Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Kaohsiung J Med Sci ; 37(1): 20-26, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32833340

RESUMEN

MicroRNA-3175 (miR-3175) expression is upregulated in prostate cancer, but its roles and the underlying mechanisms in prostate cancer cell growth and invasion need to be elucidated. This study aimed to uncover the roles of miR-3175 in regulating cell growth and migration, as well as the expression of its predicted target gene cardiac sodium channel ß4-subunit gene (SCN4B). Real-time quantitative PCR (RT-qPCR) and/or western blotting techniques were used to measure miR-3175 and SCN4B expression levels in prostate cancer cells. Inhibitor or mimics transfections were used to overexpress or silence miR-3175 in prostate cancer cells. MTT and Edu assays were applied to assess cell viability. Scratch assay and transwell chambers were used to examine cell migration and invasion abilities. The interaction between miR-3175 and SCN4B was determined by means of luciferase gene reporter, RT-qPCR, and western blotting assays. The results showed that miR-3175 expression was increased and SCN4B expression was decreased in prostate cancer cell lines as compared with normal human prostatic epithelial cells. Compared with the control group, knockdown of miR-3175 resulted in strong inhibitions of cell growth, migration, invasion, and N-cadherin expression, together with an increase in E-cadherin expression. In addition, knockdown of miR-3175 dramatically increased the luciferase activity of the luciferase vector of SCN4B, and increased SCN4B expression. Together, this study illustrated that downregulation of miR-3175 repressed the proliferation and invasion of prostate cancer cells, which might be induced by SCN4B downregulation.


Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , Invasividad Neoplásica , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
2.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331418

RESUMEN

Temporal lobe epilepsy (TLE) is the most common type of partial epilepsy referred for surgery due to antiepileptic drug (AED) resistance. A common molecular target for many of these drugs is the voltage-gated sodium channel (VGSC). The VGSC consists of four domains of pore-forming α-subunits and two auxiliary ß-subunits, several of which have been well studied in epileptic conditions. However, despite the ß4-subunits' role having been reported in some neurological conditions, there is little research investigating its potential significance in epilepsy. Therefore, the purpose of this work was to assess the role of SCN4ß in epilepsy by using a combination of molecular and bioinformatics approaches. We first demonstrated that there was a reduction in the relative expression of SCN4B in the drug-resistant TLE patients compared to non-epileptic control specimens, both at the mRNA and protein levels. By analyzing a co-expression network in the neighborhood of SCN4B we then discovered a linkage between the expression of this gene and K+ channels activated by Ca2+, or K+ two-pore domain channels. Our approach also inferred several potential effector functions linked to variation in the expression of SCN4B. These observations support the hypothesis that SCN4B is a key factor in AED-resistant TLE, which could help direct both the drug selection of TLE treatments and the development of future AEDs.


Asunto(s)
Resistencia a Medicamentos/genética , Epilepsia del Lóbulo Temporal/etiología , Epilepsia del Lóbulo Temporal/metabolismo , Regulación de la Expresión Génica , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Biología Computacional/métodos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/fisiopatología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transcripción Genética
3.
J Gen Physiol ; 151(11): 1300-1318, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31558566

RESUMEN

Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVß4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVß4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células de Purkinje/fisiología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Fenómenos Electrofisiológicos , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Sodio/metabolismo , Tetrodotoxina/farmacología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
4.
Mol Genet Genomics ; 294(4): 1059-1071, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31020414

