inducible Scn1b deletion enhances spike timing correlations between pyramidal neurons in response to fluctuating stimuli and impairs spike-triggered average current pattern diversity while preserving spike reliability. Inhibiting INa with a low concentration of tetrodotoxin similarly alters patterning without impairing reliability, with modest effects on firing rate. Computational modeling shows that broad INa density ranges confer a similarly broad spectrum of spike patterning in response to fluctuating synaptic conductances. Network coupling of neurons with high INa density variability displaces the coupling requirements for synchronization and broadens the dynamic range of activity when varying synaptic strength and network topology. Our results show that INa heterogeneity between neurons potently regulates spike pattern diversity and network synchronization, expanding VGSC roles in the nervous system.


Asunto(s)
Neuronas , Sodio , Ratones , Animales , Sodio/metabolismo , Reproducibilidad de los Resultados , Tetrodotoxina/farmacología , Neuronas/metabolismo , Potenciales de Acción , Ratones Noqueados , Mamíferos/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
3.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35603785

RESUMEN

Loss-of-function (LOF) variants in SCN1B, encoding the voltage-gated sodium channel ß1/ß1B subunits, are linked to neurological and cardiovascular diseases. Scn1b-null mice have spontaneous seizures and ventricular arrhythmias and die by approximately 21 days after birth. ß1/ß1B Subunits play critical roles in regulating the excitability of ventricular cardiomyocytes and maintaining ventricular rhythmicity. However, whether they also regulate atrial excitability is unknown. We used neonatal Scn1b-null mice to model the effects of SCN1B LOF on atrial physiology in pediatric patients. Scn1b deletion resulted in altered expression of genes associated with atrial dysfunction. Scn1b-null hearts had a significant accumulation of atrial collagen, increased susceptibility to pacing induced atrial fibrillation (AF), sinoatrial node (SAN) dysfunction, and increased numbers of cholinergic neurons in ganglia that innervate the SAN. Atropine reduced the incidence of AF in null animals. Action potential duration was prolonged in null atrial myocytes, with increased late sodium current density and reduced L-type calcium current density. Scn1b LOF results in altered atrial structure and AF, demonstrating the critical role played by Scn1b in atrial physiology during early postnatal mouse development. Our results suggest that SCN1B LOF variants may significantly impact the developing pediatric heart.


Asunto(s)
Fibrilación Atrial , Potenciales de Acción , Animales , Fibrilación Atrial/genética , Humanos , Ratones , Ratones Noqueados , Nodo Sinoatrial/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
4.
Am J Physiol Heart Circ Physiol ; 322(6): H975-H993, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35394857

RESUMEN

Voltage-gated sodium channels (VGSCs) are macromolecular assemblies composed of a number of proteins regulating channel conductance and properties. VGSCs generate Na+ current (INa) in myocytes and play fundamental roles in excitability and impulse conduction in the heart. Moreover, VGSCs condition mechanical properties of the myocardium, a process that appears to involve the late component of INa. Variants in the gene SCN1B, encoding the VGSC ß1- and ß1B-subunits, result in inherited neurological disorders and cardiac arrhythmias. But the precise contributions of ß1/ß1B-subunits and VGSC integrity to the overall function of the adult heart remain to be clarified. For this purpose, adult mice with cardiac-restricted, inducible deletion of Scn1b (conditional knockout, cKO) were studied. Myocytes from cKO mice had increased densities of fast (+20%)- and slow (+140%)-inactivating components of INa, with respect to control cells. By echocardiography and invasive hemodynamics, systolic function was preserved in cKO mice, but diastolic properties and ventricular compliance were compromised, with respect to control animals. Importantly, inhibition of late INa with GS967 normalized left ventricular filling pattern and isovolumic relaxation time in cKO mice. At the cellular level, cKO myocytes presented delayed kinetics of Ca2+ transients and cell mechanics, defects that were corrected by inhibition of INa. Collectively, these results document that VGSC ß1/ß1B-subunits modulate electrical and mechanical function of the heart by regulating, at least in part, Na+ influx in cardiomyocytes.NEW & NOTEWORTHY We have investigated the consequences of deletion of Scn1b, the gene encoding voltage-gated sodium channel ß1-subunits, on myocyte and cardiac function. Our findings support the notion that Scn1b expression controls properties of Na+ influx and Ca2+ cycling in cardiomyocytes affecting the modality of cell contraction and relaxation. These effects at the cellular level condition electrical recovery and diastolic function in vivo, substantiating the multifunctional role of ß1-subunits in the physiology of the heart.


