Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 507
Filtrar
1.
J Clin Immunol ; 44(7): 160, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990428

RESUMEN

BACKGROUND: Inborn errors of immunity (IEIs) encompass various diseases with diverse clinical and immunological symptoms. Determining the genotype-phenotype of different variants in IEI entity precisely is challenging, as manifestations can be heterogeneous even in patients with the same mutated gene. OBJECTIVE: In the present study, we conducted a systematic review of patients recorded with NFKB1 and NFKB2 mutations, two of the most frequent monogenic IEIs. METHODS: The search for relevant literature was conducted in databases including Web of Science, PubMed, and Scopus. Information encompassing demographic, clinical, immunological, and genetic data was extracted from cases reported with mutations in NFKB1 and NFKB2. The comprehensive features of manifestations in patients were described, and a comparative analysis of primary characteristics was conducted between individuals with NFKB1 loss of function (LOF) and NFKB2 (p52-LOF/IκBδ-gain of function (GOF)) variants. RESULTS: A total of 397 patients were included in this study, 257 had NFKB1 mutations and 140 had NFKB2 mutations. There were 175 LOF cases in NFKB1 and 122 p52LOF/IκBδGOF cases in NFKB2 pivotal groups with confirmed functional implications. NFKB1LOF and p52LOF/IκBδGOF predominant cases (81.8% and 62.5% respectively) initially presented with a CVID-like phenotype. Patients with NFKB1LOF variants often experienced hematologic autoimmune disorders, whereas p52LOF/IκBδGOF patients were more susceptible to other autoimmune diseases. Viral infections were markedly higher in p52LOF/IκBδGOF cases compared to NFKB1LOF (P-value < 0.001). NFKB2 (p52LOF/IκBδGOF) patients exhibited a greater prevalence of ectodermal dysplasia and pituitary gland involvement than NFKB1LOF patients. Most NFKB1LOF and p52LOF/IκBδGOF cases showed low CD19 + B cells, with p52LOF/IκBδGOF having more cases of this type. Low memory B cells were more common in p52LOF/IκBδGOF patients. CONCLUSIONS: Patients with NFKB2 mutations, particularly p52LOF/IκBδGOF, are at higher risk of viral infections, pituitary gland involvement, and ectodermal dysplasia compared to patients with NFKB1LOF mutations. Genetic testing is essential to resolve the initial complexity and confusion surrounding clinical and immunological features. Emphasizing the significance of functional assays in determining the probability of correlations between mutations and immunological and clinical characteristics of patients is crucial.


Asunto(s)
Mutación , Subunidad p50 de NF-kappa B , Subunidad p52 de NF-kappa B , Humanos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación/genética , Subunidad p50 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/genética , Fenotipo
2.
J Infect ; 89(3): 106231, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032519

RESUMEN

OBJECTIVES: The mechanism that leads to disseminated tuberculosis in HIV-negative patients is still largely unknown. T cell subsets and signaling pathways that were associated with disseminated tuberculosis were investigated. METHODS: Single-cell profiling of whole T cells was performed to identify T cell subsets and enriched signaling pathways that were associated with disseminated tuberculosis. Flow cytometric analysis and blocking experiment were used to investigate the findings obtained by transcriptome sequencing. RESULTS: Patients with disseminated tuberculosis had depleted Th1, Tc1 and Tc17 cell subsets, and IFNG was the most down-regulated gene in both CD4 and CD8 T cells. Gene Ontology analysis showed that non-canonical NF-κB signaling pathway, including NFKB2 and RELB genes, was significantly down-regulated and was probably associated with disseminated tuberculosis. Expression of several TNF superfamily ligands and receptors, such as LTA and TNF genes, were suppressed in patients with disseminated tuberculosis. Blocking of TNF-α and soluble LTα showed that TNF-α was involved in IFN-γ production and LTα influenced TNF-α expression in T cells. CONCLUSIONS: Impaired T cell IFN-γ response mediated by suppression of TNF and non-canonical NF-κB signaling pathways might be responsible for disseminated tuberculosis.