RESUMEN

Ventricular tachycardia (VT) causes sudden cardiac death, however, the majority of risk genes for VT remain unknown. SCN4B encodes a ß-subunit, Navß4, for the voltage-gated cardiac sodium channel complex involved in generation and conduction of the cardiac action potential. We hypothesized that genomic variants in SCN4B increase the risk of VT. We used high-resolution melt analysis followed by Sanger sequencing to screen 199 VT patients to identify nonsynonymous variants in SCN4B. Two nonsynonymous heterozygous variants in SCN4B were identified in VT patients, including p.Gly8Ser in four VT patients and p.Ala145Ser in one VT patient. Case-control association studies were used to assess the association between variant p.Gly8Ser and VT in two independent populations for VT (299 VT cases vs. 981 controls in population 1 and 270 VT patients vs. 639 controls in population 2). Significant association was identified between p.Gly8Ser and VT in population 1 (P = 1.21 × 10-4, odds ratio or OR = 11.04), and the finding was confirmed in population 2 (P = 0.03, OR = 3.62). The association remained highly significant in the combined population (P = 3.09 × 10-5, OR = 6.17). Significant association was also identified between p.Gly8Ser and idiopathic VT (P = 1.89 × 10-5, OR = 7.27). Functional analysis with Western blotting showed that both p.Gly8Ser and p.Ala145Ser variants significantly reduced the expression level of Navß4. Based on 2015 ACMG Standards and Guidelines, p.Gly8Ser and p.Ala145Ser can be classified as the pathogenic and likely pathogenic variant, respectively. Our data suggest that SCN4B is a susceptibility gene for common VT and idiopathic VT and link rare SCN4B variants with large effects (OR = 6.17-7.27) to common VT.


Asunto(s)
Sustitución de Aminoácidos , Análisis de Secuencia de ADN/métodos , Taquicardia Ventricular/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Adulto , Anciano , Estudios de Casos y Controles , Regulación hacia Abajo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Taquicardia Ventricular/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
5.
Ann Hum Genet ; 83(4): 239-248, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821358

RESUMEN

Atrial fibrillation (AF) affects 33.5 million individuals worldwide. It accounts for 15% of strokes and increases risk of heart failure and sudden death. The voltage-gated cardiac sodium channel complex is responsible for the generation and conduction of the cardiac action potential, and composed of the main pore-forming α-subunit Nav 1.5 (encoded by the SCN5A gene) and one or more auxiliary ß-subunits, including Nav ß1 to Nav ß4 encoded by SCN1B to SCN4B, respectively. We and others identified loss-of-function mutations in SCN1B and SCN2B and dominant-negative mutations in SCN3B in patients with AF. Three missense variants in SCN4B were identified in sporadic AF patients and small nuclear families; however, the association between SCN4B variants and AF remains to be further defined. In this study, we performed mutational analysis in SCN4B using a panel of 477 AF patients, and identified one nonsynonymous genomic variant p.Gly8Ser in four patients. To assess the association between the p.Gly8Ser variant and AF, we carried out case-control association studies with two independent populations (944 AF patients vs. 9,81 non-AF controls in the first discovery population and 732 cases and 1,291 controls in the second replication population). Significant association was identified in the two independent populations and in the combined population (p = 4.16 × 10-4 , odds ratio [OR] = 3.14) between p.Gly8Ser and common AF as well as lone AF (p = 0.018, OR = 2.85). These data suggest that rare variant p.Gly8Ser of SCN4B confers a significant risk of AF, and SCN4B is a candidate susceptibility gene for AF.


Asunto(s)
Alelos , Sustitución de Aminoácidos , Fibrilación Atrial/genética , Variación Genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Anciano , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Estudios de Casos y Controles , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mutación , Polimorfismo de Nucleótido Simple , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
6.
Genes Brain Behav ; 18(6): e12562, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30817077

RESUMEN

The voltage-gated sodium channel subunit ß4 (SCN4B) regulates neuronal activity by modulating channel gating and has been implicated in ethanol consumption in rodent models and human alcoholics. However, the functional role for Scn4b in ethanol-mediated behaviors is unknown. We determined if genetic global knockout (KO) or targeted knockdown of Scn4b in the central nucleus of the amygdala (CeA) altered ethanol drinking or related behaviors. We used four different ethanol consumption procedures (continuous and intermittent two-bottle choice (2BC), drinking-in-the dark and chronic intermittent ethanol vapor) and found that male and female Scn4b KO mice did not differ from their wild-type (WT) littermates in ethanol consumption in any of the tests. Knockdown of Scn4b mRNA in the CeA also did not alter 2BC ethanol drinking. However, Scn4b KO mice showed longer duration of the loss of righting reflex induced by ethanol, gaboxadol, pentobarbital and ketamine. KO mice showed slower recovery to basal levels of handling-induced convulsions after ethanol injection, which is consistent with the increased sedative effects observed in these mice. However, Scn4b KO mice did not differ in the severity of acute ethanol withdrawal. Acoustic startle responses, ethanol-induced hypothermia and clearance of blood ethanol also did not differ between the genotypes. There were also no functional differences in the membrane properties or excitability of CeA neurons from Scn4b KO and WT mice. Although we found no evidence that Scn4b regulates ethanol consumption in mice, it was involved in the acute hypnotic effects of ethanol and other sedatives.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Barbitúricos/farmacología , Etanol/farmacología , Hipnóticos y Sedantes/farmacología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reflejo
7.
Science ; 362(6412)2018 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-30190309