Asunto(s)
Sodio , Canales de Sodio Activados por Voltaje , Potenciales de Acción , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Diástole , Ratones , Miocitos Cardíacos/metabolismo , Sodio/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
5.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34156986

RESUMEN

Native myocardial voltage-gated sodium (NaV) channels function in macromolecular complexes comprising a pore-forming (α) subunit and multiple accessory proteins. Here, we investigated the impact of accessory NaVß1 and NaVß3 subunits on the functional effects of 2 well-known class Ib antiarrhythmics, lidocaine and ranolazine, on the predominant NaV channel α subunit, NaV1.5, expressed in the mammalian heart. We showed that both drugs stabilized the activated conformation of the voltage sensor of domain-III (DIII-VSD) in NaV1.5. In the presence of NaVß1, the effect of lidocaine on the DIII-VSD was enhanced, whereas the effect of ranolazine was abolished. Mutating the main class Ib drug-binding site, F1760, affected but did not abolish the modulation of drug block by NaVß1/ß3. Recordings from adult mouse ventricular myocytes demonstrated that loss of Scn1b (NaVß1) differentially affected the potencies of lidocaine and ranolazine. In vivo experiments revealed distinct ECG responses to i.p. injection of ranolazine or lidocaine in WT and Scn1b-null animals, suggesting that NaVß1 modulated drug responses at the whole-heart level. In the human heart, we found that SCN1B transcript expression was 3 times higher in the atria than ventricles, differences that could, in combination with inherited or acquired cardiovascular disease, dramatically affect patient response to class Ib antiarrhythmic therapies.


Asunto(s)
Atrios Cardíacos , Lidocaína/farmacología , Miocitos Cardíacos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ranolazina/farmacología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Antiarrítmicos/farmacología , Biomarcadores Farmacológicos/metabolismo , Electrocardiografía/métodos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
6.
JCI Insight ; 6(3)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33411695

RESUMEN

Loss-of-function (LOF) variants in SCN1B, encoding voltage-gated sodium channel ß1 subunits, are linked to human diseases with high risk of sudden death, including developmental and epileptic encephalopathy and cardiac arrhythmia. ß1 Subunits modulate the cell-surface localization, gating, and kinetics of sodium channel pore-forming α subunits. They also participate in cell-cell and cell-matrix adhesion, resulting in intracellular signal transduction, promotion of cell migration, calcium handling, and regulation of cell morphology. Here, we investigated regulated intramembrane proteolysis (RIP) of ß1 by BACE1 and γ-secretase and show that ß1 subunits are substrates for sequential RIP by BACE1 and γ-secretase, resulting in the generation of a soluble intracellular domain (ICD) that is translocated to the nucleus. Using RNA sequencing, we identified a subset of genes that are downregulated by ß1-ICD overexpression in heterologous cells but upregulated in Scn1b-null cardiac tissue, which lacks ß1-ICD signaling, suggesting that the ß1-ICD may normally function as a molecular brake on gene transcription in vivo. We propose that human disease variants resulting in SCN1B LOF cause transcriptional dysregulation that contributes to altered excitability. Moreover, these results provide important insights into the mechanism of SCN1B-linked channelopathies, adding RIP-excitation coupling to the multifunctionality of sodium channel ß1 subunits.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Acoplamiento Excitación-Contracción/genética , Acoplamiento Excitación-Contracción/fisiología , Expresión Génica , Células HEK293 , Humanos , Mutación con Pérdida de Función , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteolisis , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Transducción de Señal , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/deficiencia , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
7.
J Biol Chem ; 295(30): 10380-10393, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32503841