Asunto(s)
Interferón gamma , FN-kappa B , Transducción de Señal , Factor de Necrosis Tumoral alfa , Humanos , Masculino , Femenino , Adulto , FN-kappa B/metabolismo , Persona de Mediana Edad , Interferón gamma/metabolismo , Interferón gamma/genética , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Tuberculosis/inmunología , Factor de Transcripción ReIB/metabolismo , Factor de Transcripción ReIB/genética , Subunidad p52 de NF-kappa B/metabolismo , Subunidad p52 de NF-kappa B/genética , Análisis de la Célula Individual , Linfocitos T CD8-positivos/inmunología , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Adulto Joven , Anciano , Perfilación de la Expresión Génica , Mycobacterium tuberculosis/inmunología
3.
Pediatr Nephrol ; 39(9): 2637-2640, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38587560

RESUMEN

Nuclear factor kappa B (NF-κB) family plays a central role in the human immune system. Heterozygous variants in NFKB2 typically cause immunodeficiency with various degrees of central adrenal insufficiency, autoimmunity, and ectodermal dysplasia. No reported case has presented kidney failure as an initial symptom. Moreover, documentation of kidney involvement of this disease is limited. CASE DIAGNOSIS: A 2-year-old female who presented with dyspnea and hypertensive emergency in the setting of new-onset nephrotic syndrome with acute-on chronic kidney injury with resultant chronic kidney disease (CKD) was found to have a novel heterozygous N-terminal variant in NFKB2 (c.880del: p. Tyr294Ilefs*4) with mild hypogammaglobulinemia, but no adrenal insufficiency or ectodermal dysplasia. She became dialysis-dependent during her initial hospitalization and developed CKD stage 5D, requiring continued peritoneal dialysis. She is currently awaiting kidney transplantation. CONCLUSIONS: Whether nephrotic syndrome or kidney injury or failure is the primary symptom of this variant or secondary to some event remains unknown. Further case accumulation is warranted.


Asunto(s)
Subunidad p52 de NF-kappa B , Síndrome Nefrótico , Insuficiencia Renal Crónica , Humanos , Femenino , Síndrome Nefrótico/genética , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/complicaciones , Preescolar , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/complicaciones , Subunidad p52 de NF-kappa B/genética , Hipertensión/genética , Hipertensión/etiología , Hipertensión/diagnóstico , Diálisis Renal , Lesión Renal Aguda/genética , Lesión Renal Aguda/etiología , Lesión Renal Aguda/diagnóstico , Diálisis Peritoneal , Crisis Hipertensiva
4.
Nat Commun ; 15(1): 2513, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514625

RESUMEN

In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.


Asunto(s)
Mieloma Múltiple , FN-kappa B , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Transcriptoma , Epigenoma , Transducción de Señal/genética , Subunidad p52 de NF-kappa B/metabolismo
5.
Sci Rep ; 14(1): 3941, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366068

RESUMEN

The significant role of increased activation of 20S proteasomes in the development of abdominal aortic aneurysms has been well-established in a mouse model. The available literature lacks similar studies concerning brain aneurysms. The aim of the study was to verify the hypothesis that patients with unruptured intracranial aneurysms (UIA) have increased 20S proteasome ChT-L activity compared to the control group of individuals without vascular lesions in the brain. In the next step, the relationship between the activity of 20S proteasomes ChT-L and precursor proteins from the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) family, namely NF-κB1 (p105), NF-κB2 (p100), NF-κB p65, and the inflammatory chemokine MCP-1, was examined. Patients with UIA had significantly higher 20S ChT-L proteasome activity compared to the control group. Patients with multiple aneurysms had significantly higher 20S proteasome ChT-L activity compared to those with single aneurysms. In patients with UIA, the activity of the 20S proteasome ChT-L negatively correlated with the concentration of NF-κB1 (p105) and NF-κB p65 precursor proteins and positively correlated with the concentration of the cerebrospinal fluid chemokine MCP-1. Our results may suggest that increased 20S proteasome ChT-L activity in UIA patients modulates inflammation in the cerebral arterial vessel via the MCP-1 chemokine as a result of activation of the canonical NF-κB pathway.