RESUMEN

Voltage-gated sodium (Nav) channels, which are responsible for action potential generation, are implicated in many human diseases. Despite decades of rigorous characterization, the lack of a structure of any human Nav channel has hampered mechanistic understanding. Here, we report the cryo-electron microscopy structure of the human Nav1.4-ß1 complex at 3.2-Å resolution. Accurate model building was made for the pore domain, the voltage-sensing domains, and the ß1 subunit, providing insight into the molecular basis for Na+ permeation and kinetic asymmetry of the four repeats. Structural analysis of reported functional residues and disease mutations corroborates an allosteric blocking mechanism for fast inactivation of Nav channels. The structure provides a path toward mechanistic investigation of Nav channels and drug discovery for Nav channelopathies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.4/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Regulación Alostérica , Secuencia de Aminoácidos , Canalopatías/genética , Canalopatías/metabolismo , Microscopía por Crioelectrón , Descubrimiento de Drogas , Células HEK293 , Humanos , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.4/ultraestructura , Dominios Proteicos , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/ultraestructura
8.
PLoS One ; 13(5): e0197007, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29723302

RESUMEN

Voltage-gated sodium channel ß subunits (encoded by SCN1B to SCN4B genes) have been demonstrated as important multifunctional signaling molecules modulating cellular processes such as cell adhesion and cell migration. In this study, we aimed to explore the expression profiles of SCN4B in papillary thyroid cancer (PTC) and its prognostic value in terms of recurrence-free survival (RFS) in classical PTC. In addition, we also examined the potential effect of DNA methylation on its expression. A retrospective study was performed by using data from available large databases, including the Gene Expression Omnibus (GEO) datasets and the Cancer Genome Atlas (TCGA)-Thyroid Cancer (THCA). Results showed that SCN4B is downregulated at both RNA and protein level in PTC compared with normal thyroid tissues. Preserved SCN4B expression was an independent indicator of favorable RFS in patients with classical PTC, no matter as categorical variables (HR: 0.243, 95%CI: 0.107-0.551, p = 0.001) or as a continuous variable (HR: 0.684, 95%CI: 0.520-0.899, p = 0.007). The methylation status of one CpG site (Chr11: 118,022,316-318) in SCN4B DNA had a moderately negative correlation with SCN4B expression in all PTC cases (Pearson's r = -0.48) and in classical PTC cases (Pearson's r = -0.41). In comparison, SCN4B DNA copy number alterations (CNAs) were not frequent and might not influence its mRNA expression. In addition, no somatic mutation was found in SCN4B DNA. Based on these findings, we infer that preserved SCN4B expression might independently predict favorable RFS in classical PTC. Its expression might be suppressed by DNA hypermethylation, but is less likely to be influenced by DNA CNAs/mutations.


Asunto(s)
Carcinoma Papilar/genética , ADN de Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , ARN Mensajero/genética , Neoplasias de la Tiroides/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Adulto , Anciano , Carcinoma Papilar/diagnóstico , Carcinoma Papilar/mortalidad , Carcinoma Papilar/patología , Islas de CpG , Metilación de ADN , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , ARN Mensajero/metabolismo , Estudios Retrospectivos , Cáncer Papilar Tiroideo , Glándula Tiroides/metabolismo , Glándula Tiroides/patología , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
10.
J Biol Chem ; 292(32): 13428-13440, 2017 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-28655765