RESUMEN

Voltage-gated sodium channel (VGSC) ß1 subunits are multifunctional proteins that modulate the biophysical properties and cell-surface localization of VGSC α subunits and participate in cell-cell and cell-matrix adhesion, all with important implications for intracellular signal transduction, cell migration, and differentiation. Human loss-of-function variants in SCN1B, the gene encoding the VGSC ß1 subunits, are linked to severe diseases with high risk for sudden death, including epileptic encephalopathy and cardiac arrhythmia. We showed previously that ß1 subunits are post-translationally modified by tyrosine phosphorylation. We also showed that ß1 subunits undergo regulated intramembrane proteolysis via the activity of ß-secretase 1 and γ-secretase, resulting in the generation of a soluble intracellular domain, ß1-ICD, which modulates transcription. Here, we report that ß1 subunits are phosphorylated by FYN kinase. Moreover, we show that ß1 subunits are S-palmitoylated. Substitution of a single residue in ß1, Cys-162, to alanine prevented palmitoylation, reduced the level of ß1 polypeptides at the plasma membrane, and reduced the extent of ß1-regulated intramembrane proteolysis, suggesting that the plasma membrane is the site of ß1 proteolytic processing. Treatment with the clathrin-mediated endocytosis inhibitor, Dyngo-4a, re-stored the plasma membrane association of ß1-p.C162A to WT levels. Despite these observations, palmitoylation-null ß1-p.C162A modulated sodium current and sorted to detergent-resistant membrane fractions normally. This is the first demonstration of S-palmitoylation of a VGSC ß subunit, establishing precedence for this post-translational modification as a regulatory mechanism in this protein family.


Asunto(s)
Membrana Celular/metabolismo , Lipoilación , Procesamiento Proteico-Postraduccional , Proteolisis , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Sustitución de Aminoácidos , Animales , Membrana Celular/genética , Células HEK293 , Humanos , Hidrazonas/farmacología , Ratones , Mutación Missense , Naftoles/farmacología , Fosforilación , Proto-Oncogenes Mas , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
8.
J Biol Chem ; 293(43): 16546-16558, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30219789

RESUMEN

Cannabis sativa contains many related compounds known as phytocannabinoids. The main psychoactive and nonpsychoactive compounds are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), respectively. Much of the evidence for clinical efficacy of CBD-mediated antiepileptic effects has been from case reports or smaller surveys. The mechanisms for CBD's anticonvulsant effects are unclear and likely involve noncannabinoid receptor pathways. CBD is reported to modulate several ion channels, including sodium channels (Nav). Evaluating the therapeutic mechanisms and safety of CBD demands a richer understanding of its interactions with central nervous system targets. Here, we used voltage-clamp electrophysiology of HEK-293 cells and iPSC neurons to characterize the effects of CBD on Nav channels. Our results show that CBD inhibits hNav1.1-1.7 currents, with an IC50 of 1.9-3.8 µm, suggesting that this inhibition could occur at therapeutically relevant concentrations. A steep Hill slope of ∼3 suggested multiple interactions of CBD with Nav channels. CBD exhibited resting-state blockade, became more potent at depolarized potentials, and also slowed recovery from inactivation, supporting the idea that CBD binding preferentially stabilizes inactivated Nav channel states. We also found that CBD inhibits other voltage-dependent currents from diverse channels, including bacterial homomeric Nav channel (NaChBac) and voltage-gated potassium channel subunit Kv2.1. Lastly, the CBD block of Nav was temperature-dependent, with potency increasing at lower temperatures. We conclude that CBD's mode of action likely involves 1) compound partitioning in lipid membranes, which alters membrane fluidity affecting gating, and 2) undetermined direct interactions with sodium and potassium channels, whose combined effects are loss of channel excitability.


Asunto(s)
Cannabidiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.6/química , Neuronas/patología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Células HEK293 , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sodio/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
9.
Hum Mutat ; 39(10): 1402-1415, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29992740

RESUMEN

Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These integral membrane proteins are composed of a pore-forming α-subunit, and one or more auxiliary ß subunits. Mutation p.Asp25Asn (D25N; c.73G > A) of the ß1 subunit, coded by the gene SCN1B, has been reported in a patient with generalized epilepsy with febrile seizure plus type 1 (GEFS+). In human embryonic kidney 293 (HEK) cells, the heterologous coexpression of D25N-ß1 subunit with Nav1.2, Nav1.4, and Nav1.5 α subunits, representative of brain, skeletal muscle, and heart voltage gated sodium channels, determines a reduced sodium channel functional expression and a negative shift of the activation and inactivation steady state curves. The D25N mutation of the ß1 subunit causes a maturation (glycosylation) defect of the protein, leading to a reduced targeting to the plasma membrane. Also the ß1-dependent gating properties of the sodium channels are abolished by the mutation, suggesting that D25N is no more able to interact with the α subunit. Our work underscores the role played by the ß1 subunit, highlighting how a defective interaction between the sodium channel constituents could lead to a disabling pathological condition, and opens the possibility to design a mutation-specific GEFS+ treatment based on protein maturation.