Asunto(s)
Aneurisma Intracraneal , FN-kappa B , Ratones , Animales , Humanos , FN-kappa B/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Aneurisma Intracraneal/metabolismo , Proteolisis , Subunidad p52 de NF-kappa B/metabolismo
6.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385745

RESUMEN

Different from the well-studied canonical NF-κB member RelA, the role of the noncanonical NF-κB member NF-κB2 in solid tumors, and lung cancer in particular, is poorly understood. Here we report that in contrast to the tumor-promoting role of RelA, NF-κB2 intrinsic to lung epithelial and tumor cells had no marked effect on lung tumorigenesis and progression. On the other hand, NF-κB2 limited dendritic cell number and activation in the lung but protected lung macrophages and drove them to promote lung cancer through controlling activation of noncanonical and canonical NF-κB, respectively. NF-κB2 was also required for B cell maintenance and T cell activation. The antitumor activity of lymphocyte NF-κB2 was dominated by the protumor function of myeloid NF-κB2; thus, NF-κB2 has an overall tumor-promoting activity. These studies reveal a cell type-dependent role for NF-κB2 in lung cancer and help understand the complexity of NF-κB action and lung cancer pathogenesis for better design of NF-κB-targeted therapy against this deadliest cancer.


Asunto(s)
Neoplasias Pulmonares , FN-kappa B , Humanos , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350542

RESUMEN

Colorectal cancer (CRC) has been the third most common malignancy and the second cause of cancer-related mortality. As the core of volume-sensitive chloride currents, leucine-rich repeat-containing 8A (LRRC8A) contributes to tumor progression but is not consistent, especially for whom the roles in colon carcinoma metastasis were not fully elucidated. Herein, LRRC8A proteins were found highly expressed in hematogenous metastasis from human colorectal cancer samples. The oxaliplatin-resistant HCT116 cells highly expressed LRRC8A, which was related to impaired proliferation and enhanced migration. The over-expressed LRRC8A slowed proliferation and increased migration ex vivo and in vivo. The elevated LRRC8A upregulated the focal adhesion, MAPK, AMPK, and chemokine signaling pathways via phosphorylation and dephosphorylation. Inhibition of LRRC8A impeded the TNF-α signaling cascade and TNF-α-induced migration. LRRC8A binding to PIP5K1B regulated the PIP2 formation, providing a platform for LRRC8A to mediate cell signaling transduction. Importantly, LRRC8A self-regulated its transcription via NF-κB1 and NF-κB2 pathways and the upregulation of NIK/NF-κB2/LRRC8A transcriptional axis was unfavorable for colon cancer patients. Collectively, our findings reveal that LRRC8A is a central mediator in mediating multiple signaling pathways to promote metastasis and targeting LRRC8A proteins could become a potential clinical biomarker-driven treatment strategy for colon cancer patients.


Asunto(s)
Neoplasias del Colon , Neoplasias del Recto , Humanos , Neoplasias del Colon/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Exp Clin Cancer Res ; 43(1): 20, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229152

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) participate in cancer development via cell-to-cell communication. Long non-coding RNAs (lncRNAs), one component of EVs, can play an essential role in non-small-cell lung cancer (NSCLC) through EV-mediated delivery. METHODS: The NSCLC-associated lncRNA AL139294.1 in EVs was identified via lncRNA microarray analysis. The role of AL139294.1 in NSCLC was examined in vitro and in vivo. Confocal microscopy was used to observe the encapsulation of AL139294.1 into EVs and its transport to recipient cells. A co-culture device was used to examine the effects of transported AL139294.1 on the oncogenic behaviour of recipient cells. Dual-luciferase reporter assay was performed to verify the direct interaction of miR-204-5p with AL139294.1 and bromodomain-containing protein 4 (BRD4). AL139294.1 and miR-204-5p in EVs were quantified using quantitative polymerase chain reaction. Receiver operating characteristic analyses were conducted to evaluate the diagnostic efficiency. RESULTS: The lncRNA AL139294.1 in EVs promoted NSCLC progression in vitro and in vivo. After AL139294.1 was encapsulated into EVs and transported to recipient cells, it promoted the cells' proliferation, migration, and invasion abilities by competitively binding with miR-204-5p to regulate BRD4, leading to the activation of the Wnt and NF-κB2 pathways. Additionally, the expression of serum lncRNA AL139294.1 in EVs was increased, whereas miR-204-5p in EVs was decreased in NSCLC. High levels of lncRNA AL139294.1 and low levels of miR-204-5p in EVs were associated with advanced pathological staging, lymph node metastasis, and distant metastasis, underscoring their promising utility for distinguishing between more and less severe manifestations of the disease. CONCLUSIONS: This study reveals a novel lncRNA in EVs associated with NSCLC, namely, AL139294.1, providing valuable insights into the development of NSCLC and introducing potential diagnostic biomarkers for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Subunidad p52 de NF-kappa B , Proteínas Nucleares , Neoplasias Pulmonares/genética , Factores de Transcripción , Proliferación Celular , MicroARNs/genética , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular
10.
Vet Pathol ; 61(1): 20-31, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37357953