RESUMEN

Voltage-gated sodium channels (VGSCs) are transmembrane proteins required for the generation of action potentials in excitable cells and essential for propagating electrical impulses along nerve cells. VGSCs are complexes of a pore-forming α subunit and auxiliary ß subunits, designated as ß1/ß1B-ß4 (encoded by SCN1B-4B, respectively), which also function in cell-cell adhesion. We previously reported the structural basis for the trans homophilic interaction of the ß4 subunit, which contributes to its adhesive function. Here, using crystallographic and biochemical analyses, we show that the ß4 extracellular domains directly interact with each other in a parallel manner that involves an intermolecular disulfide bond between the unpaired Cys residues (Cys58) in the loop connecting strands B and C and intermolecular hydrophobic and hydrogen-bonding interactions of the N-terminal segments (Ser30-Val35). Under reducing conditions, an N-terminally deleted ß4 mutant exhibited decreased cell adhesion compared with the wild type, indicating that the ß4 cis dimer contributes to the trans homophilic interaction of ß4 in cell-cell adhesion. Furthermore, this mutant exhibited increased association with the α subunit, indicating that the cis dimerization of ß4 affects α-ß4 complex formation. These observations provide the structural basis for the parallel dimer formation of ß4 in VGSCs and reveal its mechanism in cell-cell adhesion.


Asunto(s)
Modelos Moleculares , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Células CHO , Adhesión Celular , Cricetulus , Cristalografía por Rayos X , Cisteína/química , Cistina/química , Dimerización , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
11.
Nat Commun ; 7: 13648, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917859

RESUMEN

The development of metastases largely relies on the capacity of cancer cells to invade extracellular matrices (ECM) using two invasion modes termed 'mesenchymal' and 'amoeboid', with possible transitions between these modes. Here we show that the SCN4B gene, encoding for the ß4 protein, initially characterized as an auxiliary subunit of voltage-gated sodium channels (NaV) in excitable tissues, is expressed in normal epithelial cells and that reduced ß4 protein levels in breast cancer biopsies correlate with high-grade primary and metastatic tumours. In cancer cells, reducing ß4 expression increases RhoA activity, potentiates cell migration and invasiveness, primary tumour growth and metastatic spreading, by promoting the acquisition of an amoeboid-mesenchymal hybrid phenotype. This hyperactivated migration is independent of NaV and is prevented by overexpression of the intracellular C-terminus of ß4. Conversely, SCN4B overexpression reduces cancer cell invasiveness and tumour progression, indicating that SCN4B/ß4 represents a metastasis-suppressor gene.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Movimiento Celular , Genes Supresores de Tumor , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Animales , Neoplasias de la Mama/ultraestructura , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo/genética , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Activación del Canal Iónico , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , Subunidades de Proteína/metabolismo , Canales de Sodio/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Pez Cebra , Proteína de Unión al GTP rhoA/metabolismo
12.
Sci Rep ; 6: 26618, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27216889

RESUMEN

The ß1, ß2, and ß4 subunits of voltage-gated sodium channels reportedly function as cell adhesion molecules. The present crystallographic analysis of the ß4 extracellular domain revealed an antiparallel arrangement of the ß4 molecules in the crystal lattice. The interface between the two antiparallel ß4 molecules is asymmetric, and results in a multimeric assembly. Structure-based mutagenesis and site-directed photo-crosslinking analyses of the ß4-mediated cell-cell adhesion revealed that the interface between the antiparallel ß4 molecules corresponds to that in the trans homophilic interaction for the multimeric assembly of ß4 in cell-cell adhesion. This trans interaction mode is also employed in the ß1-mediated cell-cell adhesion. Moreover, the ß1 gene mutations associated with generalized epilepsy with febrile seizures plus (GEFS+) impaired the ß1-mediated cell-cell adhesion, which should underlie the GEFS+ pathogenesis. Thus, the structural basis for the ß-subunit-mediated cell-cell adhesion has been established.


Asunto(s)
Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Adhesión Celular , Ratones , Mutagénesis Sitio-Dirigida , Mutación Missense , Dominios Proteicos , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo
13.
PLoS One ; 10(11): e0142693, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26554713