Asunto(s)
Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Línea Celular , Membrana Celular/metabolismo , Fenómenos Electrofisiológicos , Expresión Génica , Estudios de Asociación Genética/métodos , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Transfección , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
10.
Heart Rhythm ; 15(7): 1051-1057, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29758173

RESUMEN

BACKGROUND: There is limited evidence that Brugada Syndrome (BrS) is due to SCN1B variants (BrS5). This gene may be inappropriately included in routine genetic testing panels for BrS or Sudden Arrhythmic Death Syndrome (SADS). OBJECTIVE: We sought to characterize the genotype-phenotype correlation in families who had BrS and SADS with reportedly pathogenic SCN1B variants and to review their pathogenicity. METHODS: Families with BrS and SADS were assessed from 6 inherited arrhythmia centers worldwide, and a comprehensive literature review was performed. Clinical characteristics including relevant history, electrocardiographic parameters and drug provocation testing results were studied. SCN1B genetic testing results were reclassified using American College of Medical Genetics criteria. RESULTS: A total of 23 SCN1B genotype-positive individuals were identified from 8 families. Four probands (17%) experienced ventricular fibrillation or sudden cardiac death at the time of presentation. All family members were free from syncope or ventricular arrhythmias. Only 2 of 23 genotype-positive individuals (9%) demonstrated a spontaneous BrS electrocardiographic pattern. Drug challenge testing for BrS in 87% (13 of 15) was negative. There was no difference in PR interval (161 ± 7 ms vs 165 ± 9 ms; P = .83), QRS duration (101 ± 6 ms vs 89 ± 5 ms; P = .35), or corrected QT interval (414 ± 35 ms vs 405 ± 8 ms; P = .7) between genotype-positive and genotype-negative family members. The overall frequency of previously implicated SCN1B variants in the Genome Aggregation Database browser is 0.004%, exceeding the estimated prevalence of BrS owing to SCN1B (0.0005%), including 15 of 23 individuals (65%) who had the p.Trp179X variant. CONCLUSION: The lack of genotype-phenotype concordance among families, combined with the high frequency of previously reported mutations in the Genome Aggregation Database browser, suggests that SCN1B is not a monogenic cause of BrS or SADS.


Asunto(s)
Síndrome de Brugada/genética , ADN/genética , Muerte Súbita Cardíaca/etiología , Familia , Mutación , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Síndrome de Brugada/complicaciones , Síndrome de Brugada/metabolismo , Niño , Análisis Mutacional de ADN , Electrocardiografía , Femenino , Estudios de Asociación Genética , Pruebas Genéticas , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Adulto Joven
11.
Sci Rep ; 7(1): 10683, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878239

RESUMEN

Voltage-dependent sodium channels are responsible of the rising phase of the action potential in excitable cells. These membrane integral proteins are composed by a pore-forming α-subunit, and one or more auxiliary ß subunits. Mutation E87Q of the ß1 subunit is correlated with Brugada syndrome, a genetic disease characterised by ventricular fibrillation, right precordial ST segment elevation on ECG and sudden cardiac death. Heterologous expression of E87Q-ß1 subunit in CHO cells determines a reduced sodium channel functional expression. The effect the E87Q mutation of the ß1 subunit on sodium currents and α protein expression is correlated with a reduced availability of the mature form of the α subunit in the plasma membrane. This finding offers a new target for the treatment of the Brugada syndrome, based on protein maturation management. This work highlights the role played by the ß1 subunit in the maturation and expression of the entire sodium channel complex and underlines how the defective interaction between the sodium channel constituents could lead to a disabling pathological condition.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Mutación , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Cricetulus , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Familia de Multigenes
12.
Biol Cell ; 109(7): 273-291, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28597987