RESUMEN

Increased or constitutive activation of nuclear factor kappa B (NF-kB) is a feature of many chronic disease processes, including cancer. While NF-kB overactivation has been documented extensively in human oncology, there is a relative paucity of data documenting the same phenomenon in veterinary medicine. To assess NF-kB activity, antibodies to p65 and p100/p52, which are components of NF-kB heterodimers, were first validated for specificity and canine cross-reactivity via Western blot and labeling of immortalized cell pellets. Then, nuclear labeling for these antibodies was assessed via QuPath software in over 200 tumor tissue samples (10 hemangiosarcomas, 94 histiocytic sarcomas, 71 lymphomas, and 28 mast cell tumors) and compared to immunolabeling in appropriate normal tissue counterparts. Greater than 70% of spontaneous canine tumors evaluated in this study had more nuclear p65 and p100/p52 immunoreactivity than was observed in comparable normal cell populations. Specifically, 144/204 (70.58%) of tumors evaluated had positive p65 nuclear labeling and 179/195 (91.79%) had positive p100/p52 nuclear labeling. Surprisingly, greater nuclear p100/p52 reactivity was associated with a longer progression-free survival (PFS) and overall survival (OS) in canine lymphomas. These results provide support and preliminary data to investigate the role of NF-kB signaling in different types of canine cancer.


Asunto(s)
Enfermedades de los Perros , Hemangiosarcoma , Sarcoma Histiocítico , Linfoma , Animales , Perros , Humanos , FN-kappa B/metabolismo , Sarcoma Histiocítico/veterinaria , Hemangiosarcoma/veterinaria , Mastocitos , Subunidad p52 de NF-kappa B/metabolismo , Linfoma/veterinaria
11.
Nature ; 623(7988): 803-813, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938781

RESUMEN

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Asunto(s)
Autoanticuerpos , Predisposición Genética a la Enfermedad , Interferón Tipo I , FN-kappa B , Humanos , Autoanticuerpos/inmunología , COVID-19/genética , COVID-19/inmunología , Mutación con Ganancia de Función , Heterocigoto , Proteínas I-kappa B/deficiencia , Proteínas I-kappa B/genética , Interferón Tipo I/antagonistas & inhibidores , Interferón Tipo I/inmunología , Mutación con Pérdida de Función , FN-kappa B/deficiencia , FN-kappa B/genética , Subunidad p52 de NF-kappa B/deficiencia , Subunidad p52 de NF-kappa B/genética , Neumonía Viral/genética , Neumonía Viral/inmunología , Timo/anomalías , Timo/inmunología , Timo/patología , Células Epiteliales Tiroideas/metabolismo , Células Epiteliales Tiroideas/patología , Proteína AIRE , Quinasa de Factor Nuclear kappa B
12.
BMC Med Genomics ; 16(1): 304, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017491