RESUMEN

Fibroblasts from patients with Type I bipolar disorder (BPD) and their unaffected siblings were obtained from an Old Order Amish pedigree with a high incidence of BPD and reprogrammed to induced pluripotent stem cells (iPSCs). Established iPSCs were subsequently differentiated into neuroprogenitors (NPs) and then to neurons. Transcriptomic microarray analysis was conducted on RNA samples from iPSCs, NPs and neurons matured in culture for either 2 weeks (termed early neurons, E) or 4 weeks (termed late neurons, L). Global RNA profiling indicated that BPD and control iPSCs differentiated into NPs and neurons at a similar rate, enabling studies of differentially expressed genes in neurons from controls and BPD cases. Significant disease-associated differences in gene expression were observed only in L neurons. Specifically, 328 genes were differentially expressed between BPD and control L neurons including GAD1, glutamate decarboxylase 1 (2.5 fold) and SCN4B, the voltage gated type IV sodium channel beta subunit (-14.6 fold). Quantitative RT-PCR confirmed the up-regulation of GAD1 in BPD compared to control L neurons. Gene Ontology, GeneGo and Ingenuity Pathway Analysis of differentially regulated genes in L neurons suggest that alterations in RNA biosynthesis and metabolism, protein trafficking as well as receptor signaling pathways may play an important role in the pathophysiology of BPD.


Asunto(s)
Amish , Trastorno Bipolar/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma , Adulto , Trastorno Bipolar/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Linaje , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Adulto Joven
14.
Mol Psychiatry ; 20(11): 1438-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25450227

RESUMEN

Alcohol dependence is a heterogeneous psychiatric disorder characterized by high genetic heritability and neuroadaptations occurring from repeated drug exposure. Through an integrated systems approach we observed consistent differences in transcriptome organization within postmortem human brain tissue associated with the lifetime consumption of alcohol. Molecular networks, determined using high-throughput RNA sequencing, for drinking behavior were dominated by neurophysiological targets and signaling mechanisms of alcohol. The systematic structure of gene sets demonstrates a novel alliance of multiple ion channels, and related processes, underlying lifetime alcohol consumption. Coordinate expression of these transcripts was enriched for genome-wide association signals in alcohol dependence and a meta-analysis of alcohol self-administration in mice. Further dissection of genes within alcohol consumption networks revealed the potential interaction of alternatively spliced transcripts. For example, expression of a human-specific isoform of the voltage-gated sodium channel subunit SCN4B was significantly correlated to lifetime alcohol consumption. Overall, our work demonstrates novel convergent evidence for biological networks related to excessive alcohol consumption, which may prove fundamentally important in the development of pharmacotherapies for alcohol dependence.


Asunto(s)
Alcoholismo/genética , Alcoholismo/patología , Transcriptoma/fisiología , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Consumo de Bebidas Alcohólicas/genética , Animales , Encéfalo/patología , Enfermedad Crónica , Biología Computacional , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Cambios Post Mortem
15.
Nat Commun ; 5: 5525, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25413837

RESUMEN

Voltage-gated Na(+) channel ß-subunits are multifunctional molecules that modulate Na(+) channel activity and regulate cell adhesion, migration and neurite outgrowth. ß-subunits including ß4 are known to be highly concentrated in the nodes of Ranvier and axon initial segments in myelinated axons. Here we show diffuse ß4 localization in striatal projection fibres using transgenic mice that express fluorescent protein in those fibres. These axons are unmyelinated, forming large, inhibitory fibre bundles. Furthermore, we report ß4 dimer expression in the mouse brain, with high levels of ß4 dimers in the striatal projection fascicles, suggesting a specific role of ß4 in those fibres. Scn4b-deficient mice show a resurgent Na(+) current reduction, decreased repetitive firing frequency in medium spiny neurons and increased failure rates of inhibitory postsynaptic currents evoked with repetitive stimulation, indicating an in vivo channel regulatory role of ß4 in the striatum.


Asunto(s)
Cuerpo Estriado/metabolismo , Activación del Canal Iónico/fisiología , Fibras Nerviosas Amielínicas/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Potenciales de Acción/fisiología , Animales , Proteína Huntingtina , Enfermedad de Huntington/patología , Masculino , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Técnicas de Placa-Clamp , Interferencia de ARN , ARN Interferente Pequeño , Nódulos de Ranvier/metabolismo
16.
Proc Natl Acad Sci U S A ; 110(51): E5016-24, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297919