RESUMEN

BACKGROUND INFORMATION: Cardiac channelopathies arise by mutations in genes encoding ion channel subunits. One example is Brugada Syndrome (BrS), which causes arrhythmias and sudden death. BrS is often associated with mutations in SCN5A, encoding Nav 1.5, the α subunit of the major cardiac voltage-gated sodium channel. This channel forms a protein complex including one or two associated ß subunits as well as other proteins. RESULTS: We analysed regulation of Nav 1.5 localisation and trafficking by ß2, specifically, Nav 1.5 arrival to the cell surface. We used polarised Madin-Darby canine kidney (MDCK) cells and mouse atria-derived HL-1 cells, which retain phenotypic features of adult cardiomyocytes. In both, Nav 1.5 was found essentially intracellular, mainly in the endoplasmic reticulum, whereas ß2 localised to the plasma membrane, and was restricted to the apical surface in MDCK cells. A fraction of ß2 interacted with Nav 1.5, despite their limited overlap. Importantly, ß2 promoted Nav 1.5 localisation to the cell surface. Both ß2 WT and the BrS-associated mutation D211G (substitution of Asp for Gly) effectively reached the plasma membrane. Strikingly, however, ß2 D211G was defective in promoting Nav 1.5 surface localisation. CONCLUSIONS: Our data sustain that ß2 promotes surface localisation of Nav 1.5, which can be affected due to ß2 mutations associated with channelopathies. SIGNIFICANCE: Our findings add to the understanding of ß2 role in Nav 1.5 trafficking and localisation, which must influence cell excitability and electrical coupling in the heart. This study will contribute to knowledge on development of arrhythmias.


Asunto(s)
Síndrome de Brugada/patología , Membrana Celular/metabolismo , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Subunidad beta-2 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células Cultivadas , Perros , Humanos , Células de Riñón Canino Madin Darby , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Subunidades de Proteína , Transporte de Proteínas , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-2 de Canal de Sodio Activado por Voltaje/genética
13.
Sci Rep ; 7(1): 2465, 2017 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-28550304

RESUMEN

The current study explored the Na+/K+-ATPase (NKA) inhibition-independent proarrhythmic mechanisms of cardiac glycosides (CGs) which are well-known NKA inhibitors. With the cytosolic Ca2+ chelated by EGTA and BAPTA or extracellular Ca2+ replaced by Ba2+, effects of bufadienolides (bufalin (BF) and cinobufagin (CBG)) and cardenolides (ouabain (Oua) and pecilocerin A (PEA)) on the L-type calcium current (I Ca,L) were recorded in heterologous expression Cav1.2-CHO cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). BF and CBG demonstrated a concentration-dependent (0.1 to100 µM) I Ca,L inhibition (maximal ≥50%) without and with the NKA activity blocked by 10 µM Oua. BF significantly shortened the action potential duration at 1.0 µM and shortened the extracellular field potential duration at 0.01~1.0 µM. On the other hand, BF and CBG at 100 µM demonstrated a strong inhibition (≥40%) of the rapidly activating component of the delayed rectifier K+ current (I Kr) in heterologous expression HEK293 cells and prolonged the APD of the heart of day-3 Zebrafish larva with disrupted rhythmic contractions. Moreover, hESC-CMs treated with BF (10 nM) for 24 hours showed moderate yet significant prolongation in APD90. In conclusion, our data indicate that CGs particularly bufadienolides possess cytosolic [Ca2+]i- and NKA inhibition- independent proarrhythmic potential through I Ca,L and I Kr inhibitions.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Bufanólidos/farmacología , Calcio/metabolismo , Glicósidos Cardíacos/farmacología , Miocitos Cardíacos/metabolismo , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Células CHO , Canales de Calcio Tipo L/metabolismo , Cardenólidos/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Cricetulus , Canal de Potasio ERG1/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Células HEK293 , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Larva , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ouabaína/farmacología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Pez Cebra
14.
Eur Biophys J ; 46(5): 485-494, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28012039