RESUMEN

BACKGROUND: In children with CKD, Protein Energy Wasting (PEW) is common, which affects the outcome of children and is an important cause of poor prognosis. We are aiming to explore the pathogenesis of muscle wasting in CKD-PEW children. METHODS: Blood samples of 32 children diagnosed with chronic kidney disease (CKD) and protein energy wasting (PEW) in our hospital from January 2016 to June 2021 were collected. RNA sequencing and bioinformatics analysis were performed. RESULTS: Based on GO (Gene Ontology) functional enrichment analysis, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis and differential gene expression analysis, a total of 25 CKD-PEW related genes were obtained including CRP, IL6, TNF, IL1B, CXCL8, IL12B, IL12A, IL18, IL1A, IL4, IL10, TGFB2, TGFB1, TGFB3, ADIPOQ, NAMPT, RETN, RETNLB, LEP, CD163, ICAM1, VCAM1, SELE, NF-κB1, NF-κB2. The most significantly differentially expressed gene was NF-κB2 (adjusted P = 2.81 × 10-16), and its expression was up-regulated by 3.92 times (corresponding log2FoldChange value was 1.979). Followed by RETN (adjusted P = 1.63 × 10-7), and its expression was up-regulated by 8.306 times (corresponding log2FoldChange value was 2.882). SELE gene were secondly significant (adjusted P = 5.81 × 10-7), and its expression was down-regulated by 22.05 times (corresponding log2FoldChange value was -4.696). CONCLUSIONS: A variety of inflammatory factors are involved in the pathogenesis of CKD-PEW in children, and chronic inflammation may lead to the development of muscle atrophy in CKD-PEW. It is suggested for the first time that NF-κB is a key gene in the pathogenesis of muscle wasting in CKD-PEW children, and its increased expression may play an important role in the pathogenesis of muscle wasting in children with CKD-PEW.


Asunto(s)
Desnutrición Proteico-Calórica , Insuficiencia Renal Crónica , Humanos , Niño , Subunidad p52 de NF-kappa B , Desnutrición Proteico-Calórica/etiología , Caquexia/complicaciones , Insuficiencia Renal Crónica/genética , Atrofia Muscular , Análisis de Secuencia de ARN , Diálisis Renal/efectos adversos
14.
Sci Signal ; 16(806): eabn5410, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816088

RESUMEN

The ubiquitination-dependent processing of NF-κB2 (also known as p100) is a critical step in the activation of the noncanonical NF-κB pathway. We investigated the molecular mechanisms regulating this process and showed that TRIM55 was the E3 ubiquitin ligase that mediated the ubiquitination of p100 and coordinated its processing. TRIM55 deficiency impaired noncanonical NF-κB activation and B cell function. Mice with a B cell-specific Trim55 deficiency exhibited reduced germinal center formation and antibody production. These mice showed less severe symptoms than those of control mice upon the induction of a systemic lupus-like disease, suggesting B cell-intrinsic functions of TRIM55 in humoral immune responses and autoimmunity. Mechanistically, the ubiquitination of p100 mediated by TRIM55 was crucial for p100 processing by VCP, an ATPase that mediates ubiquitin-dependent protein degradation by the proteasome. Furthermore, we found that TRIM55 facilitated the interaction between TRIM21 and VCP as well as TRIM21-mediated K63-ubiquitination of VCP, both of which were indispensable for the formation of the VCP-UFD1-NPL4 complex and p100 processing. Together, our results reveal a mechanism by which TRIM55 fine-tunes p100 processing and regulates B cell-dependent immune responses in vivo, highlighting TRIM55 as a potential therapeutic target for lupus-like disease.


Asunto(s)
FN-kappa B , Transducción de Señal , Animales , Ratones , Inmunidad , FN-kappa B/genética , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B/genética , Subunidad p52 de NF-kappa B/metabolismo , Ubiquitinación
15.
Cell Death Dis ; 14(9): 599, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679334