RESUMEN

Voltage-gated sodium (Nav) channels are embedded in a multicomponent membrane signaling complex that plays a crucial role in cellular excitability. Although the mechanism remains unclear, ß-subunits modify Nav channel function and cause debilitating disorders when mutated. While investigating whether ß-subunits also influence ligand interactions, we found that ß4 dramatically alters toxin binding to Nav1.2. To explore these observations further, we solved the crystal structure of the extracellular ß4 domain and identified (58)Cys as an exposed residue that, when mutated, eliminates the influence of ß4 on toxin pharmacology. Moreover, our results suggest the presence of a docking site that is maintained by a cysteine bridge buried within the hydrophobic core of ß4. Disrupting this bridge by introducing a ß1 mutation implicated in epilepsy repositions the (58)Cys-containing loop and disrupts ß4 modulation of Nav1.2. Overall, the principles emerging from this work (i) help explain tissue-dependent variations in Nav channel pharmacology; (ii) enable the mechanistic interpretation of ß-subunit-related disorders; and (iii) provide insights in designing molecules capable of correcting aberrant ß-subunit behavior.


Asunto(s)
Subunidad beta-4 de Canal de Sodio Activado por Voltaje/química , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , Humanos , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/química , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Xenopus laevis
17.
Int J Mol Med ; 32(1): 144-50, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23604097

RESUMEN

Atrial fibrillation (AF) represents the most common form of sustained cardiac arrhythmia and accounts for substantial morbidity and mortality. Mutations in the cardiac sodium channel α, ß1, ß2 and ß3 subunit genes (SCN5A, SCN1B, SCN2B and SCN3B) have been associated with AF, which suggests that mutations in the sodium channel ß4 subunit gene, SCN4B, are also involved in the pathogenesis of AF. To examine this hypothesis, the coding exons and exon-intron boundaries of SCN4B were sequenced in 170 unrelated index patients with familial AF. The available relatives of the probands carrying the identified mutations and 200 unrelated ethnically matched healthy individuals used as the controls were subsequently genotyped. The pathogenic potential of a SCN4B sequence variation was predicted using MutationTaster. As a result, 2 novel heterozygous SCN4B mutations, p.V162G and p.I166L, were identified in 2 unrelated families with AF transmitted in an autosomal dominant pattern, respectively. In each family the mutation co-segregated with AF and was absent in the 400 control chromosomes. The mutations altered the amino acids evolutionarily highly conserved across species and were both predicted to be disease-causing. To the best of our knowledge, this is the first study to demonstrate an association of SCN4B mutations with AF, suggesting SCN4B as a novel AF susceptibility gene.


Asunto(s)
Fibrilación Atrial/genética , Mutación , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética , Adulto , Secuencia de Aminoácidos , Secuencia de Bases , Femenino , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Fenotipo , Factores de Riesgo , Alineación de Secuencia
18.
J Neurosci ; 33(14): 6191-202, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554500

RESUMEN

The axon initial segment (AIS) and nodes of Ranvier are the sites of action potential initiation and regeneration in axons. Although the basic molecular architectures of AIS and nodes, characterized by dense clusters of Na(+) and K(+) channels, are similar, firing patterns vary among cell types. Neuronal firing patterns are established by the collective activity of voltage-gated ion channels and can be modulated through interaction with auxiliary subunits. Here, we report the neuronal expression pattern and subcellular localization of Navß4, the modulatory Na(+) channel subunit thought to underlie resurgent Na(+) current. Immunostaining of rat tissues revealed that Navß4 is strongly enriched at the AIS of a select set of neuron types, including many characterized by high-frequency firing, and at nodes of Ranvier in the PNS and some nodes in the CNS. By introducing full-length and mutant GFP-tagged Navß4 into cultured neurons, we determined that the AIS and nodal localization of Navß4 depends on its direct interaction with Na(+) channel α subunits through an extracellular disulfide bond. Based on these results, we propose that differences in the specific composition of the Na(+) channel complexes enriched at the AIS and nodes contribute to the diverse physiologies observed among cell types.


Asunto(s)
Axones/metabolismo , Encéfalo/citología , Neuronas/citología , Nódulos de Ranvier/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Potenciales de Acción/genética , Animales , Ancirinas/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína/metabolismo , Embrión de Mamíferos , Femenino , Ganglios Espinales/citología , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación/genética , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1 , Proteínas del Tejido Nervioso/metabolismo , Imagen Óptica , Embarazo , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transfección , Subunidades beta de Canales de Sodio Activados por Voltaje/genética , Subunidades beta de Canales de Sodio Activados por Voltaje/metabolismo , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...