RESUMEN

The mechanism of inactivation of mammalian voltage-gated Na+ channels involves transient interactions between intracellular domains resulting in direct pore occlusion by the IFM motif and concomitant extracellular interactions with the ß1 subunit. Navß1 subunits constitute single-pass transmembrane proteins that form protein-protein associations with pore-forming α subunits to allosterically modulate the Na+ influx into the cell during the action potential of every excitable cell in vertebrates. Here, we explored the role of the intracellular IFM motif of rNav1.4 (skeletal muscle isoform of the rat Na+ channel) on the α-ß1 functional interaction and showed for the first time that the modulation of ß1 is independent of the IFM motif. We found that: (1) Nav1.4 channels that lack the IFM inactivation particle can undergo a "C-type-like inactivation" albeit in an ultraslow gating mode; (2) ß1 can significantly accelerate the inactivation of Nav1.4 channels in the absence of the IFM motif. Previously, we identified two residues (T109 and N110) on the ß1 subunit that disrupt the α-ß1 allosteric modulation. We further characterized the electrophysiological effects of the double alanine substitution of these residues demonstrating that it decelerates inactivation and recovery from inactivation, abolishes the modulation of steady-state inactivation and induces a current rundown upon repetitive stimulation, thus causing a general loss of function. Our results contribute to delineating the process of the mammalian Na+ channel inactivation. These findings may be relevant to the design of pharmacological strategies, targeting ß subunits to treat pathologies associated to Na+ current dysfunction.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.4/química , Canal de Sodio Activado por Voltaje NAV1.4/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Fenómenos Electrofisiológicos , Espacio Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Ratas
15.
J Neurosci ; 36(23): 6213-24, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277800

RESUMEN

UNLABELLED: Voltage-gated sodium channel (VGSC) ß subunits signal through multiple pathways on multiple time scales. In addition to modulating sodium and potassium currents, ß subunits play nonconducting roles as cell adhesion molecules, which allow them to function in cell-cell communication, neuronal migration, neurite outgrowth, neuronal pathfinding, and axonal fasciculation. Mutations in SCN1B, encoding VGSC ß1 and ß1B, are associated with epilepsy. Autosomal-dominant SCN1B-C121W, the first epilepsy-associated VGSC mutation identified, results in genetic epilepsy with febrile seizures plus (GEFS+). This mutation has been shown to disrupt both the sodium-current-modulatory and cell-adhesive functions of ß1 subunits expressed in heterologous systems. The goal of this study was to compare mice heterozygous for Scn1b-C121W (Scn1b(+/W)) with mice heterozygous for the Scn1b-null allele (Scn1b(+/-)) to determine whether the C121W mutation results in loss-of-function in vivo We found that Scn1b(+/W) mice were more susceptible than Scn1b(+/-) and Scn1b(+/+) mice to hyperthermia-induced convulsions, a model of pediatric febrile seizures. ß1-C121W subunits are expressed at the neuronal cell surface in vivo However, despite this, ß1-C121W polypeptides are incompletely glycosylated and do not associate with VGSC α subunits in the brain. ß1-C121W subcellular localization is restricted to neuronal cell bodies and is not detected at axon initial segments in the cortex or cerebellum or at optic nerve nodes of Ranvier of Scn1b(W/W) mice. These data, together with our previous results showing that ß1-C121W cannot participate in trans-homophilic cell adhesion, lead to the hypothesis that SCN1B-C121W confers a deleterious gain-of-function in human GEFS+ patients. SIGNIFICANCE STATEMENT: The mechanisms underlying genetic epilepsy syndromes are poorly understood. Closing this gap in knowledge is essential to the development of new medicines to treat epilepsy. We have used mouse models to understand the mechanism of a mutation in the sodium channel gene SCN1B linked to genetic epilepsy with febrile seizures plus. We report that sodium channel ß1 subunit proteins encoded by this mutant gene are expressed at the surface of neuronal cell bodies; however, they do not associate with the ion channel complex nor are they transported to areas of the axon that are critical for proper neuronal firing. We conclude that this disease-causing mutation is not simply a loss-of-function, but instead results in a deleterious gain-of-function in the brain.