RESUMEN

Deletion of TRAF2 or TRAF3 in B cells prolongs their survival. However, it remains unknown whether deletion of such factors affects B cells' ability to tolerate DNA damage, which can be induced by chemotherapeutics and cause apoptosis. Genetic alterations of TRAF2 or TRAF3 are observed in subsets of human B-cell lymphomas and B cell-specific deletion of TRAF3 led to lymphoma development in aged mice. However, it remains unknown whether double deficiency of TRAF2 and TRAF3 accelerates B-cell lymphomagenesis. Here, we showed that B cell-specific TRAF2/3 double deficient (B-TRAF2/3-DKO) B cells were remarkably more resistant to DNA damage-induced apoptosis via upregulating cIAP2 and XIAP, which in turn attenuates caspase-3 activation. Mechanistically, resistance to DNA damage-induced apoptosis required NF-κB2, which effects by upregulating XIAP and cIAP2 transcription. B-TRAF2/3-DKO mice exhibited a shorter lifespan and succumbed to splenomegaly and lymphadenopathy. Unexpectedly, the incidence of B-cell lymphoma development in B-TRAF2/3-DKO mice was relatively rare (∼10%). Sequencing B cell receptor repertoire of diseased B cells revealed that TRAF2/3 deficiency caused abnormal oligoclonal or clonal expansion of B cells. While a fraction of mutant B cells (25-43%) from aged diseased mice harbored recurrent chromosomal translocations, primary B cells isolated from young B-TRAF2/3-DKO mice had no detectable chromosomal alterations, suggesting that TRAF2/3 deficiency per se does not cause evident genomic instability in B cells. Chemo-resistant TRAF3-deficient B-cell lymphomas were sensitized to chemotherapeutic drugs by blocking IAP activity using IAP antagonist. We conclude that double deficiency of TRAF2 and TRAF3 does not accelerate B-cell lymphomagenesis. Our studies provide insight into mechanisms regulating DNA damage-induced apoptosis and may help develop effective therapies targeting mutant B-cell lymphomas using IAP antagonist.


Asunto(s)
Linfoma de Células B , Linfoma , Humanos , Animales , Ratones , Anciano , Factor 2 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/genética , Subunidad p52 de NF-kappa B , Apoptosis/genética , Daño del ADN , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Proteína Inhibidora de la Apoptosis Ligada a X
16.
J Biomol Struct Dyn ; 41(24): 14715-14729, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37301608

RESUMEN

Breast cancer is a silent killer malady among women and a serious economic burden in health care management. A case of breast cancer is diagnosed among women every 19 s, and every 74 s, a woman dies of breast cancer somewhere in the world. Despite the pop-up of progressive research, advanced treatment approaches, and preventive measures, breast cancer remains amplifying ailment. The nuclear factor kappa B (NF-κB) is a key transcription factor that links inflammation with cancer and is demonstrated as being involved in the tumorigenesis of breast cancer. The NF-κB transcription factor family in mammals consists of five proteins; c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52). The antitumor effect of NF-κB has also been explored in breast cancer, however, the actual treatment for breast cancer is yet to be discovered. This study is attributed to the identification of novel drug targets against breast cancer by targeting c-Rel, RelA(p65), RelB, NF-κB1(p50), and NF-κB2(p52) proteins. To identify the putative active compounds, a structure-based 3D pharmacophore model to the protein active site cavity was generated followed by virtual screening, molecular docking, and molecular dynamics (MD) simulation. Initially, a library of 45000 compounds were docked against the target protein and five compounds namely Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 were selected for further analysis. The relative binding affinity of Z56811101, Z653426226, Z1097341967, Z92743432, and Z464101066 with NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel proteins were -6.8, -8, -7.0, -6.9, and -7.2 kcal/mol, respectively which remained stable throughout the simulations of 200 ns. Furthermore, all of these compounds depict maximum drug-like properties. Therefore, the proposed compounds can be a potential candidate for patients with breast cancer, but, experimental validation is needed to ensure their safety.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Animales , Humanos , Femenino , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Subunidad p50 de NF-kappa B/metabolismo , Mamíferos/metabolismo
18.
Commun Biol ; 6(1): 445, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087499

RESUMEN

Gliomas are highly invasive and chemoresistant cancers, making them challenging to treat. Chronic inflammation is a key driver of glioma progression as it promotes aberrant activation of inflammatory pathways such as NF-κB signalling, which drives cancer cell invasion and angiogenesis. NF-κB factors typically dimerise with its own family members, but emerging evidence of their promiscuous interactions with other oncogenic factors has been reported to promote transcription of new target genes and function. Here, we show that non-canonical NF-κB activation directly regulates p52 at the ETS1 promoter, activating its expression. This impacts the genomic and transcriptional landscape of ETS1 in a glioma-specific manner. We further show that enhanced non-canonical NF-κB signalling promotes the co-localisation of p52 and ETS1, resulting in transcriptional activation of non-κB and/or non-ETS glioma-promoting genes. We conclude that p52-induced ETS1 overexpression in glioma cells remodels the genome-wide regulatory network of p52 and ETS1 to transcriptionally drive cancer progression.