Asunto(s)
Epilepsia/genética , Neuronas/fisiología , Polimorfismo de Nucleótido Simple/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Animales Recién Nacidos , Biotinilación , Células Cultivadas , Corteza Cerebral/citología , Cisteína/genética , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/patología , Fiebre/complicaciones , Regulación del Desarrollo de la Expresión Génica/genética , Inmunoprecipitación , Ratones , Ratones Transgénicos , Estadísticas no Paramétricas , Triptófano/genética
16.
Sci Rep ; 6: 26618, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216889

RESUMEN

The ß1, ß2, and ß4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the ß4 extracellular domain revealed an antiparallel arrangement of the ß4 molecules in the crystal lattice. The interface between the two antiparallel ß4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the ß4-mediated cell-cell adhesion revealed that the interface between the antiparallel ß4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of ß4 in cell-cell adhesion. This trans interaction mode is also employed in the ß1-mediated cell-cell adhesion. Moreover, the ß1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the ß1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the ß-subunit-mediated cell-cell adhesion has been established.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Adhesión Celular , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Dominios Proteicos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
17.
Nat Commun ; 6: 8803, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26541940

RESUMEN

The aging myopathy manifests itself with diastolic dysfunction and preserved ejection fraction. We raised the possibility that, in a mouse model of physiological aging, defects in electromechanical properties of cardiomyocytes are important determinants of the diastolic characteristics of the myocardium, independently from changes in structural composition of the muscle and collagen framework. Here we show that an increase in the late Na(+) current (INaL) in aging cardiomyocytes prolongs the action potential (AP) and influences temporal kinetics of Ca(2+) cycling and contractility. These alterations increase force development and passive tension. Inhibition of INaL shortens the AP and corrects dynamics of Ca(2+) transient, cell contraction and relaxation. Similarly, repolarization and diastolic tension of the senescent myocardium are partly restored. Thus, INaL offers inotropic support, but negatively interferes with cellular and ventricular compliance, providing a new perspective of the biology of myocardial aging and the aetiology of the defective cardiac performance in the elderly.


Asunto(s)
Potenciales de Acción , Envejecimiento/metabolismo , Calcio/metabolismo , Cardiomiopatías/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Sodio/metabolismo , Animales , Cardiomiopatías/fisiopatología , Colágeno , Modelos Animales de Enfermedad , Corazón/fisiopatología , Ventrículos Cardíacos/fisiopatología , Ratones , Ratones Noqueados , Contracción Miocárdica , Técnicas de Placa-Clamp , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
18.
Neuroscience ; 297: 105-17, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-25827112

RESUMEN

Voltage-dependent sodium channels are membrane proteins essential for cell excitability. They are composed by a pore-forming α-subunit, encoded in mammals by up to nine different genes, and four different ancillary ß-subunits. The expression pattern of the α subunit isoforms confers the distinctive functional and pharmacological properties to different excitable tissues. ß-Subunits are important modulators of channel function and expression. Mutation C121W of the ß1-subunit causes an autosomal dominant epileptic syndrome without cardiac symptoms. In neuroectoderm GH3 and cardiac H9C2 cells, the over-expression of ß1 subunit augments α subunit mRNA and protein levels as well as sodium current density. Interestingly, the introduction of the epileptogenic C121W-ß1 subunit produces additional changes in the α-subunit expression pattern of H9C2 cells, leaving unaltered the sodium channel isoform composition of GH3 cells. The challenge of the present work was to identify those genes that were differentially expressed in response to WT- or C121W-ß1 subunit over-expression in the two rat cell lines under analysis. Hence, we analyzed the total mRNA extracted from control-untransfected and from WT- and C121W-ß1-transfected GH3 and H9C2 cells by DNA-microarray. We found that, in agreement with their different embryonal origin, the over-expression of WT- and C121W-ß1 subunits modifies the expression of different gene sets in GH3 and H9C2 cells. Focusing on the effects of the C121W mutation, we found that it causes the modification of 214 genes, most of them were down-regulated (202) in GH3 cells; on the contrary, it determined the up-regulation of only five genes in H9C2 cells. Interestingly, most genes modified by the C121W ß1 subunit are involved in pivotal processes of the cell such as cellular communication and protein expression. Our results confirm the important role of the sodium channel ß1 subunit in the control of NaCh gene expression, and highlight once more the tissue-specific effect of the C121W mutation.


Asunto(s)
Cisteína/genética , Mutación/genética , Triptófano/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Animales , Línea Celular Transformada , Perfilación de la Expresión Génica , Análisis por Micromatrices , ARN Mensajero/metabolismo , Ratas , Transfección , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
19.
J Physiol ; 593(6): 1389-407, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25772295

RESUMEN

KEY POINTS: Na(+) current (INa) results from the integrated function of a molecular aggregate (the voltage-gated Na(+) channel complex) that includes the ß subunit family. Mutations or rare variants in Scn1b (encoding the ß1 and ß1B subunits) have been associated with various inherited arrhythmogenic syndromes, including Brugada syndrome and sudden unexpected death in patients with epilepsy. We used Scn1b null mice to understand better the relation between Scn1b expression, and cardiac electrical function. Loss of Scn1b caused, among other effects, increased amplitude of tetrodotoxin-sensitive INa, delayed after-depolarizations, triggered beats, delayed Ca(2+) transients, frequent spontaneous calcium release events and increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca(2+) homeostasis were prevented by 100 nM tetrodotoxin. We propose that life-threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na(+) channel α subunit, can be partly consequent to disrupted intracellular Ca(2+) homeostasis. ABSTRACT: Na(+) current (INa) is determined not only by the properties of the pore-forming voltage-gated Na(+) channel (VGSC) α subunit, but also by the integrated function of a molecular aggregate (the VGSC complex) that includes the VGSC ß subunit family. Mutations or rare variants in Scn1b (encoding the ß1 and ß1B subunits) have been associated with various inherited arrhythmogenic syndromes, including cases of Brugada syndrome and sudden unexpected death in patients with epilepsy. Here, we have used Scn1b null mouse models to understand better the relation between Scn1b expression, and cardiac electrical function. Using a combination of macropatch and scanning ion conductance microscopy we show that loss of Scn1b in juvenile null animals resulted in increased tetrodotoxin-sensitive INa but only in the cell midsection, even before full T-tubule formation; the latter occurred concurrent with increased message abundance for the neuronal Scn3a mRNA, suggesting increased abundance of tetrodotoxin-sensitive NaV 1.3 protein and yet its exclusion from the region of the intercalated disc. Ventricular myocytes from cardiac-specific adult Scn1b null animals showed increased Scn3a message, prolonged action potential repolarization, presence of delayed after-depolarizations and triggered beats, delayed Ca(2+) transients and frequent spontaneous Ca(2+) release events and at the whole heart level, increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca(2+) homeostasis were prevented by 100 nM tetrodotoxin. Our results suggest that life-threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na(+) channel α subunit, can be partly consequent to disrupted intracellular Ca(2+) homeostasis in ventricular myocytes.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/genética , Señalización del Calcio , Miocitos Cardíacos/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Animales , Arritmias Cardíacas/metabolismo , Células Cultivadas , Eliminación de Gen , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo
20.
J Comp Neurol ; 523(5): 814-30, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25421039

RESUMEN

The ß1 subunit of voltage-gated sodium channels, Nav ß1, plays multiple roles in neurons spanning electrophysiological modulation of sodium channel α subunits to cell adhesion and neurite outgrowth. This study used immunohistochemistry to investigate Nav ß1 subneuronal and regional expression. Nav ß1 was enriched at axon initial segments (AIS) and nodes of Ranvier. Nav ß1 expression at the AIS was detected throughout the brain, predominantly in the hippocampus, cortex, and cerebellum. Despite expression of Nav ß1 in both excitatory and inhibitory AIS, it displayed a marked and fine-grained heterogeneity of expression. Such heterogeneity could have important implications for the tuning of single neuronal and regional excitability, especially in view of the fact that Nav ß1 coexpressed with Nav 1.1, Nav 1.2, and Nav 1.6 subunits. The disruption of Nav ß1 AIS expression by a human epilepsy-causing C121W genetic mutation in Nav ß1 was also investigated using a mouse model. AIS expression of Nav ß1 was reduced by approximately 50% in mice heterozygous for the C121W mutation and was abolished in homozygotes, suggesting that loss of Nav α subunit modulation by Nav ß1 contributes to the mechanism of epileptogenesis in these animals as well as in patients.


Asunto(s)
Axones/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Alquenos , Animales , Western Blotting , Encéfalo/patología , Modelos Animales de Enfermedad , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Humanos , Inmunohistoquímica , Interneuronas/citología , Interneuronas/metabolismo , Interneuronas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Confocal , Mutación , Piperidinas , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...