Asunto(s)
Glioma , Subunidad p52 de NF-kappa B , Proteína Proto-Oncogénica c-ets-1 , Humanos , Glioma/genética , Glioma/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , Proteína Proto-Oncogénica c-ets-1/genética , Transducción de Señal/genética
19.
Phytother Res ; 37(7): 2939-2956, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36938853

RESUMEN

This study investigated antimalarial efficacy and sensitization of chrysosplenetin against artemisinin-resistant Plasmodium berghei K173 and potential molecular mechanism. Our data indicated a risk of artemisinin resistance because a higher parasitaemia% and lower inhibition% under artemisinin treatment against resistant parasites than those in the sensitive groups were observed. Two non-antimalarial components, verapamil and chrysosplentin, being P-gp inhibitors, possessed a strong efficacy against resistant parasites but it was not the case for Bcrp inhibitor novobiocin. Artemisinin-chrysosplenetin combination improved artemisinin susceptibility of resistant P. berghei. Artemisinin activated intestinal P-gp and Abcb1/Abcg2 expressions and suppressed Bcrp whereas chrysosplenetin reversed them. Resistant parasite infection led to a decreased haemozoin in organs or an increased heme in peripheral bloods compared with the sensitives; however, that in Abcb1-deficient knockout (KO)-resistant mice reversely got increased or decreased versus wild type (WT)-resistant animals. Chrysosplenetin as well as rifampin (nuclear receptor agonist) increased the transcription levels of PXR/CAR while showed a versatile regulation on hepatic and enternal PXR/CAR in WT- or KO-sensitive or -resistant parasites. Oppositely, hepatic and enteric NF-κB p52 mRNA decreased conformably in WT but increased in KO-resistant mice. NF-κB pathway potentially involved in the mechanism of chrysosplenetin on inhibiting P-gp expressions while PXR/CAR play a more complicated role in this mechanism.


Asunto(s)
Antimaláricos , Artemisininas , Ratones , Animales , Antimaláricos/farmacología , Plasmodium berghei , Subunidad p52 de NF-kappa B/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de Neoplasias , Artemisininas/farmacología , Transducción de Señal , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Homeostasis , Hemo/farmacología
20.
Elife ; 122023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36779700

RESUMEN

The mammalian NF-κB p52:p52 homodimer together with its cofactor Bcl3 activates transcription of κB sites with a central G/C base pair (bp), while it is inactive toward κB sites with a central A/T bp. To understand the molecular basis for this unique property of p52, we have determined the crystal structures of recombinant human p52 protein in complex with a P-selectin(PSel)-κB DNA (5'-GGGGTGACCCC-3') (central bp is underlined) and variants changing the central bp to A/T or swapping the flanking bp. The structures reveal a nearly two-fold widened minor groove in the central region of the DNA as compared to all other currently available NF-κB-DNA complex structures, which have a central A/T bp. Microsecond molecular dynamics (MD) simulations of free DNAs and p52 bound complexes reveal that free DNAs exhibit distinct preferred conformations, and p52:p52 homodimer induces the least amount of DNA conformational changes when bound to the more transcriptionally active natural G/C-centric PSel-κB, but adopts closed conformation when bound to the mutant A/T and swap DNAs due to their narrowed minor grooves. Our binding assays further demonstrate that the fast kinetics favored by entropy is correlated with higher transcriptional activity. Overall, our studies have revealed a novel conformation for κB DNA in complex with NF-κB and pinpoint the importance of binding kinetics, dictated by DNA conformational and dynamic states, in controlling transcriptional activation for NF-κB.


Asunto(s)
Subunidad p52 de NF-kappa B , FN-kappa B , Animales , Humanos , ADN/metabolismo , Mamíferos/metabolismo , FN-kappa B/metabolismo , Subunidad p52 de NF-kappa B/química , Activación Transcripcional , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...